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Abstract: This paper proposes a neuromusculoskeletal (NMS) model to predict individual muscle
force during elbow flexion and extension. Four male subjects were asked to do voluntary elbow
flexion and extension. An inertial sensor and surface electromyography (sEMG) sensors were
attached to subject's forearm. Joint angle calculated by fusion of acceleration and angular rate using
an extended Kalman filter (EKF) and muscle activations obtained from the sEMG signals were
taken as the inputs of the proposed NMS model to determine individual muscle force. The result
shows that our NMS model can predict individual muscle force accurately, with the ability to
reflect subject-specific joint dynamics and neural control solutions. Our method incorporates sEMG
and motion data, making it possible to get a deeper understanding of neurological, physiological,
and anatomical characteristics of human dynamic movement. We demonstrate the potential of
the proposed NMS model for evaluating the function of upper limb movements in the field
of neurorehabilitation.

Keywords: elbow; muscle force; neuromusculoskeletal (NMS) model; neurorehabilitation; surface
electromyography (sEMG)

1. Introduction

Hemiplegia is a common effect of brain injury or stroke, which may have significant impact on
upper limb function [1]. Patients who suffer from hemiplegia usually have difficulty performing
activities of daily living (ADL) such as feeding themselves, washing themselves, dressing, etc.
A proportion of patients can recover some degree of useful function in their upper limb following
active rehabilitation, but the majority of them cannot retirn to their full motor capability and
independence. Fortunately, neuroscience research has yielded a great deal of information on the nature
of experience-dependent brain plasticity, and there is reason for optimism that our understanding
of this can be capitalized upon to improve functional outcome after brain damage [2]. Therefore,
quantitative evaluation of patient upper limb impairment and personalized rehabilitation treatment
play important roles in the patient’s recovery process.

Thus far, three main approaches, namely assessment scales, movement evaluation, and
surface electromyography (sEMG) analysis, are widely applied for objective evaluation of the
upper-extremities. Assessment scales such as the Fugl-Meyer Assessment (FMA) [3], the Box &
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Block Test (BBT) [4], and the Action Research Arm Test (ARAT) [5], having been used for years, are
all comprehensive and quantitative [6]. As these assessments are viewed and scored by therapists,
the evaluation results are often subjective and inaccurate. Movement evaluation methods using
motion capture systems can provide objective data on the physical movement of the upper limb
or how the upper limb moves through space. These precise data may add value in monitoring
progress of the patient and the rehabilitation program [6]. However, this method cannot account for
neuromuscular characteristics in patients, and the neurological mechanisms used to compensate for the
problems associated with their pathology are still unavailable. sEMG analysis has been investigated
a lot nowadays. Recent experiments have suggested that the central nervous system (CNS) makes
use of muscle synergies as a neural strategy to simplify the control of a variety of movements [7].
These synergies can compensate mechanical disabilities, resulting invisible to an external evaluation [8].
Therefore, the analysis of muscle synergies extracted from sEMG becomes an emerging technique
in the field of neurorehabilitation. Although sEMG analysis is useful in the assessment of upper
limb function, it is inadequate for quantitative evaluation due to lack of deep muscle's activation
information and noise contamination from cross-talk and movement artifacts.

The ability to use electrophysiological recordings to inform biomechanical models enables
accessing a broader range of neuromechanical variables than analyzing electrophysiological data or
movement data individually [9]. Muscle force is one of these neuromechanical variables, and it opens
up the possibility of examining the outcome of muscle deficiencies and to investigate causes of joint
instability as encountered in clinical practice [10]. Given this, we present a neuromusculoskeletal (NMS)
model to predict individual muscle force during voluntary elbow flexion and extension by fusion
of sEMG and motion data. Compared with the state-of-the-art EMG-driven muscle force prediction
method, our model adds a muscle excitation adjustment component to reduce the disadvantage of
the effect of uncertainties in sEMG signals. Through our method, therapists can get to know patients’
specific functional muscle weakness, making it possible to conduct customized rehabilitation therapy
for the patients. Thus, we demonstrate the potential of using our NMS model for evaluating the
function of upper limb in the field of neurorehabilitation. In this paper, we explicate the structure of
our NMS model and how it is implemented to estimate individual muscle force. We then investigate if
our model can predict individual muscle force accurately with the ability to cover subject-specific joint
dynamics and neural control solution.

2. Materials and Methods

Our NMS model takes joint angle and muscle activations as inputs to estimate individual muscle
force. First we describe data collection and preprocessing procedure. Second, we explicate how to
get joint angle using an inertial sensor. Third, we describe how to obtain muscle activations from the
preprocessed sEMG signals. Lastly, we present a detailed description about how our NMS model
works to estimate muscle force. A brief flowchart of our muscle force prediction method is shown in
Figure 1.
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2.1. Data Collection and Preprocessing

Four healthy male subjects (age: 24.8 ± 1.7 years, height: 175.3 ± 4.5 cm, mass: 68 ± 7.3 kg)
volunteered for this investigation and gave their informed, written consent. The project was
approved by the Human Research Ethics committee at the University of Chinese Academy of Sciences.
The subject sat on a chair with the upper arm kept vertical. The shoulder was orientated at 0◦ of flexion,
0◦ of abduction, and neutral rotation. The forearm was in a supinated position and the wrist was in
a neutral position with the hand completely relaxed. During the test, the subject slowly flexed his
forearm from a neutral position (about 10◦ in the sagittal plane) to fully flexed position (about 130◦ in
the sagittal plane), and then extended back to the neutral position, while the humerus was in a neutral
position and the hand remained supine. Each subject repeated the voluntary elbow flexion–extension
twice to get two sets of data, one for calibration and the other for simulation.

The motion data of elbow flexion and extension was collected (50 Hz) using an MPU-9150
(InvenSense Inc., San Jose, CA, USA) sensor attached to the lateral side of the forearm. Simultaneously,
sEMG signals including long head of biceps brachii, brachioradialis, and lateral head of triceps
brachii were recorded (1000 Hz) by the ME6000 multi-channel bipolar sEMG recording system (Mega
Electronics Ltd., Kuopio, Finland). The electrodes were placed longitudinally with respect to the
muscle fiber directions and the positions of each muscle according to the recommendations from the
SENIAM (surface electromyography for the non-invasive assessment of muscles) conventions [11].
A ground electrode was placed over the acromion. Traditional manual muscle test techniques [12] were
adopted to obtain the maximum voluntary contraction (MVC) EMG values under isometric conditions.
Experimental muscle excitations were calculated from raw EMG signals that were high-pass filtered
(30 Hz), full-wave-rectified, and low-pass filtered (6 Hz) using a zero-lag fourth-order recursive
Butterworth filter [13]. Experimental muscle excitations were then normalized with the peak MVC
EMG values respectively.

2.2. Joint Angle Estimation

The joint angle can be obtained by the integration of the angular rate using a gyroscope. However,
as the result of integration, the errors also accumulate. This results in a drift over a period of time [14].
To overcome this problem, we employed a Kalman filter which fused angular rate and acceleration
to obtain joint angle since Kalman filter provides a convenient, efficient, and elegant framework for
combining different types of measurements to recover the state of a given system [15]. Location of the
inertial sensor is shown in Figure 2. The sensor was attached to the lateral side of the forearm. α is the
elbow joint angle of flexion and extension, which is equal to θ, the angle between sensor’s Y-axis and
the direction of gravity. Thus, in the following part, we take θ as the joint angle.
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Figure 2. Location of the inertial sensor. The sensor was attached to the lateral side of the forearm.
α is the elbow joint angle of flexion and extension. x and y represent the sensor’s X-axis and Y-axis
respectively. l is the distance between the sensor and elbow. g represents the earth gravity. The elbow
join angle can be obtained by fusing the sensor’s acceleration and angular rate.
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We define the state vector x by using three types of parameter, namely, the joint angle θ, the joint
angular rate

.
θ, and the joint angular acceleration

..
θ. The process model is used to predict the evolution

of the state at time step k from time step k− 1, so the state vector is given as xk =
[

θk
.
θk

..
θk

]T
.

In line with the Continuous Wiener Process Acceleration (CWPA) model [16], the angular acceleration
of elbow is assumed changing little within a short sampling period τ. Therefore, the process model
can be represented by the linear difference equation:

xk = Axk−1 + nk−1, (1)

where A =

 1 τ τ2

2
0 1 τ

0 0 1

, nk is the Gaussian white process noise with zero mean and covariance

matrix Q.
The measurement model relates the measurement vector z to the state vector x. The wearable

inertial sensor provides two types of measurement: angular rate and acceleration. The generalized
form of the measurement equation is given as

zk =
[

ax,k ay,k ωx,k

]T
= h (xk, mk), (2)

where ax,k is the accelerometer reading of X-axis at time step k, ay,k is the accelerometer reading of
Y-axis, ωx,k is the gyroscope reading of X-axis, mk represents the Gaussian white measurement noise
with zero mean and covariance matrix R. We can rewrite the measurement equation to make it
more clear:

ax,k = −gsinθk +
..
θkl + m1,kay,k = −gcosθk +

.
θk

2
l + m2,k,ωx,k =

.
θk + m3,k, (3)

where g is the magnitude of earth gravity, l is the distance between elbow and sensor.
..
θkl and

.
θk

2
l are

the tangential and normal acceleration respectively.
As the measurement relationship to the process is nonlinear, we adopt an extended Kalman filter

(EKF) to deal with the nonlinearity. The time update equations are given as follows:

x̂−k = Ax̂k−1P−k = APk−1 AT + Q, (4)

The measurement update equations are described as follows:

Kk = P−k HT
k (HkP−k HT

k + R)
−1

x̂k = x̂−k + Kk(zk − h(x̂−k , 0)), Pk = (I − Kk Hk) P−k (5)

where Hk is the partial derivative matrix

Hk =
∂h
∂xk

∣∣∣∣
x̂−k

=

 −gcosθ̂−k 0 l

gsinθ̂−k 2
.̂
θ
−
k l 0

0 1 0

. (6)

The update process is repeated at each time step and the values of the state vector are estimated.
Thus, we can get elbow joint angle during flexion and extension.

2.3. Muscle Activation Dynamics

EMG is a measure of the electrical activity that is spreading across the muscle, causing it to
activate. This results in the production of muscle force. However, it takes time for the force to be
generated—it does not happen instantaneously [17]. To this end, we adopted a second-order discrete
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linear model [18] to model neural activation from muscle excitation obtained through preprocessing,
in the form of a recursive filter:

u (t) = αe (t− d)− (C1 + C2) u (t− 1)− C1C2u (t− 2), (7)

where e (t) is the muscle excitation at time t, u (t) is the neural activation, α is the muscle gain, C1 and
C2 are recursive coefficients, and d is the electromechanically delay.

The neural activations were then adjusted to account for either a linear or non-linear EMG-force
relationship [18]:

a (t) =
eAu(t) − 1

eA − 1
, (8)

where a (t) is the muscle activation, u (t) is the neural activation, and A is the non-linear shape factor.
Initial values of these system parameters were set according to the previous work [19].

A calibration process was then conducted to make our model match the subject-specific physiological
characteristics. More details about calibration are given in the Section 2.4.

In our model, we selected short head of biceps (BICshort), long head of biceps (BIClong), brachialis
(BRA), brachioradialis (BRD) as four elbow flexors and long head of triceps (TRIlong), medial head of
triceps (TRImed), lateral head of triceps (TRIlat) as three elbow extensors. Selection of these muscles
was based on computing and comparing the potential moment contribution among the 24 muscles
wrapping across the elbow joint [20]. As we only collected sEMG signals of BIClong, BRD and TRIlat,
we adopted a neural mapping method [13] to get the other four muscles' activations. To be specific,
we assumed that BICshort has the same activation as BIClong and three heads of triceps have the same
activation. Considering that the EMG signal of BRA cannot be measured by the non-invasive methods,
we assumed that it has the same activation of BIClong. These assumptions were testified feasible in
previous study [19].

2.4. NMS Model

The NMS model is the core of our muscle force prediction method. It consists of four
main components: muscle kinematics, muscle contraction dynamics, joint moment estimation,
and static optimization.

Muscle kinematics transforms the joint angle into muscle kinematics parameters such as
musculotendon unit (MTU) lengths and moment arms using an upper limb musculoskeletal model [19]
based on OpenSim [21]. This upper limb musculoskeletal model is shown in Figure 3, which should be
scaled to match the subject’s anthropometry first. We also employed the OpenSim Inverse Dynamics
Tool to get the experimental joint moment. More details about scale and Inverse Dynamics Tool
are described in other articles [21,22]. In general, OpenSim upper limb model characterizes the
transformation from joint angle to muscle kinematics parameters, which is a necessary prerequisite to
individual muscle force prediction.

Muscle contraction dynamics transforms the muscle activation and muscle kinematics parameters
into muscle force:

Fm = Fmax
[

fa

(
l̃m
)

fv (ṽm)
]

a + fp

(
l̃m
)
+ dmṽm]cosϕ, (9)

where Fm is the muscle force, Fmax is the maximum isometric muscle force, l̃m is the normalized muscle
fiber length, ṽm is the normalized muscle fiber contraction velocity, a is the muscle activation, dm

is the muscle damping element, ϕ is the pennation angle. fa

(
l̃m
)

is the active force-length relation

that expresses the ability of muscle fibers to produce force at different lengths, fp

(
l̃m
)

is the passive
force-length relation that represents the force response of the fibers to strain, fv (ṽm) accounts for the
force contribution of the fiber contraction velocity.
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Figure 3. OpenSim upper limb musculoskeletal model. This model was developed by Saul et al. [19].
It consists of 7 body segments and 32 muscles across the shoulder, elbow, forearm, and wrist.
The muscle kinematics parameters and experimental joint moment can be obtained through this
musculoskeletal model.

In joint moment estimation, the force generated by each muscle is multiplied by the respective
moment arm and then summed to yield the estimated joint moment:

τ̂ =
Nmuscles

∑
i=1

(MAi × Fm
i), (10)

where τ̂ is estimated joint moment, Nmuscles is the number of muscles, MAi is the moment arm of
muscle i, Fm

i is the force of muscle i.
Static optimization was used to adjust system parameters in muscle activation dynamics and

muscle contraction dynamics. This calibration process aimed at matching the subject’s specific
EMG-force generating properties. A simulated annealing algorithm [23] was used to minimize the
root mean square error (RMSE) between the experimental and estimated joint moment by varying
parameters within pre-defined boundaries. The entire flowchart of calibration is shown in Figure 4.
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Following calibration, we employed a novel set of trail as input to drive the calibrated model.
This simulation process is shown in Figure 5. Unlike calibration, the simulation process took adjusted
muscle excitations as inputs of the muscle activation dynamics. This adjustment mechanism aimed at
reducing the disadvantage of the effect of uncertainties in sEMG signals. Adjusted muscle excitations
can be obtained using the following static optimization method:

min Fobj = |τ − τ̂|s.t.
∣∣∣∣ ei − êi

ei

∣∣∣∣ < Th ∀i ∈ Nmuscles, (11)

where τ is the experimental joint moment, τ̂ is the estimated joint moment, ei is the experimental muscle
excitation for muscle i, êi is the adjusted muscle excitation for muscle i, Th is the threshold constrained
in the interval (0, 1), and Nmuscles is the number of muscles. Considering the noise contamination from
cross-talk and movement artifacts is very difficult to be removed in EMG signal, and true EMG-maxima
used in normalization is difficult to attain, excessive pursuit of muscle excitation tracking accuracy
may limit the model’s ability in predicting individual muscle force and joint moment. Therefore, our
method allows a tolerance in muscle excitation tracking accuracy to make the joint dynamics closer to
reality. Th is the only parameter we need to tune in the static optimization. Larger Th value means
muscle excitation can be adjusted in a wider range, which may improve the accuracy of joint moment
estimation. How to determine Th value is discussed in the rest of this section.
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to make the joint moment estimation more close to reality.

First, two parameters, namely, the coefficient of determination (R2) and the normalized root mean
squared deviation (NRMSD) [24], are introduced to measure the similarity between the estimated and
experimental results. The form of NRMSD is given as:

NRMSD =

√
1
N ∑N

i=1 (X̂i − Xi)
2

max(X̂, X)−min(X̂, X)
(12)

where X and X̂ refer to the two variables being compared, N refers to the number of points in the
data set.
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According to the previous study [24], comparison results with 0.0 ≤ NRMSD ≤ 0.3 and
0.7 ≤ R2 ≤ 1.0 are thought to be acceptable for joint moment estimation. In our approach,
we narrowed them down to 0.0 ≤ NRMSD ≤ 0.04 and 0.95 ≤ R2 ≤ 1.0 to make the NMS model
more elaborate. We first set Th = 0.1, then increased it with a 0.1 step size until the joint estimation
result achieved the proposed criterion. Validation of this adjustment method is discussed in the
Results section.

2.5. Validation Procedures

The first test assessed the accuracy of our joint angle estimation. The similarity between
experimental and estimated joint angle was quantified using R2 and NRMSD. Here, experimental joint
angle was obtained by the MMocap system (MicroSens Ltd., Wuxi, China).

The second test assessed the feasibility of our muscle excitation adjustment method.
We investigated whether a proper selection of Th value can improve the prediction of individual
muscle force accounting for the realistic joint dynamics and neural control strategy. To this end, we
evaluated the effects of different Th values on joint moment prediction and muscle excitation pattern
tracking. NRMSD and R2 were used. In addition, we adopted a non-negative matrix factorization
(NMF) algorithm [25] to extract muscle synergies and then used scalar product [26] to measure
similarity between the experimental synergies and the adjusted synergies. This muscle synergy
analysis allows us to investigate whether our adjustment is feasible in terms of neural control strategy.

The third test compared our model with the EMG-driven model to figure out the advantage of
muscle excitation adjustment mechanism. Here, EMG-driven method is a forward dynamic NMS
modeling to predict muscle forces and joint moments from neural signals [17], which has been widely
used these years [18,27,28]. The structure of EMG-driven model is almost the same as ours except the
lack of a muscle excitation adjustment mechanism.

3. Results

The first test showed that our EKF method can predict joint angle accurately with low NRMSD
(NRMSD = 0.0434 ± 0.0056) and high R2 (R2 = 0.9951 ± 0.0035) (see Figure 6) across four subjects.
As joint angle information plays an important role in muscle force prediction, our EKF model provides
an easy way to track human movement compared with a visual tracking system.
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Figure 6. Comparison between experimental and estimated joint angle. The black and red solid
lines represent the average experimental and estimated joint angles respectively. The black and red
dash dotted lines represent the standard deviations of the experimental and estimated joint angle
respectively. The average elbow flexion-extension duration is about 5.8 s.
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The second test revealed that the larger Th value is, the better joint moment estimation will be
(see Figure 7 and Table 1). Although muscle excitation tracking ability degrades as the Th value
raises (see Figure 8 and Table 2), this degradation mainly lies in amplitude, the shape matches fairly
well. Here we took one subject for example to analyze individual muscle force. According to the
proposed criterion, we chose Th = 0.8. His individual muscle forces during elbow flexion and extension
are shown in Figure 9. In the flexion phase, BIClong and BRA are the main action muscles, with
maximum muscle force 53.07 N and 45.88 N respectively. The curves of these two muscles are both
inverse U-shapes. In the extension phase, TRIlong is the main extensor, also with an inverse U-shape
force curve. The other three subjects' muscle force curves are basically in line with the example one.
These results of elbow dynamics show great agreement with previous work [10,29]. Through muscle
synergy analysis (see Figure 10), we figure out that the scalar products between experimental and
adjusted muscle synergy are all above 95% of the four subjects, meaning our method can capture the
neural control strategy in spite of some accuracy loss of muscle excitation tracking. In general, we can
demonstrate with a proper selection of Th value that our NMS model can predict individual muscle
force accurately with the ability to cover subject-specific joint dynamics and neural control solution.
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Figure 7. Joint moment estimation of EMG-driven model and our model with different Th values
(Th = 0.2, 0.5, 0.8). The black and red solid lines represent the average experimental and estimated joint
moments, respectively. The black and red dash dotted lines represent the standard deviations of the
experimental and estimated joint moment, respectively.

Table 1. Comparison between experimental and estimated joint moment using the EMG-driven model
and our model with different Th values (the data are given as mean ± SD).

EMG-Driven
Model

Our Model
(Th = 0.2)

Our Model
(Th = 0.5)

Our Model
(Th = 0.8)

Moment_NRMSD 0.1847 ± 0.0199 0.1217 ± 0.0419 0.0662 ± 0.0250 0.0317 ± 0.0111
Moment_R2 0.5653 ± 0.1225 0.7544 ± 0.1729 0.8942 ± 0.1160 0.9758 ± 0.0215
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Figure 8. Experimental muscle excitations and adjusted muscle excitations with different Th values:
(a) Th = 0.2; (b) Th = 0.5; (c) Th = 0.8. The black and red solid lines represent the average experimental
and adjusted muscle excitations, respectively. The black and red dash dotted lines represent the
standard deviations of the experimental and adjusted muscle excitations respectively.

Table 2. Comparison between experimental and adjusted muscle excitations with different Th values
(the data are given as mean ± SD).

Our Model (Th = 0.2) Our Model (Th = 0.5) Our Model (Th = 0.8)

Excitation_BIClong_NRMSD 0.0706 ± 0.0038 0.1202 ± 0.0134 0.1356 ± 0.0184
Excitation_BICshort_NRMSD 0.0674 ± 0.0021 0.1140 ± 0.0139 0.1352 ± 0.0132

Excitation_BRA_NRMSD 0.0709 ± 0.0035 0.1192 ± 0.0126 0.1355 ± 0.0160
Excitation_TRIlong_NRMSD 0.0436 ± 0.0100 0.0681 ± 0.0108 0.0786 ± 0.0096
Excitation_TRIlat_NRMSD 0.0412 ± 0.0088 0.0656 ± 0.0073 0.0724 ± 0.0067

Excitation_TRImed_NRMSD 0.0424 ± 0.0095 0.0684 ± 0.0091 0.0723 ± 0.0090
Excitation_BRD_NRMSD 0.0553 ± 0.0026 0.0923 ± 0.0074 0.1125 ± 0.0073

Excitation_BIClong_R2 0.8894 ± 0.0097 0.6948 ± 0.0352 0.5906 ± 0.0945
Excitation_BICshort_R2 0.8967 ± 0.0056 0.7381 ± 0.0342 0.6161 ± 0.0728

Excitation_BRA_R2 0.8872 ± 0.0084 0.7161 ± 0.0389 0.5860 ± 0.0633
Excitation_TRIlong_R2 0.9598 ± 0.0206 0.8956 ± 0.0212 0.8215 ± 0.0412
Excitation_TRIlat_R2 0.9637 ± 0.0178 0.9037 ± 0.0198 0.8340 ± 0.0640

Excitation_TRImed_R2 0.9614 ± 0.0201 0.8955 ± 0.0206 0.8172 ± 0.0400
Excitation_BRD_R2 0.9139 ± 0.0221 0.7298 ± 0.0341 0.5899 ± 0.0893

The third test showed that our NMS model improved the joint moment estimation compared with
the EMG-driven model (see Figure 7 and Table 1). From the result we can see even a slight adjustment
in muscle excitation can make the joint moment estimation more accurate. That is to say, our model is
a feasible trade-off method to analyze joint dynamics with respect to the uncertainties in EMG signals.
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(a) The experimental muscle synergy patterns; (b) the adjusted muscle synergy patterns (Th = 0.8).
The scalar products between experimental and adjusted muscle synergy patterns are above 95% of all
the four subjects.

4. Discussion

Upper limb disorder is one of the primary symptoms of stroke or other brain damage and seriously
affects the patient's daily life and work. The concept and methods of rehabilitation medicine have
played important roles in the patient recovery process. However, as the function of an upper limb
is much more complex than a lower limb, no protocol proposed for the objective evaluation of the
upper-extremities has achieved consensus [30]. Elbow motion is fundamental for positioning the
hand in space since it determines how far the hand can reach [30]. It has been estimated that a 50%
reduction in elbow motion could reduce upper extremity function by almost 80% [31]. Given those,
we developed an NMS model to analyze individual muscle force during elbow flexion and extension.
Compared with the three major approaches of upper limb evaluation that previously mentioned,
our method can provide the information about how the individual muscle force changes during the
movement, which is of great importance for therapists to conduct personalized rehabilitation therapy
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for the patients. More specifically, our model is a fusion of movement evaluation and sEMG analysis,
which maintains the basic functions of both methods, while making it possible for us to get a deeper
understanding of human dynamic movement mechanism.

A motion monitoring system developed for clinical use should be transportable, easy to set up,
and have minimal impact on patients' normal range of movement [6]. To date, optical motion capture
is one of the most mature solutions among all existing motion capture methods [32] in the fields
of animation production, digital filmmaking, and sports training, etc. However, setting up optical
systems is very complex and time consuming, which limits its application in rehabilitation medicine
since patients usually have difficulties in performing daily activities. In our method, we collected the
acceleration and angular rate of an inertial sensor which was attached to the lateral side of the forearm.
As the inertial sensor is small and light, our method will not cause discomfort for the patients during
the experiment. From the result of the first test, we can see our EKF method can predict elbow flexion
and extension angle precisely with low NRMSD and high R2. We demonstrate the potential of using
our EKF model to calculate joint angle during shoulder abduction or flexion. However, our method of
joint angle estimation applies to one degree of freedom (DOF) only, which is a limitation that should
not be neglected. For multi-DOF movement evaluation, a more elaborate joint angle estimation model
should be developed.

The purpose of muscle activation dynamics is to determine muscle activations from muscle
excitations, accounting for the way EMG is related to force. Muscle excitation is the normalized,
rectified, and filtered EMG values, ranging from zero (no activity) to one (full activity).
This preprocessing of raw EMG signals aims at removing noise caused by skin or electrode movement
and allowing comparisons between muscles in spite of the differences in types of electrodes used,
the gain of the amplifiers, etc. Considering the muscle twitch response and linearity or non-linearity
EMG–force relationship, we used a second-order discrete linear model and an exponential function to
obtain muscle activations. Muscle activation dynamics is proven to be a mature method in current
movement neuroscience and biomechanics research [13,17,18,27,33]. In our approach, we used a
neural mapping method [13] to generate muscle activations for all seven muscles. This is based on the
hypothesis that two muscle groups which shared the same innervation and contributed to the same
mechanical action were assumed to have the same EMG pattern [34]. This assumption was found to be
feasible in a previous elbow flexion-extension experiment [19]. In our method, muscle excitations are
adjusted in a pre-defined range, resulting in joint moment closer to the reality. This adjustment may
boost the adoption and development of the mapping technique. Figure 10 shows the experimental
and adjusted muscle synergy patterns, which are in great agreement with the previous study [35].
However, their study did not cover muscle BRA. Compared with the data cited from Koo and Mak [36]
which was measured using both surface and fine electrodes, the pattern of BRA excitation as well as
other muscles of our experiment matched well with theirs. In this way we tested the validity of the
muscle mapping method in the elbow flexion-extension experiment.

In our NMS model, a Hill-type musculotendon model was used to calculate individual muscle
force. This Hill-type model is most widely used in muscle-driven simulations of human and
animal movements because of its computational simplicity and close relation to commonly measured
experimental variables [37]. From the result of the third test, we can see the accuracy of joint moment
estimation is poor (NRMSD = 0.1847 ± 0.0199 and R2 = 0.5653 ± 0.1225) when taking unadjusted
experimental muscle excitations as inputs. This is mainly because noise contamination in the EMG
signal from cross-talk and movement artifacts is very difficult to remove and neural mapping is only a
simplification method to compensate for the lack of deep muscle's excitation. Moreover, obtaining
true EMG maxima from maximal voluntary efforts is a critical step and a source of uncertainties [38].
Given those, we developed a hybrid NMS model that incorporated EMG-driven model and static
optimization. In this, the joint moment tracking error is minimized by adjusting muscle excitation
within a reasonable boundary that matches the temporal EMG pattern using a static optimization
method. Through the second test, we can see the precision of joint moment estimation improves
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as the Th value raises. Although the muscle excitation tracking ability degrades as the Th value
becomes closer to 1, the shape of the adjusted muscle excitation still shows good agreement with the
experimental muscle excitation. What's more, from the muscle synergy analysis perspective, the scalar
products between the experimental and adjusted muscle synergy are above 95% for all four subjects,
meaning these adjusted muscle excitations still can reflect the realistic neural control strategy. Thus we
can demonstrate with a proper selection of Th value that our model can predict individual muscle
force accurately with the ability to reflect subject-specific joint dynamics and neural control solutions.
Thanks to the calibration and muscle excitation adjustment mechanism, our NMS model has the ability
to be applied to other joints such as shoulder, knee, ankle, etc. Taking the knee for example, the main
process is basically the same as the elbow’s, while two things should be noted. First, the purpose
must be specified, whether it’s for gait analysis with ground contact or just knee flexion extension
experiment without ground contact. If the purpose is the former one, an in-ground force plate should
be brought in to measure ground reaction force, which is an input of OpenSim inverse dynamic tool
to calculate the experimental joint moment. Second, the choice of muscles should be investigated
carefully. As there may be more muscles wrapping across the knee, I would suggest first figuring
out each muscle’s mechanical function, and then choosing the main action muscles as the flexors and
extensors in the model. As the deep muscle’s EMG cannot be measured non-invasively, I suggest
taking the superficial muscle’s activation, which shares the same innervation and contributes to the
same mechanical action with deep muscle as the deep muscle’s activation.

Several limitations of our study should be noted. First, as previously noted, our joint angle
estimation method only applies to one DOF. In the elbow flexion-extension experiment, the inertial
sensor's X-axis and Y-axis should be kept in the sagittal plane. This limits the ability of our NMS
model to predict individual muscle force during multi-DOF movement. Therefore, developing a more
elaborate joint angle estimation method should be the subject of our future work. Preliminarily we
plan to build a three-node sensor network, with the three inertial sensors attached to the forearm,
the upper arm, and the trunk. According to the previous study [39], sensors’ acceleration data can
be processed to obtain both shoulder and elbow joint angles based on the hierarchical structure of
the upper limb. Second, neural mapping is a simplification of muscle recruitment strategies and may
result in suboptimal model calibration and inaccurate force prediction [13]. The aim of this mapping
is to solve the problem that a deep muscle’s EMG cannot be measured non-invasively. Although we
obtained relatively good joint dynamics estimation results using a neural mapping method, how to
simulate a deep muscle's excitation requires further research. Last, our work is a pilot study with the
purpose of introducing a new quantitative assessment of upper limb function based on individual
muscle force into neurorehabilitation. As we only collected four subjects’ motion and sEMG data for
one movement, a generalizable evaluation criterion cannot be established. Nevertheless, the scaling
and calibration process make our NMS model can be applied across individuals and tasks. This allows
us to perform more experiments in the future.

5. Conclusions

In conclusion, this work proposed an NMS model to predict individual muscle force during
elbow flexion and extension, accounting for the subject-specific joint dynamics and neural control
solution. Our method combines the merits of movement evaluation and sEMG analysis and shows
great potential in the field of upper limb function assessment and personalized neurorehabilitation.
We believe that the reliable determination of muscle forces as a function of neural drive will provide us
with a deeper understanding of neurological, physiological, and anatomical characteristics of human
dynamic movement.
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