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Abstract: The yield-line method provides a powerful means of rapidly estimating the ultimate load that can be carried by a reinforced concrete
slab. The method can reveal hidden reserves of strength in existing slabs and can lead to highly economic slabs when used in design. Originally
conceived before the widespread availability of computers, the yield-line method subsequently proved difficult to computerize, limiting its appeal
in recent years. However, it was recently demonstrated that the discontinuity layout optimization (DLO) procedure could be used to system-
atically automate the method, and various isotropically reinforced, uniformly loaded slab examples were used to demonstrate this. The main
purpose of this paper is to demonstrate that the DLO procedure can also be applied to a wide range of more practical slab problems, for example
involving orthotropic reinforcement, internal columns, and point, line, and patch loads. The efficacy of the procedure is demonstrated via
application to a variety of example problems from the literature; for all problems considered solutions are presented that improve upon existing
numerical solutions. Furthermore, in a number of cases, solutions derived using previously proposed automated yield-line analysis procedures
are shown to be highly nonconservative. DOI: 10.1061/(ASCE)ST.1943-541X.0001700. This work is made available under the terms of the
Creative Commons Attribution 4.0 International license, http://creativecommons.org/licenses/by/4.0/.
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Introduction

The yield-line method of analysis (Johansen 1943) is a long-
established and extremely powerful tool for estimating the maxi-
mum load sustainable by a reinforced concrete slab. To apply the
method successfully, traditionally users have had to know some-
thing about the rules governing the construction of viable yield-line
patterns, though these rules can be memorized, and for simple prob-
lems a hand analysis is quick and easy to perform. The guidance
document produced by the U.K. Concrete Centre (Kennedy and
Goodchild 2004) discusses the many benefits of yield-line design,
in particular highlighting the highly economic reinforcement lay-
outs that can result from its application (though it should be noted
that the method considers flexural failure only, and serviceability
considerations, which will sometimes govern the design, are not
considered). Furthermore, various other guidance documents are
available to assist new users, some of which also include useful
formulas covering standard cases.

However, in many practical cases it can be difficult to identify
the critical yield-line pattern by hand. This is true when the slab
under consideration has an unusual geometry, reinforcement con-
figuration, or pattern of applied loading. The presence of fixed (or
so-called clamped) edges can also cause difficulties since in reality

complex yield-line patterns (e.g., involving corner fans) will often
be critical in such cases, and these can be difficult to deal with in a
hand analysis. Most importantly, it must be borne in mind that the
yield-line method is an upper-bound method in the context of the
fundamental theorems of plasticity, which means that an incorrectly
chosen yield-line pattern will result in an unsafe estimate of the
strength of the slab under consideration.

To address this issue, an automated method of identifying criti-
cal yield-line patterns was first proposed in the 1970s by Chan
(1972), then working at the University of Oxford, and subsequently
by Munro and Da Fonseca (1978), working at Imperial College,
London. Both groups of researchers discretized the slab under con-
sideration into rigid elements separated by potential yield-lines and
then used linear programming (LP) techniques to identify the criti-
cal yield-line pattern. Unfortunately, when using rigid elements it
can be observed that the solutions obtained depend on the layout
of the mesh discretization employed. This means that in many cases
progressively reducing the size of the mesh does not lead to conver-
gence toward the exact solution [e.g., as demonstrated in the recent
study by Bleyer and De Buhan (2013)]. Various groups of research-
ers, for example, Johnson and coworkers (Johnson 1994; Ramsay
and Johnson 1998) and Thavalingam et al. (1999), attempted to ad-
dress this through the use of a two-stage procedure. This involved
supplementing the original rigid element procedure with a geometry-
optimization phase, allowing the positions of nodes to be adjusted to
try to improve the solution. The main drawback is that such proce-
dures rely on the initial solution being of the same form as the true
optimal layout. This is not necessarily the case, and, in mathematical
optimization terms, such procedures will therefore be prone to
identifying solutions that are locally rather than globally optimal
[e.g., Johnson (1994) conceded that his proposed two-stage approach
“does not directly generate likely critical collapse modes”].

In the absence of general tools, various automated hand calcu-
lation yield-line analysis methods have been developed, such as
the COncrete BRidge ASsessment (Cobras) package developed by
Middleton (1997) specifically for bridge assessment. This proved
to be a very useful tool, showing that many existing reinforced
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concrete slab bridges possessed significantly greater capacity than
indicated by elastic analysis methods. However, because the tool re-
lies on the use of an in-built library of predefined yield-line patterns,
it is only suitable for analyzing a restricted range of slab geometries.

In parallel, various methods that seek to identify lower bound
solutions have been investigated, such as those presented by
Anderheggen and Knöpfel (1972), Krabbenhoft and Damkilde
(2003), and, more recently, by Le et al. (2010) and Maunder and
Ramsay (2012). However, it should be noted that these methods are
comparatively complex since they involve the use of a nonlinear
yield function and in addition are incapable of identifying discrete
yield-lines directly [though these can be manually inferred from
the output, as undertaken in the two-step slab analysis procedure
recently described by Jackson and Middleton (2013)].

Given the inherent limitations of existing techniques, the oppor-
tunity was recently taken to apply the discontinuity layout optimi-
zation (DLO) procedure (Smith and Gilbert 2007) to the analysis
of reinforced concrete slabs. Although full details are provided by
Gilbert et al. (2014), in the present paper key features of the pro-
cedure are briefly outlined. It is then demonstrated that the pro-
cedure may straightforwardly be extended to treat practical slab
analysis problems, involving orthotropic reinforcement, a wider va-
riety of support conditions, and slabs that are subject to point, line,
and patch loads. Additionally, it is shown that a recently developed
rationalization procedure (He and Gilbert 2016) can be used to
enhance the solutions obtained. In this paper the DLO-based pro-
cedure is applied to both benchmark problems from the literature
and to more practical slab configurations, the aim being to clearly
demonstrate its accuracy and usefulness.

Discontinuity Layout Optimization Formulation

A complete DLO analysis comprises several steps (Fig. 1). First,
the slab is discretized using nodes spatially distributed across the
problem domain [Fig. 1(b)], which are then interconnected with
potential yield-lines [Fig. 1(c)]. Each yield-line employs the vari-
ables shown in Fig. 2: normal rotation θn along yield-line, twisting
rotation θt, and out-of-plane displacement δ. With respect to these
displacement variables, a linear programming (LP) problem com-
prising an objective function and constraints can be formulated as
follows (after Gilbert et al. 2014):

Minimize λfTLd ¼ −fTDdþ gTp ð1aÞ

Subject toBd ¼ 0 ð1bÞ

Np − d ¼ 0 ð1cÞ

fTLd ¼ 1 ð1dÞ

p ≥ 0 ð1eÞ
where d and p = vectors containing respectively the aforemen-
tioned displacement variables and corresponding nonnegative
plastic multiplier variables. In the objective function of Eq. (1a),
λ is a dimensionless load factor, here applied only to live loads;
λfTLd and fTDd describe the external work done, respectively, by
live and dead loads (calculated in DLO by considering the effects

(a)

(d) (e)

(b) (c)

Fig. 1. Steps in DLO process: a simple example (reprinted from Gilbert et al. 2015, with permission): (a) Step 1: the geometry, boundary conditions,
loads, and yielding moments are defined; (b) Step 2: nodal discretization (using four nodal divisions); (c) Step 3: nodes are connected by potential
yield-lines; (d) Step 4: identify the subset of yield-lines present in the critical collapse mechanism using linear programming (LP); (e) Step 5
(optional): visualize deformed shape
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of loads lying in strips “above” each yield-line; the coefficients in
fL and fD for the load types considered in this paper are provided in
Fig. 3). Also, gTp describes the internal energy dissipation along
yield-lines. In Eq. (1b), B is a compatibility matrix used to ensure
that yield-line displacements are kinematically admissible; see also
Fig. 4. In Eq. (1c), N is a plastic flow rule matrix describing the
relation between the yield-line displacements in d and their associ-
ated plastic multipliers p. Also, in Eq. (1d), the external work done
by a live load is normalized to ensure that λ directly defines the
load factor. By solving the linear optimization problem given by
Eqs. (1a)–(1e), the load factor at collapse and the associated
yield-line pattern can be obtained. The deformed shape can also
be plotted [Fig. 1(e)] to clearly indicate the form of the predicted
failure mechanism.

Whereas the example shown in Fig. 1 contains very few nodes,
in practice much denser nodal grids can be employed to obtain
more accurate solutions. However, a side effect of this is that
the resulting yield-line patterns can become quite complex in form.
To simplify these, a postprocessing rationalization step, which in-
volves adjusting the positions of the nodes via geometry optimiza-
tion, can optionally be performed (He and Gilbert 2016). Unlike
previously proposed methods that require a manual interpretation
step (e.g., Johnson 1995; Jackson and Middleton 2013), here the
rationalization is performed automatically following completion of
a standard DLO analysis, generating yield-line patterns that are
both simplified (i.e., contain fewer nodes and yield-lines) and more
critical (i.e., the solutions are better). The extensions to the math-
ematical derivations described in He and Gilbert (2016) required to
enable treatment of the practical slabs considered in the present
paper are provided in Appendix I.

Modeling Features of Practical Slabs

Orthotropic Slab Reinforcement

In engineering practice, many slabs contain orthotropic reinforce-
ment; such slabs were not considered in Gilbert et al. (2014). How-
ever, it will be shown here that orthotropic reinforcement can be

(a) (b) (c)

Fig. 2. Displacement variables for a yield-line AB (assuming block ABCD moves to A 0B 0C 0D 0): (a) normal rotation along yield-line; (b) twisting
rotation; (c) out-of-plane displacement

Fig. 3. Evaluating effects of loads lying in a strip “above” yield-line i

Fig. 4. Compatibility requirements for yield-lines meeting at a node
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handled using the DLO method. Referring to Fig. 5, suppose mþ
px,

mþ
py and m−

px, m−
py are, respectively, the x- and y-direction positive

and negative plastic moments of resistance per unit length. Also,
mþ

p and m−
p are the plastic moments of resistance per unit length

along a yield-line inclined at an angle of ϕ to the x-axis. Using the
stepped yield–criterion approach proposed by Johansen (1943),
the latter can be calculated from

mþ
p ¼ mþ

pxcos2ϕþmþ
pysin2ϕ ð2Þ

m−
p ¼ m−

pxcos2ϕþm−
pysin2ϕ ð3Þ

In the DLO formulation (Gilbert et al. 2014), the preceding
equations can be used when calculating the internal energy dissi-
pation terms for a given yield-line [i.e., the coefficients in g, used in
the objective function given by Eq. (1a)]. Note that since the ori-
entation of a given yield-line connecting two nodes is known in
advance, computing the energy dissipation terms is straightforward;
hence, orthotropically reinforced slabs can be treated without
difficulty in DLO.

Boundary Conditions

In Gilbert et al. (2014) and He and Gilbert (2016), only four boun-
dary conditions were considered [free, symmetry, fixed, and simple

(anchored) boundaries; see the first four columns in Fig. 6].
However, in engineering practice, other boundary conditions are
frequently encountered; the remaining columns in Figs. 6 and 7 pro-
vide details of the additional boundary conditions considered here.
Additionally, here an optional support strength factor i is applied in
the case of fixed supports [i is then a multiplier in internal energy
dissipation terms in the objective function given by Eq. (1a)]. Further
explanation of the remaining boundary conditions follows:
1. Nonanchored simple supports

An external simple support can be anchored or nonanchored;
in the latter case, uplift may occur, which means that twisting
and out-of-plane displacements can now be nonzero, with
θtl=2� δ ≥ 0 ensuring that uplift (only) can occur.

2. Knife-edge supports
These types of support may be located internally beneath the

slab, with the slab above the support being continuous. This
means that the slab can rotate along the support. If there exists
no relative normal rotation at the support (i.e., θn ¼ 0), then no
yield-line is allowed to form at the support. If θn ≠ 0, then a
yield-line may develop along the support and internal energy
dissipation needs to be accounted for. Regarding the twisting
rotation θt and out-of-plane displacement δ, both (a) anchored
and (b) nonanchored knife-edge supports are considered here. In
the latter case, twisting and out-of-plane displacements can
now be nonzero, and uplift can be allowed to occur (as with
the nonanchored simple supports).

3. Column supports
Columns are frequently used in engineering practice; these

can effectively be modeled using a combination of the afore-
mentioned line support types. An external column is normally
modeled using a simple support, while internal columns can
now be modeled using either enclosed knife-edge supports or,
if an internal column passes through the slab, by fixed supports
(since the slab region is now discontinuous). In the latter case
an optional support strength factor i can be applied. A summary
of all column support types is shown in Fig. 7.

Application of Automated Method

Steps in the DLO procedure are shown in Fig. 1; a MATLAB script
implementing the basic procedure is provided as supplemental data
for interested readers. Dense nodal grids can be employed using
a modern desktop computer, so that highly accurate numerical
solutions can, if necessary, be obtained. To solve standard DLO

Fig. 5. Yield moments mþ
px, mþ

py, m−
px, and m−

py in an orthotropically
reinforced concrete slab

Fig. 6. Summary of line support types
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problems, including the largest problems, involving approximately
10,000 nodes, the LimitState:SLAB software was used; this soft-
ware is freely available for academic use. To obtain rationalized
solutions, the postprocessing step described by He and Gilbert
(2016) was used, programmed in aMATLAB script. All results were
obtained using an Intel i5-2310-based desktop PC with 6 GB RAM
and running Microsoft Windows 7.

Numerical results are summarized in Table 1, which contains
both DLO solutions obtained using dense nodal grids involving
10,000 nodes, to provide highly accurate solutions, and rationalized
DLO solutions, which are easier to interpret visually. For problems
with known analytical solutions, the margin of error was always
found to be well within 1%. For other problems the results obtained
in the present paper were found to be more accurate (i.e., lower)
than those obtained using the numerical methods described in
the existing literature. Additional details of each problem consid-
ered are provided in the following sections.

Singly Reinforced Slabs

Slabs that are singly reinforced (i.e., having no hogging resistance)
will be considered first; these are of particular interest because the
critical failure mechanism is likely to involve so-called corner
levers or corner fans [which are often ignored by practicing engi-
neers, who may instead pragmatically apply a margin of safety of,
e.g., 10% (Kennedy and Goodchild 2004) to account for this and
other simplifications].

Isotropic Six-Sided Slabs
The six-sided slabs shown in Figs. 8 and 9 were previously ana-
lyzed by Wüst and Wagner (2008). In both cases, mþ

px ¼ mþ
py

and m−
px ¼ m−

py ¼ 0 (i.e., there is no resistance to hogging mo-
ments). It is evident that the yield-line patterns identified by Wüst
and Wagner (2008), shown in Figs. 8(b) and 9(b), involve yield-
lines that intersect each of the corners and, hence, do not include
corner levers or corner fans. In contrast, corner fans are evident in
both the standard DLO solutions [Figs. 8(c) and 9(c)] and the
rationalized DLO solutions [Figs. 8(d) and 9(d)]. Comparing the
solutions obtained by Wüst and Wagner (2008) and those obtained
using DLO, it is evident that the former are more than 10% higher
than the latter (using 10,000 node DLO solutions provided here as

benchmarks, differences for the two problems are as follows:
ð17.75=15.953 − 1Þ × 100% ¼ 11.3% and ð54.4=47.424 − 1Þ×
100% ¼ 14.7%), indicating that using the yield-line patterns iden-
tified by Wüst and Wagner (2008) would be nonconservative, even
if the usual 10% margin of safety were applied.

Orthotropic Trapezoidal Slab
The trapezoidal slab shown in Fig. 10 was previously analyzed
by Balasubramanyam and Kalyanaraman (1988). The slab is ortho-
tropically reinforced and simply supported on three sides. The
relatively simple yield-line pattern identified by Balasubramanyam
and Kalyanaraman (1988), shown in Fig. 10(b), does not include
corner levers or corner fans and corresponds to a required moment
capacity of mþ

px ¼ 11.84q. In contrast, the DLO solution shown in
Fig. 10(c) is more complex and corresponds to a required moment
capacity that is 18% higher [using the most accurate DLO solution
available here, ð13.97=11.84 − 1Þ × 100% ¼ 18%]. This again
indicates that application of the usual 10% margin of safety would
be insufficient to ensure a safe design.

Slabs with Internal Supports

Roof Slab
The slab shown in Fig. 11 has two external column supports and
two knife-edge supports. The problem was originally analyzed by
Bäcklund (1973), then by Munro and Da Fonseca (1978), and sub-
sequently by Balasubramanyam and Kalyanaraman (1988). The
rationalized DLO solution is shown in Fig. 11(c). A local failure
can be observed near one external column; additionally, a fan-type
mechanism is developed near the knife-edge supports. Though the
slab is not anchored to the knife-edge supports, the failure mecha-
nism shows no uplift of the slab.

Johansen’s Slab with Point Supports
Johansen (1943) investigated a slab having two point supports
[Fig. 12(a)]. Ideally a point support acts as a fulcrum, providing
no rotational restriction and permitting uplift without necessitating
plastic deformation of the slab. However, in DLO a point support is
most conveniently modeled as a column of finite, though small, size
[Fig. 12(b)]. This means that care must be exercised since, if a

Fig. 7. Summary of column support types
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column restricts translational displacement of the slab along all its
edges (e.g., a Type I or III column in Fig. 7), plastic deformation
must occur near the column when uplift behavior occurs. In
contrast, a Type II column behaves similarly to a point support,
except that the fulcrum has been offset from the initial position
[cf. Fig. 12(a)]. The influence of the support type and column size
μ on the critical yield-line pattern is shown in Fig. 13. The follow-
ing observations may be made:
• First, when a relatively small column size is used (μ ¼ 0.001),

the resulting global yield-line pattern is largely insensitive to
column type. However, local mechanisms are found close to
Types I and III columns, and nonanchored (Type II) columns
provide the best approximation of a point support;

• Second, when larger columns are used (μ ¼ 0.2), it is clear that
the size of the column affects the failure mode significantly: a
fan-type mechanism is developed near the Types I and III col-
umns, and the uplift disappears. In contrast, uplift remains when
Type II columns are involved, though the failure mechanism is
different from that observed when a very small column size is
present; and

• Third, when relatively large columns are used (μ ¼ 0.5), yield-
lines develop along the column edges and no uplift is observed
regardless of which of the three support types are used. In this
case, the same failure mechanism is observed irrespective of
whether Type I or II columns are present.

Slabs with Point and Line Loads

Several slab problems involving point loads considered by
Johansen (1943) are now revisited using DLO. The resulting

yield-line patterns shown in Fig. 14 resemble closely the analytical
solutions given by Johansen, with the margin of error being less
than 1% (see also Table 1).

When line loads are present, fan-type mechanisms will often
develop in the vicinity of the load. Examples originally considered
by Johansen (1943, 1968) are analyzed here using DLO; the result-
ing yield-line patterns shown in Fig. 15 match Johansen’s results
closely, though the DLO solutions are more accurate.

Slabs with Patch Loads

The slab problem shown in Fig. 16 is taken from Ramsay
and Johnson (1998); this involves self-weight and a patch load
Q. Using geometry optimization, Ramsay and Johnson (1998)
obtained a relatively accurate solution of Q ¼ 49.5 kN (which
is only 3.5% higher than the 10,000 node DLO solution
Q ¼ 47.85 kN). However, the process used by Ramsay and
Johnson (1998) was cumbersome in that it involved identifying
a suitable yield-line pattern for use in the geometry optimization
stage. In contrast, the yield-line pattern shown in Fig. 16(c)
was identified using DLO in a matter of seconds, without human
intervention.

Real-World Slab

To further demonstrate the efficacy of DLO, the floor slab
employed in a real-world building (Fig. 17) is now considered.
The floor slab in question was also considered by Kennedy and
Goodchild (2004), though for the purposes of this study full dimen-
sions of the slab have been obtained from the original designers,

(a) (b)

(c) (d)

Fig. 8. Six-sided plate (Configuration 1): (a) problem specification; (b) yielding zone and yield-line pattern, q ¼ 17.75 kN=m2 [reprinted from
Engineering Structures, 30(7), Jochen Wüst and Werner Wagner, “Systematic prediction of yield-line configurations for arbitrary polygonal plates,”
pp. 2081–2093, Copyright 2008, with permission from Elsevier]; (c) 2,000 node DLO yield-line pattern, q ¼ 15.992 kN=m2 (when 10,000 nodes
were used q ¼ 15.953 kN=m2); (d) DLO yield-line pattern (rationalized, based on 2,000 node solution), q ¼ 15.970 kN=m2
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Powell Tolner & Associates Ltd. This has allowed an accurate slab
model to be created; full details are provided in Appendix II.
A piecewise linear representation of the curved balconies is
used and the walls and ‘blade’ columns are modeled using
Type III internal columns. Following the lead of Kennedy and
Goodchild (2004), here a support strength of i ¼ 1 is used to re-
present the walls around the core, and i ¼ 0 for the wall around
the stairs. To model the 215 mm wide blade columns, two scenar-
ios are considered: (1) i ¼ 1; and (2) i ¼ 0 for a more conservative
design.

The rationalized yield-line patterns obtained using DLO are
shown in Fig. 18. The first pattern matches very closely with
the ‘folding plate’ mechanism assumed to be critical in Kennedy
and Goodchild (2004). However, in the DLO solution fan-type
mechanisms also develop around certain columns, leading to
2.8% increase in the required moment capacity [comparing mp ¼
48.6 kNm=m from Kennedy and Goodchild (2004) to the 10,000
node DLO solution: ð49.9492=48.6 − 1Þ × 100% ¼ 2.8%, assum-
ing a uniform applied pressure load of 21.7 kN=m2]. Although the
hand calculation result described in Kennedy and Goodchild

(2004) appears remarkably accurate, it is worth noting that
the process involved manually analysing 11 potential yield-line
patterns, each postulated by an experienced engineer. In contrast
when using DLO the yield-line patterns are identified automati-
cally. Regarding the second, more conservative scenario, taking
i ¼ 0 around the blade columns, the resulting yield-line pattern
is similar, though there is now a 7.9% increase in the required
moment capacity [comparing the Kennedy and Goodchild (2004)
solution to the 10,000 node DLO solution: ð52.4439=48.6 − 1Þ×
100% ¼ 7.9%].

Discussion

Characteristic Features of Yield-Line Patterns

Currently, an engineer analysing a slab using the yield-line method
can draw upon well-established rules when postulating the critical
yield-line pattern. As presented by Jones and Wood (1967), the
basic rules are

(a) (b)

(c) (d)

Fig. 9. Six-sided plate (Configuration 2): (a) problem specification; (b) yielding zone and yield-line pattern, q ¼ 54.4 kN=m2 [reprinted from
Engineering Structures, 30(7), Jochen Wüst and Werner Wagner, “Systematic prediction of yield-line configurations for arbitrary polygonal plates,”
pp. 2081–2093, Copyright 2008, with permission from Elsevier]; (c) 2,000 node DLO yield-line pattern, q ¼ 47.745 kN=m2 (when 10,000 nodes
were used q ¼ 47.424 kN=m2); (d) DLO yield-line pattern (rationalized, based on the 2,000 node solution), q ¼ 47.501 kN=m2
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• Yield-lines are straight except where a region may become
completely plastic at any point;

• The yield-line between two or more bordering rigid regions
must pass through the intersection of the axes of rotation of
these regions;

• Axes of rotation usually lie along supported edges or column
lines; and

• Yield-lines may only change direction when intersecting an-
other yield-line.
Gilbert et al. (2014), used observed features in DLO solutions,

and then Mohr’s circle analysis, to point out additional character-
istic features of yield-line patterns for isotropically reinforced slabs:
• Yield-lines of opposite signs should intersect at 90°, whether in

the interior of a slab or at a fixed support;
• Yield-lines of opposite signs should intersect simple supports

and free edges at between 45° and 135°; and
• Yield-lines of the same sign can intersect at any angle.

However, in the context of the present paper it is of interest to
point out that the above relations can be generalized for orthotrop-
ically reinforced slabs by using the affine transformation method
(Johansen 1943, 1968; Kennedy and Goodchild 2004; Nielsen
and Hoang 2011); an example is shown in Fig. 19.

Problems Identifying Critical Yield-Line Patterns by
Other Means

It is now clear that the DLO method provides a very efficient means
of identifying critical yield-line patterns in the case of slabs with
complex geometries, boundary conditions and/or load conditions.
On the other hand it might be presumed that either hand-analysis or
one of the previously proposed numerical procedures can be ex-
pected to provide reasonable solutions for simple slab analysis
problems. However, as noted by Ramsay and Johnson (1997), this
is not necessarily the case. Here two simple example problems en-
countered during the course of the present study will be used to
investigate this issue.

Rectangular Slab Simply Supported on Two Adjacent Edges
When carrying out a yield-line analysis by hand, usually a yield-
line pattern is postulated by hand [e.g., with the aid of the rules by
Jones and Wood (1967)], and then the work method is used to ob-
tain a solution. When using the work method various geometric
parameters of a yield-line pattern can be adjusted to seek the mini-
mum collapse load. For this reason, it might appear that the pre-
scribed yield-line pattern need only be ‘near correct’. Whilst in
many cases use of a simple postulated yield-line pattern can lead

(a)

(b) (c)

Fig. 10. Trapezoidal orthotropic slab: (a) problem specification; (b) yield-line pattern obtained by Balasubramanyam and Kalyanaraman (1988),
mþ

px ¼ 11.84q; (c) DLO yield-line pattern (rationalized), mþ
px ¼ 13.90q (10,000 node DLO solution, mþ

px ¼ 13.97q)
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to a reasonably accurate solution, an issue is that it can be very
difficult to judge whether a prescribed yield-line pattern is truly
‘near correct’.

For example, consider a seemingly simple example problem
provided in Kennedy and Goodchild (2004), a rectangular slab
which is simply supported on two adjacent edges [Fig. 20(a)].
Yield-line patterns provided in Johansen (1968) and Kennedy and
Goodchild (2004) are shown in Figs. 20(b and c) respectively,

whilst the yield-line pattern identified using DLO is shown in
Fig. 20(d). Note that in the case of the pattern shown in
Fig. 20(c), geometric parameters of the pattern have been adjusted
to find the minimum collapse load. The pattern shown in Fig. 20(b)
leads to a relatively accurate solution, very similar to that derived
using DLO, shown in Fig. 20(d). However, the solution shown in
Fig. 20(c) is clearly very inaccurate; the reason for this will there-
fore now be investigated further.

(a) (b)

Fig. 12. Johansen’s slab with columns (adapted from Johansen 1943): (a) original point supports in Johansen (1943); (b) square column supports
from Fig. 7

(a)

(c)(b)

Fig. 11. Roof slab: (a) problem specification; (b) yield-line pattern, λ ¼ 0.4 (adapted from Munro and Da Fonseca 1978); (c) DLO yield-line pattern
(rationalized), λ ¼ 0.36028 (10,000 node, DLO solution, λ ¼ 0.35863)
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(a) (b)

(c) (d)

Fig. 14. Point loaded slabs—DLO yield-line patterns for (a) point load near boundary (Configuration 1), P ¼ 11.443; (b) point load near boundary
(Configuration 2), P ¼ 6.3034; (c) slab with two point loads (Configuration 1), P ¼ 11.458; (d) slab with two point loads (Configuration 2),
P ¼ 10.515 (see Table 1 for more accurate, 10,000 node, DLO solutions)

Fig. 13. Johansen’s slab with column supports: rationalized DLO yield-line patterns obtained by varying support type and size
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The geometry of the yield-line pattern given in Kennedy
and Goodchild (2004) and shown in Fig. 20(c) is controlled by
two geometric parameters ξ and η, as shown in Fig. 21(a).
The required moment capacity mp can be obtained by varying
these parameters, as shown in Fig. 21(b). It can be noticed that
for 0 < ξ ≤ 9, the maximum value of mp is 168.0 kNm=m, which
actually needs to be at least 52.9% higher for a safe design
[calculated using ð256.9=168.0 − 1Þ × 100%]. However, it is evi-
dent in Fig. 21 that from ξ > 0 to ξ ¼ 0, the mp values rise sud-
denly, showing the presence of a singularity. This implies that
pattern in Fig. 20(c) does not transform smoothly to that shown
in Fig. 20(b) simply by optimizing its geometric parameters (for
example by using the ‘Solver’ optimization tool found in Micro-
soft Excel). This means that the yield-line pattern shown in
Fig. 20(c) cannot really be considered to be “near correct”. This
clearly demonstrates that large errors can easily be encountered

when using the yield-line method, even if the problem appears
very simple. [Note that although the pattern shown in Fig. 20(c)
was depicted in Kennedy and Goodchild (2004), the formula
provided in that document actually corresponds to the pattern
shown in Fig. 20(b)].

L-Shaped Slab
The L-shaped slab in figure Fig. 22(a) was investigated in Ramsay
and Johnson (1998), using a rigid finite element based numeri-
cal analysis procedure. A relatively coarse mesh was used,
leading to the yield-line pattern shown in Fig. 22(b) being
identified. Although this pattern may appear qualitatively rea-
sonable, the problem was recently revisited by Ramsay et al.
(2015), who showed that the yield-line pattern is actually far
from critical. The corresponding DLO yield-line pattern for
this problem is shown in Fig. 22(c), which corresponds to a
required mp value of 2.3743 kNm=m. This is some 40% higher

(a)

(b) (c)

Fig. 16. Slab with central patch load [reprinted from Engineering Structures, 20(8), A.C.A. Ramsay and D. Johnson, “Analysis of practical slab
configurations using automated yield-line analysis and geometric optimization of fracture patterns,” pp. 647–654, Copyright 1998, with permission
from Elsevier]: (a) problem specification; (b) yield-line pattern obtained by Ramsay and Johnson (1998) using geometry optimization,Q ¼ 49.5 kN;
(c) DLO yield-line pattern (rationalized), Q ¼ 48.05 kN (10,000 node DLO Q ¼ 47.85 kN)

(a) (b)

(c) (d)

Fig. 15. Slabs loaded with line loads—DLO yield-line patterns for (a) slab loaded along a line (Configuration 1), w ¼ 18.867; (b) slab loaded along a
line (Configuration 2), w ¼ 11.693; (c) cantilever slab loaded along a line (Configuration 1), w ¼ 9.816; (d) cantilever slab loaded along a line
(Configuration 2), w ¼ 5.8393 (see Table 1 for more accurate, 10,000 node, DLO solutions)
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than the solution given in the 1998 paper (1.70 kNm=m),
showing that the latter solution was highly non-conservative.
This indicates that, even for simple slab problems, the use
of previously proposed numerical methods may lead to highly
inaccurate solutions being obtained. It would also appear to
show that it is difficult to qualitatively judge whether a given
yield-line pattern is correct or otherwise (the highly inaccurate
solution appears to have gone unnoticed in the literature for
some 17 years, despite sustained interest in the field over that
period). Fortunately the new DLO based automated yield-line
analysis procedure overcomes accuracy issues associated with
previously proposed numerical procedures (e.g., those utilizing
rigid finite elements).

Conclusions

Discontinuity layout optimization (DLO) provides a powerful
means of automating the yield-line method. Also, a given DLO sol-
ution, which can be complex in form, can be rationalized to aid

(a) (b)

Fig. 19. Determining characteristic features of a yield-line pattern in an orthotropic slab: (a) original orthotropic slab; (b) equivalent isotropic slab
derived using an affine transformation; the critical yield-line pattern in (b) will involve yield-lines of opposite sign intersecting at 90°; the geometry of
the yield-line pattern in (a) can be derived from (b) via geometrical transformation

Fig. 17. Real-world slab: used in a seven-story block of flats in London
(image by authors)

(a) (b)

Fig. 18. Real-world slab: rationalized yield-line patterns using DLO, (a) i ¼ 1 for 215 mm blade columns: mp ¼ 49.3923 kNm=m (10,000 node,
DLO mp ¼ 49.9492 kNm=m); (b) i ¼ 0 for 215 mm blade columns: mp ¼ 51.6699 kNm=m (10,000 node, DLO mp ¼ 52.4439 kNm=m)
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(a) (b)

Fig. 21. Rectangular slab simply supported on two edges: parametric study for yield-line pattern proposed by Kennedy and Goodchild (2004):
(a) relevant geometric parameters ξ, η; (b) calculated required value of mp by varying ξ and η

(a) (b) (c)

Fig. 22. Ramsay’s L-shaped slab simply supported on three sides: (a) problem specification; (b) yield-line pattern obtained by Ramsay and Johnson
(1998), mp ¼ 1.70 kNm=m [reprinted from Engineering Structures, 20(8), A.C.A. Ramsay and D. Johnson, “Analysis of practical slab configura-
tions using automated yield-line analysis and geometric optimization of fracture patterns,” pp. 647–654, Copyright 1998, with permission from
Elsevier]; (c) DLO yield-line pattern (rationalized), mp ¼ 2.3743 kNm=m

(a) (b)

Fig. 23. Extra move limits imposed on nodes due to presence of point and line loads: (a) Node A is nonmovable because it coincides with a point
load; (b) Node B can only move in the direction of the line load

(a) (b) (c) (d)

Fig. 20. Rectangular slab simply supported on two adjacent edges: (a) problem specification; (b) simple yield-line pattern, mp ¼ 256.5 kNm=m;
(c) alternative yield-line pattern, obtained by “optimization,” mp ¼ 168.0 kNm=m; (d) DLO yield-line pattern (rationalized), mp ¼ 256.9 kNm=m
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visual interpretation and improve accuracy if required. In the
present paper, it has been demonstrated that DLO can be applied
to a wide variety of problems incorporating practical features
(e.g., orthotropic reinforcement and a wide variety of support
conditions and loading types). For all the example problems con-
sidered in the paper, DLO solutions have been found which are
more accurate than those obtained using previously proposed upper
bound numerical analysis techniques; in some cases this has shown
that literature solutions are highly nonconservative.

Appendix I. Extra Considerations in Geometry
Optimization

In geometry optimization, nodal positions (x and y) are considered
as optimization variables, in addition to d and p in optimization
problem (1). Therefore, the coefficient matrices and vectors in
(1) contain the optimization variables, which are continuously up-
dated during the optimization process. For example, whilst g com-
prises constants coefficient values when slabs are isotropically
reinforced, when orthotropic reinforcement is present the coeffi-
cient values are affected by the yield-line angles ϕ [see also Fig. 5
and yield-criterion (3)] that are determined by x and y; hence g is
now a function of the optimization variables.

In addition, functions representing the load effect terms fL
and fD can become nonsmooth with respect to nodal positions,
which can cause problems. In this paper extra constraints are
added to prevent these functions from becoming nonsmooth.
Thus in Fig. 23(a) node A is made nonmovable since it coin-
cides with a point load; in Fig. 23(b), node B is restrained so as
to only be able to move in the direction of the line load. For
patch loads, domain decomposition (which divides a slab domain
into several separate sub-domains; see He and Gilbert 2016 for
details) can be used, and a subdomain can be created in the
patch load area. Note that the above approaches restrict nodal
movements and will therefore potentially somewhat reduce the
accuracy of the numerical solutions obtainable using geometry
optimization.

Appendix II. Geometric Data of the Real-World Slab

Vertices of the floor slab (Fig. 24) are given in Table 2. Dimensions
of the holes are given in Table 3 and those of the blade columns in
Table 4.

Table 2. Real-World Slab: Vertices of Polygonal Slab Domain (Units in
Meters)

Identifier x y

1 −0.727 0.000
2 3.794 0.000
3 3.794 −0.238
4 4.466 −0.802
5 5.194 −1.291
6 5.971 −1.700
7 6.786 −2.022
8 7.632 −2.256
9 8.503 −2.398
10 9.384 −2.446
11 10.250 −2.400
12 11.143 −1.650
13 11.143 −1.427
14 11.143 −1.359
15 11.657 −1.296
16 12.460 −1.132
17 13.238 −0.874
18 13.980 −0.525
19 14.675 −0.090
20 14.748 −0.090
21 14.748 −0.335
22 15.456 −1.123
23 16.686 −1.046
24 17.855 −0.655
25 18.883 0.025
26 19.702 0.946
27 19.702 1.161
28 22.934 1.161
29 22.934 11.027
30 19.090 11.027
31 19.090 14.855
32 18.237 15.723
33 15.376 15.723
34 14.348 16.751
35 14.198 16.751
36 14.198 16.686
37 10.463 16.686
38 9.029 18.118
39 7.979 18.199
40 6.937 18.044
41 5.956 17.661
42 5.085 17.069
43 5.085 14.826
44 1.373 14.826
45 1.373 10.941
46 −0.727 10.941
47 −0.727 8.350
48 1.488 8.350
49 1.488 6.000
50 −0.727 6.000

Fig. 24. Real-world slab: geometry and column ID

Table 3. Real-World Slab: Locations of Holes (Units in Meters)

Description x1 y1 x2 y2 x3 y3 x4 y4

Stair 1.623 11.250 3.925 11.250 3.925 14.576 1.623 14.576
Core −0.727 6.250 1.238 6.250 1.238 8.350 −0.727 8.350
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