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Summary 

Mapping from health status measures onto generic preference-based measures is 

becoming a common solution when health state utility values are not directly 

available for economic evaluation. However the accuracy and reliability of the models 

employed is largely untested, and there is little evidence of their suitability in patient 

datasets. This paper examines whether mapping approaches are reliable and accurate 

in terms of their predictions for a large and varied UK patient dataset. SF-36 

dimension scores are mapped onto the EQ-5D index using a number of different 

model specifications. The predicted EQ-5D scores for subsets of the sample are 

compared across inpatient and outpatient settings and medical conditions. This paper 

compares the results to those obtained from existing mapping functions. Our results 

suggest that models mapping the SF-36 onto the EQ-5D have similar predictions 

across inpatient and outpatient setting and medical conditions. However, the models 

overpredict for more severe EQ-5D states; this problem is also present in the existing 

mapping functions. 

Key words: health status; SF-36; SF-12; EQ-5D; utility; mapping. 
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Introduction 

Clinical trials use a multitude of health status measures in order to measure health and 

health related quality of life. However, most of these measures cannot be used in 

assessments of cost effectiveness using cost per Quality Adjusted Life Year (QALY). 

Preference-based measures such as the EQ-5D are commonly used to do this, but are 

not always used in clinical studies. One solution to this problem is to apply a mapping 

function to convert non-preference based health data into one of the generic 

preference-based measures; this is helpful to those submitting evidence to agencies 

such as NICE (2008). However the accuracy and reliability of the mapping models 

employed is largely untested, and there is little evidence of their suitability in patient 

datasets. 

A recent review of mapping non-preference-based measures onto generic preference-

based measures (Brazier et al, 2008) found 29 studies. However, most of these used 

simple OLS modelling procedures on comparatively small data sets. Further, existing 

studies have neglected to investigate the robustness of the models across patient data 

sets. 

The purpose of this paper is to examine whether mapping models are reliable and 

accurate in terms of their predictions for a large and varied patient dataset. The 

mapping relationship examined here is between the EQ-5D index, a generic 

preference-based measure of health related quality of life and the SF-36, a generic 

non-preference-based health status measure commonly used in clinical trials. A 

mapping relationship is estimated using a range of techniques and statistical 

specifications. We examine the mapping relationship across inpatient and outpatient 

settings and medical conditions according to ICD classification. Furthermore, we 

compare the mapping approach used here to the existing models of Franks et al. 

(2004) and Gray et al. (2006) in terms of predictive performance.  

Methods 

The model

The SF-36 assesses health across eight dimensions using 36 items. The SF-36 

produces a score on a 0-100 scale for each of the eight dimensions, which are specific 

health domains such as physical functioning, social functioning and vitality. These 

scores are not comparable across dimensions and are not based on individual 
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preferences, therefore they cannot be used to generate QALYs. The SF-36 can be 

used to generate a preference-based index via the SF-6D (Brazier et al., 2002).  

The EQ-5D is the most widely used generic preference-based measure of health-

related quality of life which produces utility scores anchored at 0 for death and 1 for 

perfect health. The utility scores represent preferences for particular health states. The 

descriptive system has 5 dimensions (mobility, self-care, usual activity, 

pain/discomfort and anxiety/depression) and 3 levels (no problems, some problems, 

extreme problems) which create 243 unique health states. This study uses the UK 

TTO value set in its main analysis (Dolan, 1997). The EQ-5D valued using the UK 

TTO value set is preferred by NICE (NICE, 2008). The SF-6D has been found to 

differ from the EQ-5D (Brazier et al., 2004) and so to achieve comparability between 

studies this paper explores an alternative strategy of mapping.  

Model specifications 

Regression analysis is used to examine the relationship between the EQ-5D utility 

score and the SF-36 using the 8 dimension scores; physical functioning, role-physical, 

bodily pain, general health, vitality, social functioning, role-emotional and mental 

health, squared dimension scores and interaction terms derived using the product of 

two dimension scores. The dependent variable, the EQ-5D utility score, is measured 

on a -1 to 1 scale. The 8 dimension scores of the SF-36 are rescaled onto a 0-1 scale to 

enable easier interpretation of the results and the squared terms and interaction terms 

are generated using the rescaled scores. 

Three models are estimated: (1) all dimensions; (2) all dimensions and squared terms; 

(3) all dimensions, squared terms and interactions. The general model is defined as 

ijijijijiy zrx (1) 

where ni ...,2,1, represents individual respondents and mj ...,2,1, represents the 

8 different dimensions. The dependent variable, y, represents the EQ-5D utility score, 

x represents the vector of SF-36 dimensions, r represents the vector of squared terms, 

z represents the vector of interaction terms and ij represents the error term. This is an 

additive model which imposes no restrictions on the relationship between dimensions. 

The squared terms are designed to pick up non-linearities in the relationship between 
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dimension scores and the EQ-5D index. There is no reason for it to be linear and there 

is evidence in physical functioning, for example, that the same differences in scores at 

the lower end of the scale indicate larger differences in functioning than at the upper 

end (Brazier et al., 1998). Interaction terms are important since there is evidence from 

other measures that dimensions are not additive (Feeny et al, 2002). Statistical 

measures of explanatory power, predictive ability, and model specification are 

reported. 

The sample used here is a patient dataset (described below) where respondents are 

included each time they are treated, and hence some respondents have multiple 

observations. Random effects models are used to take account of this data structure. 

The estimated models are used to generate predicted EQ-5D scores. Predictive ability 

is assessed using line graphs of the observed and predicted EQ-5D utility scores 

ordered by observed tariff value of EQ-5D state, mean error, mean absolute error and 

mean squared error. 

EQ-5D utility scores are known to exhibit a ceiling effect, where a large proportion of 

subjects rate themselves in full health with a utility score of 1, and hence the data can 

be interpreted as being bounded or censored at 1. Ignoring the bounded nature of the 

EQ-5D will result in biased and inconsistent estimates, and hence the random effects 

tobit model is an appropriate alternative (Sullivan and Ghushchyan, 2006). The tobit 

model with an upper censoring limit of 1 is defined as 

ijijijijiiy zrx*

1if1

1if
*

**

i

ii

i
y

yy
y (2) 

where *

iy is the observed EQ-5D utility score and iy is the bounded measure of the 

EQ-5D score. 

However, the tobit model also produces biased estimates in the presence of 

heteroscedasticity or non-normality (see Greene, 2000, and Sullivan and Ghushchyan, 

2006). The censored least absolute deviations (CLAD) model is also used here since it 

produces consistent estimates in the presence of heteroscedasticity and non-normality 

(see Powell, 1984, and Sullivan and Ghushchyan, 2006).
1
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Reliability and robustness 

In order to examine whether the estimated relationships are reliable and robust across 

inpatient and outpatient setting and medical conditions, we estimate model (3) as 

outlined above for subsets of the sample data1. The model is estimated for inpatients 

and outpatients and for the medical conditions of neoplasms, diseases of the 

circulatory system and diseases of the digestive system as measured according to ICD 

classifications C, I and K respectively.  

Comparison to existing mapping functions 

Our models are compared to the approaches of Franks et al. (2004), Gray et al. (2006)

and Sullivan and Ghushchyan (2006) to determine whether their mapping approaches 

are more or less reliable for a patient dataset. The existing models from the literature 

are estimated using the published results and algorithms rather than re-estimating the 

models using our dataset. We take this approach because mapping is used in 

economic evaluations to estimate the EQ-5D using the SF-36 (or SF-12) when this is 

the only health status measure that has been included in the trial. Therefore in 

practical applications the published results and algorithms are used and it is not 

feasible to re-estimate the model.  

Franks et al. (2004) regress the EQ-5D utility score on PCS-12 and MCS-12, squared 

terms and cross-products using OLS. PCS and MCS are the physical and mental 

component summary scores estimated using factor analysis and shown to contain 

most of the information contained in the 8 dimensions of the SF-36 (Ware et al., 

1995). In accordance with this approach PCS-12 and MCS-12 are centred on the 

means used by Franks et al. (2004) and the published coefficients are used to produce 

predicted EQ-5D utility scores.
2

Gray et al. (2006) use a response mapping approach that uses a multinomial logit 

model to estimate the probability that a respondent will choose a particular level for 

each dimension of the EQ-5D using responses to the 12 items included in the SF-12 

(general health, climbing stairs, moderate activities, accomplish less due to physical 

health, work limitations, accomplish less due to emotional problems, work carefully, 

pain interference, calm, energy, down-hearted and low, interference with social 

1
The estimation results are not reported here but are available from the authors.  
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activities). Subsequently predicted EQ-5D level responses for each dimension are 

generated using Monte Carlo simulation methods and the corresponding EQ-5D 

utility score for that health state is calculated. We use the Gray et al. (2006) algorithm 

to predict EQ-5D utility scores.
3

Sullivan and Ghushchyan (2006) regress the US EQ-5D utility score on PCS-12 and 

MCS-12, the product of PCS-12 and MCS-12 and sociodemographic variables using 

OLS, tobit and CLAD. It is not appropriate to use the exact model of Sullivan and 

Ghushchyan (2006) as they use the US-based EQ-5D values developed by Shaw et al. 

(2005) rather than the UK-based values developed by Dolan (1997) and further only 

report models including sociodemographic variables unavailable in our dataset. 

Instead we have used the tobit and CLAD estimation techniques suggested by 

Sullivan and Ghushchyan (2006) as outlined above and re-estimated the model using 

our dataset. 

The data 

The Health Outcomes Data Repository, HODaR, is a dataset collated by Cardiff 

Research Consortium. The data is collected from a prospective survey of inpatients 

and outpatients at Cardiff and Vale NHS Hospitals Trust, which is a large University 

hospital in South Wales, UK. The survey is linked to existing routine hospital health 

data to provide a dataset with sociodemographic, health related quality of life and ICD 

classification data
2
. The survey includes all subjects aged 18 years or older and 

excludes individuals who are known to have died. The survey also excludes people 

with a primary diagnosis on admission of a psychological illness or learning 

disability. As well as information on inpatients, the survey includes outpatient clinics 

on a rotational basis where all patients within the selected clinic are surveyed. The 

response rate in HODaR prior to October 2003 was 36% and subsequently strategies 

have been implemented to improve response rates. 

The inpatient sample has 31,236 eligible observations across 27,620 individuals from 

August 2002 to November 2004, and of these there are 25,783 complete responses 

across 23,179 individuals for SF-36 and EQ-5D questions and hence this is the sample 

used here. The outpatient sample has 9,081 eligible observations across 8,610 

2
Ssee Currie et al. (2005) for further details on HODaR. 
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individuals collected from June 2002 to November 2004, and of these there are 7,465 

complete responses across 7,122 individuals. 

Results 

Table 1 provides descriptive statistics on health status. The inpatient and outpatient 

samples in the HODaR dataset demonstrate substantial health problems according to 

the EQ-5D, the SF-36 dimension scores and the SF-12 summary scores in comparison 

to UK population norms. Health appears similar between inpatients and outpatients. 

In comparison to the inpatient sample the outpatient sample has a larger proportion of 

females and a lower mean age. 

Table 1 Descriptive data for the inpatient and outpatient samples 

Inpatients Outpatients 

UK 

population 

norms
4

Mean SD Median 

Inter-

quartile 

range 

Mean SD Median 

Inter-

quartile 

range 

Mean SD 

EQ-5D index 0.68 0.31 0.73 0.413 0.69 0.31 0.73 0.38 0.86 0.23 

SF-36 dimension scores 

Physical functioning 58.90 33.53 65.00 60.00 62.29 33.39 70.00 60.00 88.40 17.98 

Social functioning 63.43 33.16 66.67 66.67 66.35 32.02 77.78 55.56 88.01 19.58 

Role physical 28.74 41.90 0.00 75.00 34.21 44.11 0.00 100.00 85.82 29.93 

Role-emotional 51.14 47.14 66.67 100.00 54.32 46.99 66.67 100.00 82.93 31.76 

Mental health 69.54 23.13 76.00 32.00 69.58 22.54 76.00 32.00 73.77 17.24 

Vitality 45.36 25.73 45.00 40.00 45.60 25.37 45.00 40.00 61.13 19.67 

Bodily pain 58.13 28.68 55.56 44.44 58.86 28.84 55.56 55.56 81.49 21.69 

General health 52.80 26.28 52.00 47.00 53.29 25.91 52.00 47.00 73.52 19.90 

SF-12 summary scores 

Physical component score 38.25 12.18 36.68 21.49 39.51 12.34 38.47 22.50 50.00 10.00 

Mental component score 44.85 11.69 46.21 19.38 45.03 11.45 46.92 19.07 50.00 10.00 

Mean age 58.14 55.55

Female 52% 61%

N 25,783 7,465

Inpatients 

Table 2 shows the results of the regression analyses using dimensions, squared terms 

and interaction terms for the inpatient dataset. The results show that all dimensions 

are always significant with the exception of role physical, vitality and role emotional 

and are positive with the exception of role physical and vitality. The results indicate 

that the squared terms for physical functioning, bodily pain, social functioning and 
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mental health are always significant and negative and many interaction terms are also 

significant with mixed signs. Statistical measures reported in Table 2 of within, 

between and overall R-squared, root mean squared error, rho and Wald chi-squared 

indicate that models (2) and (3) perform better than model (1). Table 3 reports mean 

error, mean absolute error (MAE) and mean squared error (MSE) of predicted 

compared to actual utility scores by EQ-5D utility range for all models estimated in 

Table 2. Table 3 indicates that the estimation techniques of tobit and CLAD do not 

clearly improve the accuracy of the generated predictions as MAE and MSE are not 

reduced. Model (3) estimated using random effects GLS and random effects tobit 

have the most accurate predictions as indicated by MAE and MSE. 

Figure 1 shows the observed and predicted EQ-5D utility scores, ordered by observed 

tariff value of the EQ-5D state. The sample used is the inpatient dataset and the 

predictions are generated using model (3) estimated using random effects GLS. Figure 

1 and MAE and MSE reported in table 3 suggest that the model predicts well for 

milder health states, but overpredicts the value of more severe EQ-5D states. All 

models estimated in Table 2 suffer from the same problem.  
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Table 2 Prediction models for inpatients using dimensions, squared terms and 

interaction terms 

Random effects GLS Tobit CLAD 

(1) (2) (3) (4) (5) 

Dimensions 

Physical functioning (PF) 0.332* 0.548* 0.559* 0.559* 0.663* 

Role physical (RP) -0.060* -0.021 -0.146* -0.146* -0.475* 

Bodily pain (BP) 0.303* 0.747* 0.715* 0.713* 0.733* 

General health (GH) 0.169* 0.322* 0.407* 0.407* 0.325* 

Vitality (VIT) -0.039* 0.007 0.017 0.017 -0.142* 

Social functioning (SF) 0.115* 0.256* 0.293* 0.293* 0.525* 

Role-emotional (RE) 0.010* 0.014 0.067* 0.067* -0.024 

Mental health (MH) 0.237* 0.577* 0.483* 0.483* 0.527* 

Dimensions squared 
Physical functioning (PF) -0.250* -0.227* -0.227* -0.082* 

Role physical (RP) 0.043* 0.001 0.001 -0.056* 

Bodily pain (BP) -0.378* -0.330* -0.329* -0.171* 

General health (GH) -0.137* 0.032 0.031 0.167* 

Vitality (VIT) -0.014 -0.012 -0.012 0.063 

Social functioning (SF) -0.179* -0.163* -0.163* -0.182* 

Role-emotional (RE) 0.017 0.034 0.034 0.058* 

Mental health (MH) -0.321* -0.242* -0.242* -0.152* 

Interaction terms 

PF x RP 0.022 0.022 0.185* 

PF x BP -0.032 -0.031 -0.192* 
PF x GH 0.073 0.073 -0.009 

PF x VIT -0.132* -0.132* -0.078 

PF x SF -0.023 -0.023 -0.246* 

PF x RE 0.047* 0.047* 0.045* 

PF x MH -0.014 -0.013 -0.054 

RP x BP 0.019 0.019 0.097* 

RP x GH 0.068* 0.068* 0.215* 

RP x VIT 0.050 0.049 0.031 

RP x SF 0.067* 0.067* 0.108* 

RP x RE -0.012 -0.012 0.013 

RP x MH 0.022 0.022 0.154* 
BP x GH -0.217* -0.217* -0.208* 

BP x VIT -0.002 -0.002 0.120* 

BP x SF 0.055 0.055 -0.070* 

BP x RE -0.038 -0.038 0.039* 

BP x MH 0.131* 0.131* -0.075 

GH x VIT -0.066 -0.066 -0.200* 

GH x SF -0.157* -0.158* -0.144* 

GH x RE -0.033 -0.033 -0.019 

GH x MH -0.084 -0.084 -0.114* 

VIT x SF 0.143* 0.143* 0.174* 

VIT x RE -0.020 -0.019 -0.021 

VIT x MH 0.023 0.022 0.095 
SF x RE -0.023 -0.023 -0.024 

SF x MH -0.065 -0.065 -0.133* 

RE x MH -0.048 -0.048 -0.035 

Constant 0.0071 -0.2493* -0.256* -0.256* -0.289* 

Within R-squared 0.18 0.21 0.22 - - 

Between R-squared 0.67 0.70 0.71 - - 

Overall R-squared 0.67 0.70 0.71 - - 

Root MSE 0.15 0.15 0.15 - - 

Rho 0.28 0.24 0.24

Wald Chi-squared 48380.12 56129.39 57195.96

Note: * significant at 1% 
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EQ-5D state (ordered according to 
severity)

M
e
a
n

EQ-5D 
score

Inpatient 
predictions

Outpatient 
predictions

Figure 1 Observed and predicted EQ-5D scores: 

Inpatients and outpatients random effects GLS 

model 

Figure 3 Observed and predicted EQ-5D scores: 

Using EQ-5D tariff re-estimated without an N3 

term using the MVH data 

EQ-5D state (ordered according to 
severity)

M
e
a
n

EQ-5D 
score

Predictions 
using our 
model

Franks et 
al. (2004) 
predictions

Gray et al. 
(2006) 
predictions

Figure 2 Observed and predicted EQ-5D scores: 

Comparison to existing mapping functions

Figure 4 Observed and predicted EQ-5D scores: 

Using the US-based EQ-5D tariff 



11



12

Inpatients and outpatients 

Figure 1 shows the observed and predicted EQ-5D scores for inpatients and 

outpatients. The predictions are generated using model (3) estimated using random 

effects GLS. The mapping relationship follows the same pattern across inpatient and 

outpatient settings and both overpredict for more severe EQ-5D states. Wald test 

statistics calculated to determine whether the estimated coefficients for inpatients are 

equal to the estimated coefficients for outpatients for models with exactly the same 

specification indicate that the estimated coefficients are not equal and hence the 

models are not robust to different samples. However, differences in predictions are 

small with mean absolute difference at the state level of 0.069 and mean squared 

difference of 0.012. Wald test statistics were also calculated for subsets of the 

inpatient sample according to medical condition for the ICD classifications with the 

largest number of observations in the dataset, which are the medical conditions of 

neoplasms (n=2,574), diseases of the circulatory system (n=3,522) and diseases of the 

digestive system (n=3,114) as measured according to ICD classifications C, I and K 

respectively. The test statistics again indicate that the estimated coefficients are not 

equal and hence are not robust across subsets of the inpatient sample according to 

medical condition, but differences in predictions are small with highest mean absolute 

difference at the state level of 0.054 and highest mean squared error of 0.005. 

Comparison to existing mapping

Figure 3 shows observed and predicted EQ-5D utility scores for model (3) and for the 

models of Franks et al. (2004) and Gray et al. (2006). The mapping relationship is 

similar across all approaches and they all overpredict for more severe EQ-5D states. 

Table 3 shows mean error, mean absolute error and mean square error of predicted 

compared to actual utility scores by EQ-5D utility range for the Franks et al. (2004) 

model and the Gray et al. (2006) model. As indicated by Figure 3, the errors are 

higher for more severe health states for all models. Our model performs better than 

the existing models as reported by mean error, mean absolute error and mean square 

error. 

Re-estimation of the EQ-5D 

One hypothesis is that the predictions may be poor for more severe EQ-5D states 

because they all have at least one dimension at the most severe level and the EQ-5D 
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model uses an ‘N3’ term, a dummy variable for states with at least one dimension at 

the most severe level. The ‘N3’ term was used in the original UK modelling (Dolan, 

1997), but has not been included in all the models of other EQ-5D valuation studies 

(see for example the US valuation study, Shaw et al. (2005)). The inclusion of the N3 

term may be a reason why the utility score is overpredicted for the more severe states 

which have at least one dimension at the most severe level. We re-estimated the EQ-

5D tariff without the N3 term using the same data and methods as Dolan (1997). The 

re-estimated tariff and the original Dolan (1997) tariff produce similar scores for mild 

and very severe health states but deviate for more moderate health states, with mean 

difference in tariff values at the state level of 0.134 and mean squared difference of 

0.026. Figure 4 plots the observed and predicted EQ-5D utility scores using a re-

estimated version of the EQ-5D and plots this alongside the UK-based values 

developed by Dolan (1997). The predicted values for the re-estimated EQ-5D scores 

still overpredict for more severe states, but not as much as previously, with MAE of 

0.106 and MSE of 0.021 in comparison to MAE of 0.127 and MSE of 0.030 for the 

predictions based on Dolan (1997) tariff. However the PITS state is overpredicted by 

0.63 for the re-estimated EQ-5D scores and 0.61 for the predictions based on Dolan 

(1997) tariff. 

US-based EQ-5D 

The re-estimated UK-based tariff and Dolan (1997) tariff produce similar scores for 

mild and very severe health states and hence the preferences regarding more severe 

health states may be a property of the dataset rather than the estimation technique 

used for the valuation. The US-based EQ-5D tariff has a smaller range from 1 to -0.11 

and hence has higher scores for very severe states, suggesting that the mapping 

relationship between the US-based EQ-5D index and the SF-36 may not suffer from 

overprediction for more severe health states. Figure 5 plots the observed and predicted 

EQ-5D scores using the US-based EQ-5D values developed by Shaw et al. (2005) 

alongside the UK-based values developed by Dolan (1997). This demonstrates that 

the predicted values for the US-based EQ-5D values still overpredict for more severe 

states, but the estimates are more reliable than those plotted in figure 3 with MAE of 

0.110 and MSE of 0.022 in comparison to MAE of 0.127 and MSE of 0.030 for the 

predictions based on UK Dolan (1997) tariff. The PITS state is overpredicted by 0.38 
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for the US-based EQ-5D values and 0.86 for the predictions based on UK Dolan 

(1997) tariff. 

Discussion 

The patient dataset used here is much better than general population datasets in terms 

of diversity of conditions and severity of health. Our results suggest that the mapping 

relationship between the EQ-5D index and the SF-36 for a large and varied UK 

patient dataset is reliable and accurate across inpatient and outpatient settings and 

medical conditions. However, our results indicate that the mapping relationship is not 

accurate and reliable for more severe EQ-5D health states. The inclusion of squared 

and interaction terms in the models improves diagnostics, mean error, MAE and 

MSE, suggesting that the mapping relationship is non-linear and dimensions are 

additive. The mapping approach used here is compared to the existing approaches of 

Franks et al. (2004) and Gray et al. (2006) and all suffer from overprediction for more 

severe EQ-5D health states. The added complexity of the response mapping approach 

used by Gray et al. (2006) does not seem to improve the predictability for all health 

states in comparison to our approach.  

One potential reason for the overprediction for more severe health states are the floor 

effects of the SF-36. We have tried to account for these floor effects by using squared 

terms and interaction terms in our model, but, as the figures illustrate, this does not 

resolve the problem. We also tried re-estimating the EQ-5D utility tariff using the 

original dataset used by Dolan (1997) but omitting the N3 term Although Figure 4 

demonstrates better predictions for more severe health states, the problem of 

overprediction is still evident. Indeed, if the preferences regarding more severe health 

states is a property of the dataset rather than the estimation technique, then the 

valuation produced here will still demonstrate the same properties. We also estimated 

our model using the US-based EQ-5D values, and although Figure 5 demonstrates 

better predictions for more severe health states, again the problem of overprediction is 

still evident. The importance of the problem of overprediction in economic 

evaluations is difficult to measure, since it depends on the patient group and the effect 

of treatments. Ara and Brazier (2008) predict mean cohort EQ-5D utility values using 

mean cohort scores for the dimensions of the SF-36 from published datasets. They 

find mean errors of 0.285 and 0.158 in prediction for the 5 out of 63 cohorts in an out 
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of sample dataset with mean EQ-5D utility value below 0.175 and between 0.175 and 

0.35 respectively. The impact at the group level may be less important since few 

patients have EQ-5D utility values below 0.5, and the inpatient and outpatient datasets 

used here each have 17% of observations with an EQ-5D utility value below 0.5, 

suggesting that not many observations will be affected by the overprediction for more 

severe states that is presented here. Therefore for most studies this may not matter, 

only where many patients have EQ-5D utility values below 0.5.  

The results suggest that there are differences in the EQ-5D and SF-36 health status 

measures for more severe health states which make mapping unreliable for these 

states. Another finding is that the vitality, role physical and role-emotional 

dimensions of the SF-36 did not significantly effect the EQ-5D index, hence 

interventions aimed at improving these dimensions will not be reflected in the 

mapping model. However, these domains were found to be important to members of 

the public in the valuation of the SF-6D (Brazier et al., 2002). Mapping is 

increasingly being used between condition specific measures and generic measures of 

health (refer to Brazier et al. (2007)). However, the lack of overlap in the dimensions 

covered by many condition specific measures and EQ-5D limit the usefulness of this 

approach as these problems may be worsened if the health domains included in the 

measures are different. 

Conclusions 

Mapping enables utility scores to be estimated in trials where a non-preference based 

health status measure has been used but no generic preference-based measure. Our 

results suggest that approaches mapping the SF-36 onto the EQ-5D are robust across 

setting and medical condition but overpredict for more severe EQ-5D states. Our 

results raise doubt over the suitability of mapping for patient datasets which have a 

proportion of subjects with poorer health or where dimensions are not represented in 

the target measure. Potential policy implications are that mapping the SF-36 onto the 

EQ-5D can be useful, but may not be suitable for all populations.  
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