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ABSTRACT 8 

The process regime of low-gradient coastal plains, delta plains and shorelines can change 9 

during transgression. In ancient successions, accurate assessment of the nature of marine 10 

influence is needed to produce detailed paleogeographic reconstructions, and to better 11 

predict lithological heterogeneity in hydrocarbon reservoirs. The Campanian lower Neslen 12 

Formation represents a fluvial-dominated and tide- and wave-influenced coastal-plain and 13 

delta-plain succession that accumulated along the margins of the Western Interior Seaway, 14 

USA. The succession records the interactions of multiple coeval sedimentary environments 15 

that accumulated during a period of relative sea-level rise. 16 

A high-resolution data set based on closely spaced study sites employs vertical sedimentary 17 

graphical logs and stratigraphic panels for the recognition and correlation of a series of stratal 18 

packages. Each package represents the deposits of different paleoenvironments and process 19 

regimes within the context of an established regional sequence stratigraphic framework. 20 

Down-dip variations in the occurrence of architectural elements within each package 21 

demonstrate increasing marine influence as part of the fluvial-to-marine- transition zone. 22 
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Three marine-influenced packages are recognized. These exhibit evidence for an increase in 23 

the intensity of marine processes upwards as part of an overall transgression through the 24 

lower Neslen Formation. These marine-influenced packages likely correlate down-dip to 25 

flooding surfaces within the time-equivalent Îles Formation. The stratigraphic arrangement of 26 

these packages is attributed to minor rises in sea level, the effects of which were initially 27 

buffered by the presence of raised peat mires. Post-depositional auto-compaction of these 28 

mires resulted in marine incursion over broad areas of the coastal plain. Results demonstrate 29 

that autogenic processes modified the process response to overall rise in relative sea level 30 

through time. Understanding the complicated interplay of processes in low-gradient, coal-31 

bearing, paralic settings requires analysis of high-resolution stratigraphic data to discern the 32 

relative role of autogenic and allogenic controls. 33 

KEY WORDS: 34 

Mesaverde, sequence stratigraphy, autogenic, allogenic, fluvial-to-marine transition 35 

  36 
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INTRODUCTION 37 

Stratigraphic successions of mixed fluvial and marginal marine (paralic) origin, in which 38 

sediments are delivered by rivers and redistributed by waves and tides, accumulate during 39 

periods of high sea level stand and represent important archives of shoreline responses to 40 

sea-level change (Coleman and Wright 1975; Galloway 1975; Boyd et al. 1992; Ainsworth et 41 

al. 2011). Many modern coastal systems are undergoing transgression, and sedimentary 42 

process regimes vary systematically through the fluvial-to-marine transition zone (FMTZ) 43 

(Fedo and Cooper 1990; Boyd et al. 1992; Dalrymple and Choi 2007; Martinus and Gowland 44 

2011) (Fig. 1). Studies of ancient transgressive paralic successions (e.g. Devine 1991; Valasek 45 

1995; Sixsmith et al. 2008; Kieft et al. 2011; Leva Lopez et al. 2016) help to constrain the long-46 

term sedimentary and stratigraphic response of FMTZs to autogenic and allogenic controls.  47 

In ancient transgressive paralic successions, numerous allogenic and autogenic factors 48 

influence the interplay of fluvial, tidal and wave processes. Allogenic factors include tectonic 49 

setting, shelf width, climate, sediment supply rate and delivery mechanism, sea-level rise, and 50 

ocean basin morphology (Coleman and Wright 1975; Galloway 1975; Boyd et al. 1992; 51 

Bhattacharya and Giosan 2003; Nyberg and Howell 2016).  Autogenic processes include 52 

switching of delta lobes (Coleman 1988; Tornqvist et al. 2008; Blum and Roberts 2012), 53 

autostratigraphy (Muto 2001; Muto and Steel 2002; Muto et al. 2007) and channel avulsion 54 

(Allen 1965; Richards et al. 1993; Stouthamer et al. 2011). However, unravelling the relative 55 

influence of autogenic and allogenic processes is a challenge and the interpretation of paralic 56 

strata which takes into account the influence of autogenic processes is lacking.  57 

In paralic successions, the tracing of flooding surfaces up-dip into the non-marine realm 58 

requires careful consideration. Correlative surfaces to marine flooding surfaces in the coastal 59 

plain realm can be expressed by deposits that record marine influence (McLaurin and Steel 60 

2000), or are absent through up-dip erosion by fluvial processes (Yoshida et al. 1996; Hettinger 61 
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and Kirschbaum 2003). A notable autogenic control in many low-latitude paralic systems is 62 

the development of peat mires (Frazier and Osanik 1969; Fielding 1987; Bohacs and Suter 63 

1997; Davies et al. 2006; Jerrett et al. 2011a, b). Prior to compaction, topographically elevated 64 

peat mires can act as buffers to limit transgression; raised mires develop above the level of 65 

fluvial or marine inundation (Eble et al. 1994; Kamola and Van Wagoner 1995; Jerrett et al. 66 

2011a) and the cohesive nature of the sediment that comprises such bodies means that they 67 

are able to withstand erosional processes (McCabe 1985). Volume reduction associated with 68 

the auto-compaction of mires upon initial burial, and their transformation to coal, typically 69 

occurs rapidly (Ryer and Langer 1980; Fielding 1985; Courel 1987; Bohacs and Suter 1997; 70 

Nadon 1998; Holz et al. 2002). Hence, such processes cause significant local variations in 71 

accommodation. Localized areas of enhanced accommodation may be filled by fluvial 72 

crevasse-splay deposits (van Asselen et al. 2009), or may result in marine incursion 73 

anomalously far inland (Kosters and Bailey 1983; Kamola and Van Wagoner 1995; Jerrett et 74 

al. 2011a, b). Understanding the origin of flooding surfaces is important in extending sequence 75 

stratigraphic interpretations up-dip from the coastal realm. Such interpretations are especially 76 

important to improve prediction of the distribution of reservoir-quality sandbodies in 77 

transgressive settings. 78 

The Campanian lower Neslen Formation (upper Mesaverde Group), Book Cliffs, eastern Utah, 79 

the focus of this work, records accumulation in the lower part of a coastal plain and delta-80 

plain system (Young 1955; 1957; Fisher et al. 1960; Keighin and Fouch 1981; Franczyk et al. 81 

1990; Willis 2000; Hettinger and Kirschbaum 2003; Kirschbaum and Hettinger 2004; Cole 82 

2008; Shiers et al. 2014; Olariu et al. 2015; Colombera et al. 2016). The well-established 83 

regional sequence stratigraphic framework (Fig. 2), extensive marker beds that subdivide the 84 

stratigraphy (Fig. 3), and outcrops with strike- and dip-oriented control permit a rare 85 

opportunity to document the preserved record of mixed process response of coal-bearing 86 

paralic successions during an episode of overall transgression. Specific objectives are as 87 
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follows: (i) to explain the origin of the preserved depositional architecture that arose in 88 

response to multiple laterally extensive, small scale relative sea-level rises; and (ii) to discuss 89 

the interplay of autogenic and allogenic controls on the sedimentary evolution of low-gradient 90 

coal-bearing paralic successions during transgression.  91 

 92 

GEOLOGICAL SETTING 93 

The Upper Mesaverde Group is exposed along the Book Cliffs of eastern Utah and western 94 

Colorado. It comprises stratal successions of shallow-marine, coastal and fluvial origin that 95 

accumulated during the Late Campanian (~72 Ma) as part of a clastic wedge that prograded 96 

eastwards from the Sevier Orogenic Belt towards the Western Interior Seaway (WIS) 97 

(Kauffman 1977; Miall et al. 2008). The western coastline of the WIS was oriented north-south, 98 

although many local embayments are postulated (Robinson Roberts and Kirschbaum 1995; 99 

Miall et al. 2008). The coastal plain was low gradient (2.5 x 10-4 m/m; Colombera et al. 2016) 100 

and low relief (Cole and Cummella 2003), meaning that minor relative sea-level rise resulted 101 

in widespread transgression or re-exposure of the coastal plain during regression. The seaway 102 

is estimated to have had a microtidal range of 0 to 2 m (Steel et al. 2012). 103 

A sequence stratigraphic framework for the Mesaverde Group is well established (Figs. 2, 3) 104 

(Ğ͘Ő͘ MŝĂůů ϭϵϵϯ͖ O͛BǇƌŶĞ ĂŶĚ FůŝŶƚ ϭϵϵϱ͖ OůƐĞŶ Ğƚ Ăů͘ ϭϵϵϱ͖ WŝůůŝƐ ϮϬϬϬ͖ YŽƐŚŝĚĂ ϮϬϬϬ͖ MŝĂůů 105 

and Arush 2001; Davies et al. 2006; Rittersbacher et al. 2014). The Buck Tongue, 106 

stratigraphically above the Castlegate Sandstone (Figs. 2, 3A), records an abrupt landward 107 

shift in deposition due to either tectonic subsidence or an increase in relative sea level (Willis 108 

and Gabel 2003). Above this, renewed progradation of the clastic wedge (Wedge B; Aschoff 109 

and Steel 2011a) resulted in accumulation of the upper Mesaverde Group: the Sego 110 

Sandstone, Neslen Formation, Bluecastle Tongue, Tusher Formation, and Farrer Formation 111 
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(McLaurin and Steel 2000; Willis and Gabel 2001, 2003). The regional sequence stratigraphic 112 

framework of the Upper Mesaverde Group from Tusher Canyon (Utah) down-dip (i.e. 113 

eastwards) to Book Cliffs Mine, Grand Junction (Colorado) has been established by previous 114 

workers (e.g. McLaurin and Steel 2000; Hettinger and Kirschbaum 2002; Kirschbaum and 115 

Hettinger 2004; Kirschbaum and Spear 2012; Shiers et al. 2014) (Fig. 2). 116 

Sequence stratigraphic interpretations of the Neslen Formation vary; figure 2 presents a 117 

generalized panel that is a compilation of these interpretations. The position of sequence 118 

boundaries within the Neslen Formation is contentious: Yoshida et al. (1996) argued for a 119 

sequence boundary in the lower part of the formation; McLaurin and Steel (2000) and 120 

Hettinger and Kirschbaum (2003) argued for a sequence boundary in the middle to upper part. 121 

Willis 2000 interprets the entire lower Neslen Formation as a lowstand systems tract (LST), 122 

with no sequence boundaries identified. Kirschbaum and Hettinger (2004) identify a thin 123 

shoreface sandstone in Colorado, the base of which they interpret as a Maximum Flooding 124 

Surface (MFS); coastal plain strata below this shoreface sandstone are assigned to a 125 

transgressive systems tract (TST). This shoreface sandstone is likely equivalent to the laterally 126 

extensive Thompson Canyon Sandstone Bed (TCSB) present in the vicinity of this study, which 127 

is also of marine shoreface origin (Kirschbaum and Spear 2012; Cole 2008; Shiers et al. 2014). 128 

The TCSB is recognized in Utah sections of the Neslen Formation between Horse Canyon and 129 

Buck Canyon, a distance of 45 km (Gualtieri 1991), and the base is interpreted as a MFS (Cole 130 

2008). Strata of the lower Neslen Formation below the MFS represented by the TCSB are 131 

therefore assigned to a TST, whereas overlying strata of the upper Neslen Formation are 132 

assigned to a highstand systems tract (HST) (Fig. 2). 133 

The Neslen Formation has been subdivided into three zones based on the occurrence of coal 134 

and laterally extensive tabular sandstone bodies (Shiers et al. 2014; Figs. 2, 3B). The lower two 135 

ʹ the Palisade and Ballard zones ʹ are the focus here. The lowermost Palisade Zone (Fig. 3B) 136 
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is dominated by coal, siltstone and mudstone of fluvial floodplain origin, with rare channelized 137 

sandstone, coarsening-upwards sandstones and inclined heterolithic strata (Shiers et al. 138 

2014). The overlying Ballard Zone is composed almost exclusively of coal and organic-rich 139 

mudstone and siltstone, and is bounded by two prominent tabular sandstone elements (Table 140 

1): the lower Basal Ballard Sandstone Bed (BBSB) and the upper TCSB. The TCSB has been 141 

variably interpreted as representing a beach or tidal flat (Kirschbaum and Hettinger 2004), 142 

tidal bars (Hettinger and Kirschbaum 2002); a marine sandstone bounded at its base by a 143 

transgressive surface of marine erosion (Cole 2008). The TCSB was identified in all sections of 144 

this study, implying lateral continuity over this distance (Figs. 2, 3B). The BBSB was first 145 

identified by Shiers et al. (2014) and can be identified in all but one section in this study. The 146 

Chesterfield Zone ʹ the uppermost of the three zones ʹ overlies the TCSB and represents the 147 

upper part of the Neslen Formation. The Chesterfield Zone is composed dominantly of fluvial 148 

channel sandstones that become increasingly amalgamated upwards (Shiers et al. 2014). The 149 

Neslen Formation is overlain unconformably by the Bluecastle Tongue or conformably by the 150 

Farrer Formation (Figs. 2, 3) (Cole 2008; Lawton and Bradford 2011). 151 

The lower Neslen Formation (below the base of the TCSB; Fig. 2) (Pitman et al. 1986; Franzcyk 152 

et al. 1990; Gualtieri 1991; Robinson Roberts and Kirschbaum 1995; Willis 2000; Hettinger and 153 

Kirschbaum 2002; Kirschbaum and Hettinger 2004; Cole 2008; Shiers et al. 2014; Olariu et al. 154 

2015; Colombera et al. 2016), represents a tide- and wave-influenced coastal plain and delta-155 

plain succession, which accumulated landward of a wave-dominated shoreline located in what 156 

is now western Colorado: the Îles Formation (Figs. 2, 3) (Kirschbaum and Hettinger 1998; Willis 157 

and Gabel 2003). The strata of the lower Neslen Formation pass basinward into time 158 

equivalent strata of the Îles Formation (Corcoran and Cozzette members) (Kirschbaum and 159 

Hettinger 2004) (Fig. 2). 160 
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METHODS 161 

Thirteen study areas have been analyzed over a 21 km-long dip section (Floy Canyon to Sagers 162 

Canyon; Fig. 4). Sedimentary logs collected through the lower Neslen Formation (i.e. the 163 

Palisade and Ballard zones; Fig. 3) have been projected onto an east-to-west transect aligned 164 

oblique or perpendicular to the shoreline of the Western Interior Seaway (Robinson Roberts 165 

and Kirschbaum 1995; Aschoff and Steel 2011b) (Figs. 4, 5). In total, forty-two vertical 166 

sedimentary profiles (total length = 840 m), 106 stratigraphic panels that record stratigraphic 167 

architectural relationships (total width = 5000 m) and 408 paleocurrent readings (measured 168 

from cross-bedded sets, ripple laminations, scour marks and lateral accretion surfaces) were 169 

collected from the base of the Neslen Formation to the top of the TCSB. 170 

Each log records lithofacies and ichnological information (Figs. 5, 6). In total, nine architectural 171 

elements (Fig. 7) have been interpreted in the lower Neslen Formation (cf. Shiers et al. 2014) 172 

from the vertical and lateral distribution of facies and their stratigraphic context as recorded 173 

on the stratigraphic panels; these are described in Table 1. Architectural elements comprise 174 

bodies of strata interpreted to represent the following sub-environment types: distributary 175 

channels (S1); fluvial point bars that are sandstone dominated (S2); fluvial (tidally influenced) 176 

point bars which are heterolithic (S3); bay-head deltas (S4); tabular reworked barrier 177 

sandstones (S5); bay-fill sandstones (including mouth bars) (S6); fluvial overbank (F1); fine 178 

grained, fining upwards siltstone and mudstone of lagoonal or fluvial floodplain origin (F2); 179 

and coal-prone mires (F3) (Fig. 7). 180 

Through identification of key stratal surfaces and coal zones within the stratigraphy, it is 181 

possible to correlate seven lithostratigraphic packages (Fig. 8), each of which represents time-182 

equivalent depositional sub-environments. Correlation was refined through careful analysis 183 

of the facies within each architectural element, as well as their relationship to surrounding 184 

elements (Fig. 5). The depiction of the seven lithostratigraphic packages on a correlation panel 185 
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(Fig. 8) has been used to analyze the vertical and lateral changes in the proportions of 186 

constituent architectural elements (Fig. 9A). The proportion of architectural elements within 187 

each lithostratigraphic package is calculated from the cumulative logged thickness of each 188 

architectural element within that interval compared to the total sum of the thickness of the 189 

interval at each study site. Trends can also be established through analysis of, paleocurrent 190 

patterns within each interval (Fig. 9B), and the occurrence of sedimentary tidal and 191 

ichnological brackish water indicators (Fig. 9C). Paleogeographic maps (Fig. 9D) have been 192 

developed for each depositional interval. These have been constructed through analysis of 193 

the facies and architectural-element facies associations. Plan-view dimensions of elements 194 

were garnered from the lateral extent of elements on stratigraphic panels, and informed by 195 

imagery of modern systems.  196 

RESULTS 197 

Lower Palisade Zone 198 

Description ʹ The Lower Palisade Zone (average thickness 4.7 m) is the package from 199 

the top of the Sego Sandstone to the first coal bed in the Lower Neslen Formation (Fig. 8). The 200 

lower Palisade Zone is dominated by fine grained floodplain elements (F2; 81 %), (Table 1; Fig. 201 

9-1A), which contain abundant amber and compacted fragments of vegetation (which now 202 

appear as flattened clasts of coal), with rare overbank sandstones (F1; Table 1; 7.5%). Laterally, 203 

the type of sandstone dominated elements within the Lower Palisade Zone varies (Fig. 8). At 204 

West Floy, small (up to 4 m thick and 150 m wide) heterolithic lateral accretion elements (Fig. 205 

7B) are present (S2; Table 1). Towards the east (East Salt Wash and Sagers Canyon), thin 206 

tabular sandstone elements (Fig. 7E) occur and are characterized internally by clinoforms that 207 

dip shallowly (<5°) towards the west (S5; Table 1), and thicken- and coarsen-upwards. 208 

Sedimentary structures (Fig. 9-1C) observed in heterolithic lateral accretion elements (S3) and 209 

tabular sandstone elements (S5) (Table 1) notably include wavy and lenticular bedding (Fig. 6 210 
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A), and single and double mud draped ripples (Fig. 6 A, B). Paleoflow is predominantly towards 211 

the east (Fig. 9-1B). 212 

Interpretation ʹ In the western part of the study area, the fine grained elements are 213 

interpreted as part of a non-marine environment due to the presence of coal and amber (Fig. 214 

7H) (cf. Guion et al. 1995). In the eastern part of the study area, however, the lack of these 215 

identifying features and indistinct bioturbation in some outcrops may indicate a lagoonal 216 

environment (Horne et al. 1978) (Fig. 5; Table 1). The inferred lateral change in environment 217 

from east to west is reinforced by the decrease in abundance of lateral accretion elements (S2 218 

and S3) and the increase in occurrence of wave-dominated sandstones. Reworked barrier 219 

sandstone bodies (S5) are interpreted as small back-stepping barrier complexes based on the 220 

architecture and the facies assemblages (Table 1), which were likely preserved via in place 221 

drowning as isolated ribbons (Fig. 8) (Sanders and Kumar 1975; Penland et al. 1988). 222 

Sandbodies in the lower Palisade Zone contain evidence of alternating current energy in the 223 

form of wavy and lenticular bedding, and single and double mud-draped ripples (Fig. 9-1C; 224 

Table 1). These sedimentary structures within sandstone-dominated elements, specifically the 225 

occurrence of double mud drapes, indicate current energies that fluctuated, possibly due to 226 

tidal forcing (Shanley et al. 1992; Lavigne 1999). The lower Palisade Zone is composed of 227 

deposits dominated by a fluvial process regime, although some marine-dominated elements 228 

do occur (e.g. S5) they are present only in minor proportions (2%) and are restricted to the 229 

most easterly outcrops. 230 

Palisade Coal Zone 231 

Description ʹ  The Palisade Coal Zone lies stratigraphically above the Lower Palisade Zone (Fig. 232 

8). It is characterized by coal-prone floodplain elements that comprise 26.5% of the package 233 

(Fig. 9-2A). Individual coal beds (Fig. 7I) vary in thickness, up to 1 m and are discontinuous at 234 

outcrop but can be traced laterally for 100s of meters at each study site. Fine grained elements 235 
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(F2; Fig. 7G) are abundant in this package (46.5 %; Fig. 9-2A). Sandstone-prone elements such 236 

as bay-fill sandstones (S6; 4%; Fig. 7F) and sandstone dominated lateral accretion (elements 237 

(S2; 5.5%) are present in minor amounts (Fig. 9-2A). The type of sandstone-prone elements 238 

changes in a down-dip direction (i.e. to the east; Fig. 8) from lateral accretion elements (S2) 239 

(Fig. 7B, C) (3 to 7 m thick), to large bay-fill sandstones up to 8m thick (S6; Fig. 7F) and reworked 240 

barrier sandstones (S5; Fig. 7E). In the eastern part of the study area (Fig. 8; between East 241 

Sego to Sagers Canyon), mono-ichnospecific assemblages of ichnogenera such as 242 

Rhizocorallium are observed within bay-fill elements (S6) and towards the top of heterolithic 243 

lateral accretion elements (S3). Additionally, in this vicinity, Teredolites bored wood (Fig. 6E) is 244 

abundant at the base of these elements (S3 and S6) These elements are characterized by 245 

lithofacies defined by the following types of sedimentary structures: uni- and bi-directional 246 

ripples draped with a combination of silt and carbonaceous material; lenticular, flaser, and 247 

wavy bedding (Fig. 5D); sets of uni-directional ripple strata that record sediment transport in 248 

opposing directions (Fig. 9-2C). Paleoflow directions are dominantly towards the east and 249 

northeast (Fig. 9-2B). 250 

Interpretation ʹ The abundance of coal indicates the dominance of mires (cf. Davies 251 

et al. 2006), likely in a flood basin that additionally comprised fine grained siltstone and 252 

mudstone with minor sandstones of crevasse-splay origin (Table 1; Fig. 9-2D). Mires within 253 

the Neslen Formation are interpreted as partly ombrotrophic in origin (coals with mineral 254 

contents below 10 %, building up above flooding levels; Spears 1987; Davies et al. 2005). This 255 

interpretation of ombrotrophic mires is equivocal without detailed analysis of the inorganic 256 

mineral volume. However, this interpretation is supported by an important consideration: 257 

raised mires self-exclude clastic detritus and allow the organic material to develop good 258 

quality coals (such as those in the Neslen Formation, with low clastic content; Tabet et al. 259 

2008) in close proximity to active clastic fluvial systems (Clymo 1987) (Table 1; Fig. 8). The 260 

same reasoning was used to support the interpretation of accumulation of coals in largely 261 
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ombrotrophic mires within the underlying Blackhawk Formation (Davies et al, 2006). The 262 

Blackhawk Formation formed in similar depositional settings under similar climatic regimes to 263 

those of the Neslen Formation (Davies et al. 2006). The interpretation of ombrotrophic mires 264 

is important as they serve to stabilize fluvial channel position and limit channel migration (the 265 

majority of paleoflow orientations are directed towards the north and east (Fig. 9-2B). The 266 

observed trace fossils, their lack of diversity and diminutive size of their occurrence within 267 

architectural elements towards the east of the studied section (Figs. 5, 8) is indicative of an 268 

environment that was subject to brackish-water influence (Bromley 1996; Gingras et al. 2012). 269 

Drapes on ripple foresets and opposing directions of currents recorded by current ripple cross-270 

laminated strata can be interpreted as having been modified by tides (Shanley et al. 1992). 271 

Symmetrical ripples are interpreted as wave ripples generated on the bottom of a standing 272 

body of water (De Raaf et al. 1977). In this case, the association of symmetrical ripples with 273 

brackish-water ichnogenera indicates an environment of deposition such as a lagoon. 274 

Middle Palisade Zone 275 

Description ʹ This package (Fig. 8) is dominated by a range of sandstone-prone 276 

elements (66 %; Fig. 9-3A), subordinate fine-grained elements commonly contain plant debris 277 

(as fragments of flattened coal) and rooted horizons in the west. Sandstone-prone (S2; Fig. 7B) 278 

and heterolithic (S3; Fig. 7C) lateral accretion elements occur predominantly in the west, 279 

whereas bay-fill sandstone elements up to 10 m thick (S6; Fig. 7F) and tabular barrier 280 

sandstone elements up to 6 m thick (S5; Fig. 7E) are more common in the east (Fig. 8). Tabular 281 

sandstone elements can be traced laterally for up to 500 m in dip-oriented sections (average 282 

300 m). A variety of trace fossils characterize the Middle Palisade Zone, notably Arenicolites, 283 

Teredolites (Fig. 6E), Ophiomorpha (Fig. 6F), Rhizocorallium, with an increase in bioturbation 284 

intensity and diversity towards the east, from 1 to 5 (Taylor and Goldring 1993). Trace fossils 285 

commonly occur as mono-ichnospecific assemblages towards the top of beds and are of a 286 



13 
 

limited size but a high density. Within all sandstone elements (S2 to S 6), silt-draped ripples are 287 

abundant (Fig. 6A, B), as are lenticular, wavy and flaser bedding (Figs. 6A, 9-3C), and rare 288 

symmetrical ripple lamination (Fig. 9-3C). Where more than one sandstone-dominated 289 

element is observed within the Middle Palisade Zone, the lowermost element is either a bay-290 

fill or barrier sandstone element (S5 or S6), and the upper is either a sandstone-prone or 291 

heterolithic lateral accretion element (S2 or S3) (e.g. West Crescent Mine and East Salt Wash). 292 

Paleocurrents in this package (Fig. 9-3B) show a wide range: the dominant direction is towards 293 

the SE, with subordinate trends to the north and south. 294 

Interpretation ʹ The dominant depositional environment interpreted from both the 295 

ichnological assemblage, density and size of traces is a brackish-water to marine setting 296 

(Bromley 1996; Gingras et al. 2012), although Teredolites can be rafted up-stream into fresh 297 

water settings (Shanley et al. 1992; Lavigne 1999). Sedimentary structures indicative of tidal 298 

influence (Shanley et al. 1992) occur within sandstones throughout this package and are 299 

present at the most up-dip localities (West Floy; Fig. 5). Fine grained elements (F2; Table 1) in 300 

this package are indicative of either floodplain or lagoonal environments, depending on the 301 

presence or absence of plant material with rooted horizons, or bioturbation indicative of the 302 

terrestrial nature of siltstone and mudstone beds (Horne et al. 1978; Guion et al. 1995) (Table 303 

1). The reworked barrier elements (S5) are interpreted as minor washover fans constructed 304 

from a distal barrier or spit and preserved via in-place drowning (Sanders and Kumar 1975; 305 

Penland et al. 1988) (Table 1; Fig. 9-3D). The wide variability of paleocurrents (Fig. 9-3B) is 306 

attributed to a combination of flow reversals within channelized elements (S2, S3) and the 307 

sinuous nature of the channels and modification at the shoreline, for example by longshore 308 

currents (Fig. 9-3D) (Shanley et al. 1992; Bhattacharya and Giosan 2003). The change in 309 

process influence between lower and upper elements within the Middle Palisade Zone, with 310 

underlying elements being more marine influenced and upper elements more fluvial 311 

influenced, is interpreted to record an initial marine incursion and the subsequent filling of 312 
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accommodation in response to progradation of fluvial systems as part of a transgressive 313 

interval (Fig. 9). 314 

The wide range of architectural elements (S2 to S6) within the Middle Palisade Zone is indicative 315 

of modification by a variety of combinations of fluvial, wave and tide processes (Table 1). 316 

There is a down-dip change in architectural elements whereby, towards the west, fluvial 317 

elements (S2-3) occur encased within floodplain fines (F2; Table 1), whereas to the east marine 318 

influenced elements are encased within fine grained lagoonal deposits (Figs. 5, 8). The spatial 319 

variability of multiple coeval sub-environments likely records the interplay of fluvial, wave and 320 

tidal processes. 321 

Upper Palisade Zone 322 

Description ʹ This package (Fig. 8) is dominated by fine-grained deposits (66%; F2), 323 

overbank sandstones (5%; F1; Fig. 7G), lateral accretion elements (24%; S2 and S3; Figs. 7B, C; 324 

9-4A), and bay-fill sandstones (1%; S6; Fig. 7E). Within this package, coal (4% overall) decreases 325 

in abundance to the east (Figs. 5, 8). The occurrence of sandstone dominated elements (S2 326 

and S3) decreases to the east (Fig. 8). Paleocurrents exhibit wide variability (Fig. 9-4B) but are 327 

overall directed towards the east. Sedimentary structures include lenticular bedding, mud and 328 

carbonaceous draped ripple forms (Fig. 6A) and Teredolites bored wood (Fig. 6E) within the 329 

basal-most parts of lateral accretion elements (S2; Fig. 9-4C). 330 

Interpretation ʹ The paleoenvironment was dominated by a floodplain containing 331 

small raised mires traversed by small sinuous channels (Fig. 9-4D). Draped ripples present 332 

within sandstone-prone lateral accretion elements (S2; Fig. 8) suggests fluctuating flow 333 

energies, which were likely caused by tidal or discharge variations (cf. Thomas et al. 1987). 334 

The decrease in the occurrence of lateral accretion deposits towards the east may be due to 335 

the line of outcrop failing to intersect major channel bodies (Fig. 9-4D). Alternatively, this may 336 
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reflect lateral changes through the FMTZ. The presence of Teredolites indicates close 337 

proximity to a brackish environment, likely within the zone of tidal push (Shanley et al. 1992; 338 

Lavigne 1999). 339 

Ballard Zone 340 

Description ʹ Occurring stratigraphically between the BBSB and TCSB (Fig. 8), this 341 

package has large proportions of coal (15%; F3; Fig. 9-6A), with seams up to 3 m thick, which 342 

previous authors have named the Ballard Coal Zone (Cole 2008; Shiers et al. 2014). Within this 343 

package, there occur a high proportion of organic-prone, fine grained elements (67%; F2; Fig. 344 

7H) cut by distributary channel elements (S1), which are 3-7 m thick (S1; Table 1) and small (5 345 

m thick) sandstone-prone lateral accretion elements (S2), which together make up 15% of the 346 

package (Fig. 8). Within the distributary channel-fills (S1) (Fig. 7A), carbonaceous and mud 347 

drapes on foresets and bottomsets of cross-beds, and rare mud drapes on ripple forms on the 348 

uppermost surface of the elements are observed (Fig. 9-6C). Paleocurrents within these 349 

bodies are aligned to the south and east (Fig. 9-6B), indicating that channel-fills are oriented 350 

in this direction, and are surrounded by dominantly coal-prone floodplain (F2, F3; Fig. 9-6D). 351 

Bioturbation (Skolithos and Arenicolites, Thalassinoides) are observed in abundance within 352 

mono-specific assemblages in the basal-most parts of elements, as are lags containing fossil 353 

wood debris with Teredolites (Fig. 6E).  354 

Interpretation ʹ Fine-grained deposits (F2) in this package are interpreted to be of 355 

terrestrial origin due to the high organic content, as well as the presence of rooted horizons 356 

(Fig. 8). Distributary channel-fill elements are interpreted based on the arrangement of 357 

internal lithofacies and the external geometry of the sand bodies (Colombera et al. 2016) 358 

(Table 1). Ichnogenera present within the base of these channelized elements indicate 359 

deposition within marine-to-brackish water (Tonkin 2012). However, the majority of the 360 

channel-fills show little evidence of modification by marine processes. This may be due to 361 
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overprinting of marine influence during river floods (Colombera et al. 2016). Sandstone-362 

dominated lateral accretion elements (S2) do not record indicators of marine influence, and 363 

are interpreted as meandering fluvial channels, possibly tie channels between larger 364 

distributary channels (Fig. 9-6D) within a delta-plain setting. Overall this package is interpreted 365 

as fluvially dominated with some minor modification by tides within the lower parts of 366 

distributary channel fills. 367 

Basal Ballard and Thompson Canyon Sandstone Beds 368 

Description – Bounding the Ballard Zone at the base is the Basal Ballard Sandstone 369 

Bed (BBSB) and at the top is the Thompson Canyon Sandstone Bed (TCSB); both form 370 

distinctive tabular marker sandstone bodies (Table 1; Fig. 6E). The TCSB is made up of a lower 371 

fine-grained package and an upper tabular sandstone body (Table 1; Fig. 5). Together, they 372 

are commonly bounded above and below by coals (Figs. 5, 8, 10B). Paleocurrents measured 373 

from ripple forms in the BBSB and TCSB are predominantly directed towards the southeast 374 

and east, respectively (Fig. 9-5B, 7B). The BBSB pinches out between the East Floy and West 375 

Floy study sites over a distance of 2.5 km (Fig. 8). This pinch-out is marked at West Floy by a 376 

thin siltstone between two coal beds; the siltstone contains a mono-species assemblage of 377 

Arenicolites of diminutive size. 378 

The lower portion of the TCSB has abundant Thalassinoides (Fig. 6D) directly below the base 379 

(Fig. 5). The lower part of the TCSB is fine-grained and heavily bioturbated, masking any 380 

original sedimentary structures (Table 1). Bioturbation within the reworked barrier sandstone 381 

elements (S5), including the upper portion of the TCSB, comprises Ophiomorpha (Fig. 6F), 382 

Planolites, Bergaueria, and Arenicolites, which increase in intensity and abundance towards 383 

the east. Sedimentary structures within sandy portions of the BBSB and TCSB include low 384 

angle laminations, symmetrical ripple lamination, and asymmetrical ripple lamination that 385 
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exhibits both single and double mud and silt drapes in the lowermost beds of the element (S5; 386 

Table 1). 387 

Interpretation ʹ The ichnology of the siltstone that marks the pinch-out of the BBSB 388 

around Floy Canyon is low diversity and traces are of a limited size, therefore most likely 389 

representing a marine or brackish environment (cf. Tonkin 2012). The increase in intensity and 390 

diversity of the bioturbation within the BBSB and TCSB (increasing towards the east from a BI 391 

of 1 to 5; Fig. 6F) indicates an environment that became increasingly marine influenced with 392 

more stable salinity to the east (cf. Bromley 1996; Tonkin 2012). The sedimentary structures 393 

in the TCSB and BBSB (Table 1) indicate the influence of wave processes, with drapes on the 394 

ripples indicative of tidal influence.  395 

The lower portion of the TCSB is interpreted as lagoonal or interdistributary bay fines, whilst 396 

the upper part and the BBSB are interpreted as part of a back-stepping barrier complex (Table 397 

1). Preservation of the unit indicates that transgressive submergence (cf. Penland et al. 1988), 398 

in-place drowning (cf. Sanders and Kumar 1975) or shoreface retreat (cf. Penland et al. 1988) 399 

of the barrier complex has occurred. The style and stratigraphic expression of barrier retreat, 400 

or rollover, is controlled by the interplay of substrate slope, sediment supply, rate of sea-level 401 

rise and back-barrier accommodation (Mellett et al. 2012). Where barriers are drowned in 402 

place then sands would be preserved as isolated ribbons at successive locations (Sanders and 403 

Kumar 1975), counter to the laterally extensive sandbodies of the BBSB and TCSB. Barrier 404 

rollover retreat leads to the formation of a sand blanket that infills the back barrier and 405 

overlying lagoonal sediments. Barrier retreat is most commonly associated with an erosional 406 

unconformity or ravinement surface (Cattaneo and Steel 2003), such surfaces are not 407 

observed within the Lower Neslen Formation. Transgressive submergence is therefore the 408 

most likely mode of preservation of shelf sand bodies (barrier complexes and sheet sands) 409 

without the preservation of the shoreline sands these bodies were derived from (Penland et 410 
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al. 1988). Such sand bodies preserved via transgressive submergence likely accumulated 411 

down-drift of transgressed delta complexes.  412 

DISCUSSION 413 

Stratigraphic variations 414 

Vertical and lateral trends within and between the depositional packages are important in 415 

understanding the temporal and spatial variations in the sedimentary succession. Within the 416 

majority of depositional packages, there is a down-dip variability in architectural elements 417 

from dominantly fluvial with higher proportions of coal dominated elements, to architectural 418 

elements which exhibit marine influence encased within coal-poor, fine-grained mudstone 419 

and siltstone (Figs. 5, 8). The Middle Palisade Zone (MPZ) records a change from dominantly 420 

fluvial elements encased within floodplain fines in the west, to marine-influenced elements 421 

encapsulated by fine-grained elements of lagoon origin in the east (Fig. 9-3D). Packages were 422 

increasingly influenced by marine processes towards the east as part of the FMTZ (Fig. 1C). 423 

The preserved stratigraphic signature of the FMTZ is not simple. Architectural elements 424 

deposited within a depositional package were not necessarily coeval. Examination of the 425 

relative change in elements, sedimentary structures and ichnology (Fig. 5) recorded at study 426 

locations in close proximity to each other are required to recognize these changes. 427 

Stratigraphically, the paleoenvironment changes from a fluvial dominated delta plain, which 428 

is influenced to some extent by tidal processes, to a wave dominated shoreline system (Fig. 429 

9D). 430 

The sandstone dominated MPZ contains abundant marine indicators (Figs. 5, 9-3C) within a 431 

thin interval (8 m average thickness) and lies stratigraphically between the Palisade Coal Zone 432 

and Upper Palisade Zone, which themselves contain relatively fewer marine indicators within 433 

sandstone elements (Fig. 9C). Architectural elements within the MPZ record significant spatial 434 
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variability (Fig. 9-3D) within an overall shallowing upwards trend, which continues into the 435 

Upper Palisade Zone (Fig. 8). The MPZ records deposition within a lower delta-plain setting 436 

that was substantially modified by marine processes, given the presence of structures 437 

indicative of tidal influence as well as brackish water ichnology. This markedly marine-438 

influenced package occurs at a point in the stratigraphy that is not accounted for by previous 439 

sequence stratigraphic interpretations (Fig. 2). The BBSB and TCSB are interpreted as variably 440 

wave-dominated, back-stepping barrier complexes (Sanders and Kumar 1975; Penland et al. 441 

1988). The greater thickness and extent of the TCSB, together with the more intense 442 

bioturbation, and the occurrence of trace fossils such as Ophiomorpha (Fig. 6F), are indicative 443 

of greater open-marine conditions than the BBSB. This shows that, overall, the MPZ, BBSB and 444 

TCSB become increasingly modified by marine processes upwards (Fig. 10). 445 

Marine-influenced packages 446 

Prediction of the way in which marine-influenced packages correlate with down-dip flooding 447 

surfaces and shoreface deposits, and prediction of shorefaces and controls on their 448 

occurrence within the stratigraphy, is important for gaining an improved understanding of the 449 

way in which coastal plains respond to sea-level change. The controls on the occurrence and 450 

position of the MPZ, BBSB and TCSB can be attributed to autogenic or allogenic processes, as 451 

considered below. 452 

Allogenic processes ʹ Correlations of the lower Neslen Formation indicate that the 453 

TCSB is contiguous to the tongue of mudstone between the Corcoran and Cozzette members 454 

of the Îles Formation (Kirschbaum and Spear 2012; MFS 3: Fig. 2). The base of the TCSB is 455 

interpreted as the MFS. This is supported by the sharp contact of the lower TCSB which has 456 

abundant Thalassinoides directly below its base (Fig. 6D), a thickening and coarsening upward 457 

trend within the TCSB, and an underlying, well-developed coal seam (Fig. 10B). The base of 458 

the TCSB represents an abrupt and significant deepening in depositional environment from 459 
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peat mire to lagoonal fines and wave-modified sandstone (Fig. 10). The base of the BBSB, 460 

which has a lateral extent of at least 18 km, displays a facies dislocation at its base from coal 461 

to wave-modified sandstone (S5). Additionally, it possesses a similar internal lithofacies 462 

composition and architecture to the TCSB, and therefore likely represents a minor flooding 463 

surface (FS; Fig. 10). 464 

The MPZ contains a wide range of architectural elements, which contain abundant evidence 465 

for marine influence. As a marine-influenced package additional to, and lower in the 466 

stratigraphy than, the BBSB and TCSB, it is likely that this package correlates down dip to minor 467 

tongues of the Mancos Shale within the Corcoran Member (Fig. 2); this correlation has not 468 

been previously proposed. The marine incursion responsible for deposition of the MPZ is 469 

therefore interpreted as the most landward expression of transgression that was on-going 470 

further seaward (cf. Rudolph et al. 2015), similar to that described in the Castlegate Formation 471 

(McLaurin and Steel 2000). 472 

The successive increase in marine processes preserved upwards from the MPZ to the BBSB 473 

and ultimately to the TCSB indicates that the lower Neslen Formation records an overall 474 

episode of transgression punctuated by variations in the rate of sea-level change or in 475 

sediment supply, which modify the rate of transgression (Fig. 10A). No relative sea-level fall is 476 

interpreted between flooding surfaces, rather a decrease in rate of relative sea-level rise 477 

relative to the rate of sediment supply results in the deposition of regressive, progradational 478 

intervals (Figs. 9, 10A). The low gradient of the coastal delta plain (Colombera et al. 2016) 479 

means that even minor relative sea-level rise would flood broad portions of the coastal plain. 480 

The refined stratigraphic framework (Fig. 10A) exhibits a series of retrogradationally stacked 481 

wave-dominated sandstones within a net transgressive tract (Fig. 10C). 482 



21 
 

Autogenic processes ʹ Autogenic processes such as coal compaction and delta auto-483 

retreat are important considerations when analyzing the cause of overall transgression within 484 

a paralic succession. 485 

Marine-influenced packages (MPZ, BBSB and TCSB) may have been produced by purely 486 

autogenic processes intrinsic to the evolution of the system. These packages may be referred 487 

to as ͚ĂƵƚŽ-ďƌĞĂŬƐ͛ ǁŝƚŚŝŶ ĂŶ overall progradational sequence (Fig. 2) which was subject to 488 

autoretreat (the landward retreat of a shoreline which occurs inevitably, under conditions of 489 

constant rate of relative sea-level rise and without change in basin conditions: Muto and Steel 490 

1992; 1997). 491 

The MPZ and TCSB are underlain by coal zones, and the BBSB is underlain by coal in four up-492 

dip and central localities (Fig. 8). The distribution of coal through the Neslen Formation can 493 

be used to explain the location of marine-influenced packages, as well as their thickness and 494 

internal character. It is common for significant coal deposits to accumulate above and 495 

landward of shoreface sandstone bodies (Ryer 1981; Cross 1988; Jerrett et al. 2011a, b). This 496 

suggests that the up-dip limit of shorefaces (i.e. the extent of transgression) is defined by the 497 

seaward-most position of raised coal mires. This is because raised mires withstand erosion 498 

and hence are able to buffer transgression (McCabe 1985; Kamola and Van Wagoner 1995; 499 

Jerrett et al. 2011b). Mires and swamps in coastal-plain and delta-plain settings can rapidly 500 

compact to a level that is equal to or lower than sea level (e.g. Mississippi region ʹ St Bernard 501 

and Lafourche deltas; Blum and Roberts 2009; California ʹ Sacramento-San Joaquin Delta; 502 

Miller et al. 2008; GangesʹBrahmaputra Delta; Schmidt 2015). Auto-compaction of coal occurs 503 

rapidly following deposition (Fielding 1984; 1985; Nadon 1998; Ryer and Langer 1980; Courel 504 

1987), which encourages marine inundation over broad areas of the coastal plain adjacent to 505 

sites of clastic accumulation that compact less (Kosters and Bailey 1983; van Asselen et al. 506 

2009; Jerrett et al. 2011a, b). Such a process means that transgression in response to low-507 
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amplitude sea-level rise can occur passively (i.e. with low energy) over a low-relief and low-508 

gradient coastal plain. This differential compaction can also explain the juxtaposition of 509 

architectural elements observed within the Neslen Formation (e.g. MPZ; Fig. 9-3D) and the 510 

occurrence of marine-influenced or marine-dominated intervals (MPZ, BBSB and TCSB; Figs. 511 

8, 10). Differential compaction, and the subsequent filling of the newly generated 512 

accommodation might also play a role in sediment partitioning by reducing the delivery of 513 

sediment to the shoreline, and hence decreasing the rate of delta or shoreface progradation 514 

and favoring barrier preservation in a similar way to the behavior of local accommodation 515 

created by growth faults proximal to the shelf edge (cf. Olariu and Olariu 2015). 516 

Relative sea-level rise may be driven by autogenic coal compaction, rather than eustatic sea-517 

level change. This is notably evident in the MPZ, where more than one architectural element 518 

is observed, the lower is more influenced by marine processes (Figs. 8, 10). The thickness of 519 

coal seams is greatest where there is no underlying sandstone (e.g. Palisade Coal Zone at East 520 

Floy) and thinnest where sandstone-dominated elements occur (e.g. Ballard Coal Zone at 521 

Right Hand Crescent). This is due to differential rates and amounts of compaction of 522 

sandstone-prone elements compared to fine-grained and coal-prone elements (F2 and F3). A 523 

sandstone element (S1 to S6) will undergo less post-depositional compaction than an adjacent 524 

fine-grained elements (F2 and F3). As such, the accommodation generated after deposition will 525 

be greatest above a fine grained, or coal prone element. Where coal fills this accommodation, 526 

the deposits will be thinner where they overlie a sandstone-prone element (Fig. 8). Differential 527 

compaction explains why the MPZ, BBSB and TCSB are thickest where they overly thick coal 528 

accumulations in place where they show an increase in abundance of marine indicators (Figs. 529 

8, 10B). 530 
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CONCLUSIONS 531 

Use of a high-resolution dataset has allowed the correlation of paralic strata within the coal-532 

bearing lower Neslen Formation. This method has enabled recognition of discrete stratal 533 

packages within an ancient low-gradient, low-relief coastal plain and shoreline succession, 534 

which records sedimentological and stratigraphical evidence for modification by interplay of 535 

fluvial, wave and tidal processes. 536 

Correlation of marine-influenced packages helps to refine the established sequence 537 

stratigraphic framework, which overall indicates that the lower Neslen Formation 538 

accumulated as part of a long-term TST. The deposition and preservation of three marine 539 

influenced packages (MPZ, BBSB and TCSB) arose in response to three laterally extensive, but 540 

small scale cycles of sea-level change, which increased in amplitude over time (i.e. upwards in 541 

the succession). The base of the TCSB marks a regional maximum flooding surface, which likely 542 

correlates down-dip to a tongue of Mancos Shale between the Corcoran and Cozzette 543 

members of the Îles Formation of open marine origin. The BBSB and MPZ record minor floods 544 

across the coastal plain as part of an overall episode of punctuated relative sea-level rise. 545 

The impact of peat-developing environments in low-gradient coastal plains is significant. Peat 546 

mires initially act as buffers to sea-level rise. Following deposition, auto-compaction of peat 547 

during its transformation to coal reaches a threshold level beyond which widespread marine 548 

incursion may occur rapidly over the coastal plain. Lateral variability in the distribution of peat 549 

mires across a low-gradient coastal plain result in shifting patterns of accommodation 550 

generation. This may result in the juxtaposition of a broad range of depositional 551 

environments, leading to the preservation of complicated facies patterns and architectural 552 

relationships. 553 

Overall, this study shows that the interplay of autogenic and allogenic controls on the 554 

sedimentary evolution of the succession is complicated. The role of autogenic processes, such 555 
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as coal compaction, is often overlooked but the rate and extent of marine transgression 556 

associated with moderate relative sea-level rise in low-gradient, low relief coastal settings 557 

may be driven by auto-compaction of peat mires in the coastal plain. 558 

ACKNOWLEDGEMENTS 559 

This research was funded by Areva, BHPBilliton, ConocoPhillips, Det norske oljeselskap ASA, 560 

Murphy Oil, Nexen, Saudi Aramco, Shell, Tullow Oil, Woodside and YPF through their 561 

sponsorship of the Fluvial & Eolian Research Group at the University of Leeds. Tom Wiggins, 562 

Sarah Cobain, Luke Beirne and Camille Dwyer are thanked for their help and assistance in the 563 

field. Rhodri Jerrett is thanked for helpful discussions. Reviews by Christopher Fielding, Cornel 564 

Olariu and an anonymous reviewer together with associate editor Tobi Payenberg have 565 

greatly improved the manuscript.  566 

REFERENCES 567 

AINSWORTH, R.B., 2010, Prediction of stratigraphic compartmentalization in marginal marine reservoirs: 568 
Geological Society, London, Special Publications, v. 347, p. 199-218. 569 

AINSWORTH, R.B., FLINT, S.S., and HOWELL, J.A., 2008, Predicting coastal depositional style: influence of 570 
basin morphology and accommodation to sediment supply ratio within a sequence 571 
stratigraphic framework: Recent Advances in Models of Siliciclastic Shallow-Marine 572 
Stratigraphy: SEPM, Special Publication, v. 90, p. 237-263. 573 

AINSWORTH, R.B., VAKARELOV, B.K., and NANSON, R.A., 2011, Dynamic spatial and temporal prediction of 574 
changes in depositional processes on clastic shorelines: Toward improved subsurface 575 
uncertainty reduction and management: AAPG Bulletin, v. 95, p. 267-297. 576 

ALLEN, J.R., 1965, A review of the origin and characteristics of recent alluvial sediments: Sedimentology, 577 
v. 5, p. 89-191. 578 

ASCHOFF, J., and STEEL, R., 2011a, Anomalous clastic wedge development during the Sevier-Laramide 579 
transition, North American Cordilleran foreland basin, USA: Geological Society of America 580 
Bulletin, v. 123, p. 1822-1835. 581 

ASCHOFF, J., and STEEL, R., 2011b, Anatomy and development of a low-accommodation clastic wedge, 582 
upper Cretaceous, Cordilleran Foreland Basin, USA: Sedimentary Geology, v. 236, p. 1-24. 583 

BHATTACHARYA, J.P., and GIOSAN, L͕͘ ϮϬϬϯ͕ WĂǀĞͲŝŶĨůƵĞŶĐĞĚ ĚĞůƚĂƐ͗ GĞŽŵŽƌƉŚŽůŽŐŝĐĂů ŝŵƉůŝĐĂƚŝŽŶƐ ĨŽƌ 584 
facies reconstruction: Sedimentology, v. 50, p. 187-210. 585 

BLUM, M.D., and ROBERTS, H.H., 2009, Drowning of the Mississippi Delta due to insufficient sediment 586 
supply and global sea-level rise: Nature Geoscience, v. 2, p. 488-491. 587 

BLUM, M.D., and ROBERTS, H.H., 2012, The Mississippi Delta Region: Past, Present, and Future: Annual 588 
Review of Earth and Planetary Sciences, v. 40, p. 655-683. 589 

BOHACS, K., and SUTER, J., 1997, Sequence stratigraphic distribution of coaly rocks: fundamental 590 
controls and paralic examples: AAPG Bulletin, v. 81, p. 1612-1639. 591 



25 
 

BOYD, R., DALRYMPLE, R., and ZAITLIN, B.A., 1992, Classification of clastic coastal depositional 592 
environments: Sedimentary Geology, v. 80, p. 139-150. 593 

BRIDGE, J., 2006, Fluvial facies models: recent developments, in Posamentier, H. W., Walker, R., G. eds. 594 
Facies models revisited: SEPM Special publications, v. 84, p. 85-117. 595 

BROMLEY, R., 1996, Trace Fossils: Biology, Taphonomy and Applications Chapman Hall, London, 361 p. 596 
CATTANEO, A., and STEEL, R.J., 2003, Transgressive deposits: a review of their variability: Earth-Science 597 

Reviews,v. 62,p. 187-228. 598 
CLYMO, R., 1987, Rainwater-fed peat as a precursor of coal, in Scott, A.C., ed., Coal and Coal Bearing 599 

Strata: Recent Advances, Geological Society, London, Special Publications, p. 17-23. 600 
COLE, R., 2008, Characterization of fluvial sand bodies in the Neslen and lower Farrer formations 601 

(Upper Cretaceous), Lower Sego Canyon, Utah, in Longman, M.W., and Morgan, C.D., eds., 602 
Hydrocarbons Systems and Production in the Uinta Basin, Utah, RMAG-UGA Publication 37, p. 603 
81-100. 604 

COLE, R., and CUMELLA, S., 2003, Stratigraphic architecture and reservoir characteristics of the 605 
Mesaverde Group, southern Piceance Basin, Colorado: Piceance Basin Guidebook, chapter. 606 
18, p. 385-442. 607 

COLEMAN, J.M., 1988, Dynamic changes and processes in the Mississippi River delta: Geological Society 608 
of America Bulletin, v. 100, p. 999-1015. 609 

COLEMAN, J.M., and WRIGHT, L., 1975, Modern river deltas: variability of processes and sand bodies. 610 
Deltas: Models for Exploration, p. 99-149. 611 

COLOMBERA, L., SHIERS, M.N., and MOUNTNEY, N., 2016, Assessment of backwater controls on the 612 
architecture of distributary channel fills in a tide-influenced coastal-plain succession: 613 
Campanian Neslen Formation, USA: Journal of Sedimentary Research, v. 86, p. 1-22. 614 

COUREL, L., 1987, Stages in the compaction of peat; examples from the Stephanian and Permian of the 615 
Massif Central, France: Journal of the Geological Society, v. 144, p. 489-493. 616 

CROSS, T., A., 1988, Controls on coal distribution in transgressive-regressive cycles, Upper Cretaceous, 617 
Western Interior, USA, in Wilgus, C. K., Hastings, B. S., Posamentier, H., Van Wagoner, J., Ross, 618 
C. A., Kendall, C. G., eds., Sea-level changes: an integrated approach: SEPM Special Publication, 619 
v. 42, p. 371-380. 620 

DALRYMPLE, R.W., and CHOI, K., 2007, Morphologic and facies trends through the fluvial-marine 621 
transition in tide-dominated depositional systems: A schematic framework for environmental 622 
and sequence-stratigraphic interpretation: Earth-Science Reviews, v. 81, p. 135-174. 623 

DAVIES, R., DIESSEL, C., HOWELL, J., FLINT, S., and BOYD, R., 2005, Vertical and lateral variation in the 624 
petrography of the Upper Cretaceous Sunnyside coal of eastern Utah, USAͶimplications for 625 
the recognition of high-resolution accommodation changes in paralic coal seams: 626 
International Journal of Coal Geology, v. 61, p. 13-33. 627 

DAVIES, R., HOWELL, J., BOYD, R., FLINT, S., and DIESSEL, C., 2006, High-resolution sequence-stratigraphic 628 
correlation between shallow-marine and terrestrial strata: Examples from the Sunnyside 629 
Member of the Cretaceous Blackhawk Formation, Book Cliffs, eastern Utah: AAPG Bulletin, v. 630 
90, p. 1121-1140. 631 

DEVINE, P.E., 1991, Transgressive origin of channeled estuarine deposits in the Point Lookout 632 
Sandstone, northwestern New Mexico: A model for Upper Cretaceous, cyclic regressive 633 
parasequences of the U.S. Western Interior: AAPG Bulletin, v. 75, p. 1039-1063. 634 

DE RAAF, J.F.M., BOERSMA, J.R., and VAN GELDER, A., 1977, Wave-generated structures and sequences 635 
from a shallow marine succession, Lower Carboniferous, County Cork, Ireland: Sedimentology, 636 
v. 24, p. 451-483. 637 

EBLE, C. F., HOWER, J. C. and ANDREWS, W. M., 1994, Paleoecology of the Fire Clay coal bed in a portion 638 
of the Eastern Kentucky Coal Field: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 639 
106, p. 287-305. 640 



26 
 

FEDO, C.M., and COOPER, J.D., 1990, Braided fluvial to marine transition; the basal Lower Cambrian 641 
Wood Canyon Formation, southern Marble Mountains, Mojave Desert, California: Journal of 642 
Sedimentary Research, v. 60, p. 220-234. 643 

FIELDING, C.R., 1984, A coal depositional model for the Durham Coal Measures of NE England: Journal 644 
of the Geological Society, v. 141, p. 919-931. 645 

FIELDING, C.R., 1985, Coal depositional models and the distinction between alluvial and delta plain 646 
environments: Sedimentary Geology, v. 42, p. 41-48. 647 

FIELDING, C.R., 1987, Coal depositional models for deltaic and alluvial plain sequences: Geology, v. 15, 648 
p. 661-664. 649 

FISHER, D.J., ERDMANN, C.E., and REESIDE, J.B.J., 1960, Cretaceous and Tertiary formations of the Book 650 
Cliffs, Carbon, Emery, and Grand Counties, Utah, and Garfield and Mesa Counties, Colorado.: 651 
Geological survey professional paper v. 332, 79p. 652 

FRANCZYK, K., PITMAN, J., and NICHOLS, D.J., 1990, Sedimentology, Mineralogy, Palynology, and 653 
Depositional History of some Uppermost Cretaceous and Lowermost Tertiary Rocks along the 654 
Utah Book and Roan Cliffs East of the Green River: U. S. Geological Survey Bulletin, v. 1787, p. 655 
1-37. 656 

FRAZIER, D.E., and OSANIK, A., 1969, Recent Peat Deposits-Louisiana Coastal Plain: Geological Society of 657 
America Special Papers, v. 114, p. 63-86. 658 

GALLOWAY, W.E., 1975, Process framework for describing the morphologic and stratigraphic evolution 659 
of deltaic depositional systems, in Broussard, M.L., ed., Deltas ʹ Models for exploration: 660 
Houston Geological Society, p. 87-98. 661 

GINGRAS, M.K., MACEACHERN, J.A., DASHTGARD, S.E., ZONNEVELD, J-P., SCHOENGUT, J., RANGER, M.J., and 662 
PEMBERTON, S.G., 2012, Estuaries, in Knaust, D and Bromley, R.G., eds., Trace fossils as 663 
indicators of sedimentary environments: Developments in Sedimentology 64, Elsevier, p. 463-664 
506. 665 

GUALTIERI, J.L., 1991, Map and cross sections of coal zones in the Upper Cretaceous Neslen Formation, 666 
North-Central part of the Westwater 30' * 60' quadrangle, Grand and Uintah counties, Utah: 667 
U.S. Geological Survey Coal Investigations Series, map C-133, 1 sheet. 668 

GUION, P. D., FULTON, I. M., and JONES, N. S., 1995, Sedimentary facies of the coal-bearing Westphalian 669 
A and B north of the Wales-Brabant High: Geological Society, London, Special Publications,v. 670 
82,p. 45-78. 671 

HETTINGER, R.D., and KIRSCHBAUM, M.A., 2002, Stratigraphy of the Upper Cretaceous Mancos Shale 672 
(upper part) and Mesaverde Group in the southern part of the Uinta and Piceance basins, Utah 673 
and Colorado: Petroleum Systems and Geological Assessment of Oil and Gas in the Uinta-674 
Piceance Province, Utah and Colorado: United States Geological Survey Digital Data Series 675 
DDS-69-B, chapter 12, p. 1-16. 676 

HOLZ, M., KALKREUTH, W., and BANERJEE, I., 2002, Sequence stratigraphy of paralic coal-bearing strata: 677 
an overview: International Journal of Coal Geology, v. 48, p. 147-179. 678 

HORNE, J., FERM, J., CARUCCIO, F., and BAGANZ, B., 1978, Depositional models in coal exploration and mine 679 
planning in Appalachian region: AAPG Bulletin, v. 62, p. 2379-2411. 680 

JERRETT, R.M., FLINT, S.S., DAVIES, R.C. and HODGSON, D.M., 2011a, Sequence stratigraphic interpretation 681 
of a Pennsylvanian (Upper Carboniferous) coal from the central Appalachian Basin, USA: 682 
Sedimentology, v. 58, p. 1180-1207. 683 

JERRETT, R.M., HODGSON, D.M., FLINT, S.S., and DAVIES, R. 2011b. Control of Relative Sea Level and Climate 684 
on Coal Character in the Westphalian C (Atokan) Four Corners Formation, Central Appalachian 685 
Basin, USA: Journal of Sedimentary Research, v. 81, p. 420-445. 686 

JOECKEL, R., and KORUS, J., 2012, Bayhead delta interpretation of an Upper Pennsylvanian sheetlike 687 
sandbody and the broader understanding of transgressive deposits in cyclothems: 688 
Sedimentary Geology, v. 275, p. 22-37. 689 



27 
 

KAMOLA, D.L., and VAN WAGONER, J.C., 1995, Stratigraphy and facies architecture of parasequences with 690 
examples from the Spring Canyon Member, Blackhawk Formation, Utah, in Van Wagoner, J.C., 691 
and Bertram, G.T., eds., Sequence Stratigraphy of Foreland Basin Deposits AAPG, p. 27-54. 692 

KAUFFMAN, E.G., 1977, Geological and Biological Overview: Western Interior Cretaceous Basin: The 693 
Mountain Geologist, v. 14, p. 75-99. 694 

KEIGHIN, C.W., and FOUCH, T.D., 1981, Depositional Environments and Diagenesis of some Nonmarine 695 
Upper Cretaceous Reservoir Rocks Uinta Basin Utah: SEPM Special Publication, v. 31, p. 109-696 
125. 697 

KIEFT, R.L., HAMPSON, G.J., JACKSON, C.A.-L., and LARSEN, E., 2011, Stratigraphic Architecture of a Net-698 
Transgressive Marginal-to Shallow-Marine Succession: Upper Almond Formation, Rock 699 
Springs Uplift, Wyoming, USA: Journal of Sedimentary Research, v. 81, p. 513-533. 700 

KIRSCHBAUM, M., and HETTINGER, R., 1998, Stratigraphy and depositional environments of the late 701 
Campanian coal-bearing Neslen/Mount Garfield formations, Eastern Book Cliffs, Utah and 702 
Colorado:US Geological Survey report number 98-43. 703 

KIRSCHBAUM, M.A., and HETTINGER, R.D., 2004, Facies Analysis and Sequence Stratigraphic Framework 704 
of Upper Campanian Strata (Neslen and Mount Garfield Formations, Bluecastle Tongue of the 705 
Castlegate Sandstone, and Mancos Shale), Eastern Book Cliffs, Colorado and Utah: U.S. 706 
Geological Survey Digital Data Series, U.S. Geological Survey, 1 sheet. 707 

KIRSHBAUM, M.A., and SPEAR, B.D., 2012, Stratigraphic cross section of measured sections and drill holes 708 
of the Neslen Formation and adjacent formations, Book Cliffs Area, Colorado and Utah: US 709 
Geological Survey open field report 2012-1260. 710 

KOSTERS, E.C., and BAILEY, A., 1983, Characteristics of peat deposits in the Mississippi River delta plain: 711 
Gulf Coast Association of Geological Societies Transactions, v. 33, p.311-325. 712 

LAVIGNE, J.M., 1999, Aspects of marginal marine sedimentology, stratigraphy and ichnology of the 713 
Upper Cretaceous Horseshoe Canyon Formation, Drumheller, Alberta [MSc. Thesis]:, 714 
University of Alberta, Edmonton, 146 p. 715 

LAWTON, T.F., and BRADFORD, B.A., 2011, Correlation and Provenance of Upper Cretaceous (Campanian) 716 
Fluvial Strata, Utah, U.S.A., from Zircon U-Pb Geochronology and Petrography: Journal of 717 
Sedimentary Research, v. 81, p. 495-512. 718 

LEVA LOPEZ, J., ROSSI, V., OLARIU, C., and STEEL, R., 2016, Architecture and recognition criteria of ancient 719 
shelf ridges; an example from Campanian Almond Formation in Hanna Basin, USA: 720 
Sedimentology, v. XX, p. XX-XX  721 

LONGHITANO, S.G., MELLERE, D., STEEL, R.J., and AINSWORTH, R.B., 2012, Tidal depositional systems in the 722 
rock record: A review and new insights: Sedimentary Geology, v. 279, p. 2-22. 723 

MARTINIUS, A.W., and GOWLAND, S., 2011, Tide-influenced fluvial bedforms and tidal bore deposits (Late 724 
Jurassic Lourinha Formation, Lusitanian Basin, Western Portugal): Sedimentology, v. 58, p. 725 
285-324. 726 

MCCABE, P.J., 1985, Depositional Environments of Coal and Coal-Bearing Strata in Rahmani, R.A., and 727 
Flores, R. M., eds. Sedimentology of Coal and Coal-Bearing Sequences: Blackwell Publishing 728 
Ltd: IAS Special Publication v. 7, p. 13-42. 729 

MCLAURIN, B.T., and STEEL, R.J., 2000, Fourth-order nonmarine to marine sequences, middle Castlegate 730 
Formation, Book Cliffs, Utah: Geology, v. 28, p. 359-362. 731 

MELLETT C.L., HODGSON, D.M., LANG, A., MAUZ, B., SELBY, I., and PLATER, A.J., 2012, Preservation of a 732 
drowned gravel barrier complex: A landscape evolution study from the north-eastern English 733 
Channel: Marine Geology, v. 315ʹ318, p. 115-131. 734 

MIALL, A.D., 1993, The architecture of fluvial-deltaic sequences in the Upper Mesaverde Group (Upper 735 
Cretaceous), Book Cliffs, Utah: Geological Society, London, Special Publications, v. 75, p. 305-736 
332. 737 

MIALL, A.D., 1996, The geology of fluvial deposits, Springer, Berlin, 582 p. 738 



28 
 

MIALL, A.D., and ARUSH, M., 2001, The Castlegate Sandstone of the Book Cliffs, Utah: Sequence 739 
Stratigraphy, Paleogeography, and Tectonic Controls: Journal of Sedimentary Research, v. 71, 740 
p. 537-548. 741 

MIALL, A.D., CATUNEANU, O., VAKARELOV, B.K., and POST, R., 2008, The Western Interior Basin, in Andrew, 742 
D.M., ed., Sedimentary Basins of the World, Chapter 9, Elsevier, p. 329-362. 743 

MILLER, R., FRAM, M., FUJII, R. and WHEELER, G., 2008, Subsidence Reversal in a Re-established Wetland 744 
in the Sacramento-San Joaquin Delta, California, USA. San Francisco: Estuary and Watershed 745 
Science, v. 6, p. 1-20. 746 

MJOS, R., WALDERHAUG, O. and PRESTHOLM, E. 2009, Crevasse splay sandstone geometries in the Middle 747 
Jurassic Ravenscar Group of Yorkshire, UK. Alluvial Sedimentation, International Association 748 
of Sedimentologists, Special Publications, v. 17, p. 167-184. 749 

MUTO, T., and STEEL, R.J., 2001, Autostepping during the transgressive growth of deltas: Results from 750 
flume experiments: Geology, v. 29, p. 771-774. 751 

MUTO, T., and STEEL, R.J., 2002, Role of autoretreat and A/S changes in the understanding of deltaic 752 
ƐŚŽƌĞůŝŶĞ ƚƌĂũĞĐƚŽƌǇ͗ Ă ƐĞŵŝͲƋƵĂŶƚŝƚĂƚŝǀĞ ĂƉƉƌŽĂĐŚ͗ Basin Research, v. 14, p. 303-318. 753 

MUTO, T., STEEL, R.J., and SWENSON, J.B., 2007, Autostratigraphy: a framework norm for genetic 754 
stratigraphy: Journal of Sedimentary Research, v. 77, p. 2-12. 755 

NADON, G.C., 1998, Magnitude and timing of peat-to-coal compaction: Geology, v. 26, p. 727-730. 756 
NYBERG, B., and HOWELL, J. A., 2016, Global distribution of modern shallow marine shorelines. 757 

Implications for exploration and reservoir analogue studies: Marine and Petroleum Geology, 758 
v. 71, p. 83-104. 759 

O'BYRNE, C.J., and FLINT, S., 1995, Sequence, parasequence, and intraparasequence architecture of the 760 
Grassy Member, Blackhawk Formation, Book Cliffs, Utah, USA, in Van Wagoner J.C., and 761 
Bertram G.T., eds., Sequence Stratigraphy of Foreland Basin Deposits, v. 64, p. 225-255. 762 

OLARIU, C., STEEL, R.J., OLARIU, M.I., and CHOI, K.S., 2015, Facies and architecture of unusual fluvial-tidal 763 
channels with inclined heterolithic strata: Campanian Neslen Formation, Utah, USA, in 764 
Ashworth, P.J., Best, J.L., and Parsons, D.R., eds., Fluvial-Tidal Sedimentology: Developments 765 
in Sedimentology 68, p.353-394. 766 

OLARIU, M.I., and OLARIU, C., 2015, Ubiquity of Wave-Dominated Deltas In Outer-Shelf Growth-Faulted 767 
Compartments. Journal of Sedimentary Research, v.85, p. 768-779. 768 

OLSEN, T., STEEL, R., HOGSETH, K., SKAR, T., and ROE, S.L., 1995, Sequential architecture in a fluvial 769 
succession; sequence stratigraphy in the Upper Cretaceous Mesaverde Group, Prince Canyon, 770 
Utah: Journal of Sedimentary Research, v. 65, p. 265-280. 771 

ORTON, G., and READING, H., 1993, Variability of deltaic processes in terms of sediment supply, with 772 
particular emphasis on grain size: Sedimentology, v. 40, p. 475-512. 773 

PENLAND, S., BOYD., and SUTER, J.R., 1988, Transgressive depositional systems of the Mississippi delta 774 
plain: a model for barrier shoreline and shelf sand development: Journal of Sedimentary 775 
Research, v. 58, p. 932-949. 776 

PITMAN, J.K., FRANCZYK, K.J., and ANDERS, D.E., 1986, Marine and Nonmarine gas-bearing rocks in Upper 777 
Cretaceous Neslen and Blackhawk foramtions, Eastern Uinta Basin, Utah-Sedimentology, 778 
Diagenesis, and Source rock potential: AAPG Bulletin, v. 71, p. 76-94. 779 

POSAMENTIER, H.W., and ALLEN, G.P., 1993, Variability of the sequence stratigraphic model: effects of 780 
local basin factors: Sedimentary Geology, v. 86, p. 91-109. 781 

RICHARDS, K., CHANDRA, S., and FRIEND, P., 1993, Avulsive channel systems: characteristics and examples: 782 
Geological Society, London, Special Publications, v. 75, p. 195-203. 783 

RITTERSBACHER, A., HOWELL, J.A., and BUCKLEY, S.J., 2014, Analysis of Fluvial Architecture in the Blackhawk 784 
Formation, Wasatch Plateau, Utah, U.S.A., Using Large 3D Photorealistic Models: Journal of 785 
Sedimentary Research, v. 84, p. 72-87. 786 

ROBINSON ROBERTS, L.N.R., and KIRSCHBAUM, M.A., 1995, Paleogeography and the Late Cretaceous of the 787 
Western Interior of middle North America; coal distribution and sediment accumulation, U. S. 788 
Geological Survey Professional Paper 1561, 115 p. 789 



29 
 

RUDOLPH, K.W., DEVLIN, W.J., and CRABAUGH, J.P., 2015, Upper Cretaceous Sequence Stratigraphy of the 790 
Rock Springs Uplift, Wyoming: The Mountain Geologist, v. 52, p. 13-157. 791 

RYER, T.A., and LANGER, A.W., 1980, Thickness change involved in the peat-to-coal transformation for a 792 
bituminous coal of Cretaceous age in central Utah: Journal of Sedimentary Research, v. 50. p. 793 
987-992. 794 

RYER, T.A., 1981, Deltaic coals of Ferron Sandstone Member of Mancos Shale: predictive model for 795 
Cretaceous coal-bearing strata of Western Interior. AAPG Bulletin,v. 65,p. 2323-2340. 796 

SANDERS, J. E. and KUMAR, N., 1975, Evidence of Shoreface Retreat and In-PůĂĐĞ ͞DƌŽǁŶŝŶŐ͟ DƵƌŝŶŐ 797 
Holocene Submergence of Barriers, Shelf off Fire Island, New York. Geological Society of 798 
America Bulletin, v. 86, p. 65-76. 799 

SCHMIDT, C. W., 2015, Delta Subsidence: An Imminent Threat to Coastal Populations: Environmental 800 
Health Perspectives, v. 123, p. 204-209. 801 

SHANLEY, K.W., MCCABE, P.J., and HETTINGER, R.D., 1992, Tidal influence in Cretaceous fluvial strata from 802 
Utah, USA: a key to sequence stratigraphic interpretation: Sedimentology, v. 39, p. 905-930. 803 

SHIERS, M.N., MOUNTNEY, N., HODGSON, D.M, and COBAIN, S.L, 2014, Depositional Controls on Tidally 804 
Influenced Fluvial Successions, Neslen Formation, Utah, USA: Sedimentary Geology, v. 311, p. 805 
1-16. 806 

SIXSMITH, P.J., HAMPSON, G. J., GUPTA, S., JOHNSON, H. D. and FOFANA, J.F., 2008, Facies architecture of a 807 
net transgressive sandstone reservoir analog: The Cretaceous Hosta Tongue, New Mexico. 808 
AAPG Bulletin, v. 92, p. 513-547. 809 

SPEARS, D.A., 1987, Mineral matter in coals, with special reference to the Pennine coal fields, in: Scott, 810 
A.C. ed., Coal and coal bearing strata: Recent advances. Geological Society of London Special 811 
Publication, v. 32, p. 171-185. 812 

STEEL, R.J., PLINK-BJORKLUND, P. and ASCHOFF, J., 2012, Tidal Deposits of the Campanian Western Interior 813 
Seaway, Wyoming, Utah and Colorado, USA, in: Davis, R.W., and Dalrymple, R.W., eds., 814 
Principles of Tidal Sedimentology: Berlin, Springer, p. 437-471. 815 

STOUTHAMER, E., CHOHEN, K. and GOUW, M.J., 2011, Avulsion and its implications for fluvial-deltaic 816 
architecture: insights from the Holocene Rhine-Meuse Delta, in: Davidson S.K., Leleu S., North 817 
C.P. eds., From River to Rock Record: The Preservation of Fluvial Sediments and Their 818 
Subsequent Interpretation, SEPM Special Publication,v. 97, p. 215-232. 819 

SYVITSKI, J.P.M., and FARROW, G.E., 1983, Structures and processes in bayhead deltas: Knight and Bute 820 
inlet, British Columbia: Sedimentary Geology, v. 36, p. 217-244. 821 

TABET, D. E., QUICK, J. C., and HUCKA, B. P., 2008, Distribution, Amount, and Maturity of Coal Resources 822 
of Most of the Sego Coalfield, Utah, in Longman, M.W., and Morgan C.D., eds. Rocky Mountain 823 
Association of Geologists and Utah Geological Association Publication, v. 37, p. 339-365. 824 

TAYLOR, A.M., and GOLDRING, R., 1993, Description and analysis of bioturbation and ichnofabric: Journal 825 
of the Geological Society, v. 150, p. 141-148. 826 

TAYLOR, K.G., and MACHENT, P.G., 2011, Extensive carbonate cementation of fluvial sandstones: An 827 
integrated outcrop and petrographic analysis from the Upper Cretaceous, Book Cliffs, Utah: 828 
Marine and Petroleum Geology, v. 28, p. 1461-1474. 829 

THOMAS, R.G., SMITH, D.G., WOOD, J.M., VISSER, J., CALVERLEYRANGE, E.A., and KOSTER, E.H., 1987, Inclined 830 
heterolithic stratification-terminology, description, interpretation and significance: 831 
Sedimentary Geology, v. 53, p. 123-179. 832 

TONKIN, N.S., 2012, Deltas, in Knaust, D and Bromley, R.G., Trace fossils as indicators of sedimentary 833 
environments: Developments in Sedimentology 64, Elsevier, p. 507-528. 834 

TORNQVIST, T.E., WALLACE, D.J., STORMS, J.E., WALLINGA, J., VAN DAM, R.L., BLAAUW, M., DERKSEN, M.S., 835 
KLERKS, C.J., MEIJNEKEN, C. and SNUDERS, E.M., 2008, Mississippi Delta subsidence primarily 836 
caused by compaction of Holocene strata: Nature Geoscience, v. 1, p. 173-176. 837 

VALASEK, D., 1995, The Tocito Sandstone in a sequence stratigraphic framework: An example of 838 
landward-stepping small-scale genetic sequences, in J. C. Van Wagoner and G. T. Bertram, 839 



30 
 

eds., Sequence stratigraphy of foreland basin deposits: Outcrop and subsurface examples 840 
from the Cretaceous of North America: AAPG Memoir 64, p. 349ʹ 369. 841 

VAN ASSELEN, S., STOUTHAMER, E., and VAN ASCH, T.W.J., 2009, Effects of peat compaction on delta 842 
evolution: A review on processes, responses, measuring and modeling: Earth-Science Reviews, 843 
v. 92, p. 35-51. 844 

WILLIS, A., 2000, Tectonic control of nested sequence architecture in the Sego Sandstone, Neslen 845 
Formation and upper Castlegate Sandstone (Upper Cretaceous), Sevier foreland basin, Utah, 846 
USA: Sedimentary Geology, v. 136, p. 277-317. 847 

WILLIS, B.J., and GABEL, S., 2001, Sharp-based, tide-dominated deltas of the Sego Sandstone, Book Cliffs, 848 
Utah, USA: Sedimentology, v. 48, p. 479-506. 849 

WILLIS, B.J., and GABEL, S.L., 2003, Formation of Deep Incisions into Tide-Dominated River Deltas: 850 
Implications for the Stratigraphy of the Sego Sandstone, Book Cliffs, Utah, U.S.A: Journal of 851 
Sedimentary Research, v. 73, p. 246-263. 852 

YOSHIDA, S., 2000, Sequence and facies architecture of the upper Blackhawk Formation and the Lower 853 
Castlegate Sandstone (Upper Cretaceous), Book Cliffs, Utah, USA: Sedimentary Geology, v. 854 
136, p. 239-276. 855 

YOSHIDA, S., WILLIS, A., and MIALL, A.D., 1996, Tectonic control of nested sequence architecture in the 856 
Castlegate Sandstone (Upper Cretaceous), Book Cliffs, Utah: Journal of Sedimentary Research, 857 
v. 66, p. 737-748. 858 

YOUNG, R.G., 1955, Sedimentary facies and intertonguing in the Upper Cretaceous of the Book Cliffs, 859 
Utah- Colorado: Geological Society of America Bulletin, v. 66, p. 177-202. 860 

YOUNG, R.G., 1957, Late Cretaceous cyclic deposits, Book Cliffs, Eastern Utah: Bulletin of the American 861 
Association of Petroleum Geologists, v. 41, p. 1790-1774. 862 

CAPTIONS 863 

Table 1 Table describing the geometry, facies and ichnology of representative architectural 864 

elements of the lower Neslen Formation. Each element is interpreted in terms of 865 

representative sub-environments.  866 

Fig. 1.  (A) Conceptual model of a hypothetical fluvial dominated coastline subject to the 867 

action of varying processes and showing the likely morphology (modified after Ainsworth et 868 

al. 2010); the likely position of the Neslen Formation is indicated in the outlined box. (B) Graph 869 

(Y-Y͛) showing the hypothetical process variability laterally along the fluvial dominated 870 

coastline. (C) Graph (X-X͛Ϳ showing the variation of processes through the fluvial to marine 871 

transition zone. Modified in part after Dalrymple and Choi (2007). 872 

Fig. 2. Sequence Stratigraphic framework of the Book Cliffs, from Tusher Canyon (west) to 873 

Lipan Wash (CO) (Line of section is shown in Fig. 4). The panel is based upon works by 874 

Kirschbaum and Hettinger (2004); Kirschbaum and Spear (2012) and Shiers et al. (2014); and 875 
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has necessitated grouping of depositional environments in order to integrate multiple 876 

interpretations. Marker beds (Kirschbaum and Spear 2012; Shiers et al. 2014) are indicated 877 

including the Sulphur Canyon Sandstone Bed (SCSB), Thompson Canyon Sandstone Bed (TCSB) 878 

and Basal Ballard Sandstone Bed (BBSB). Sequence boundaries and flooding surfaces are 879 

numbered in ascending order. Locations for this study are indicated in red, location names are 880 

shown on Fig. 4. 881 

Fig. 3.  (A) Stratigraphy of the Mesaverde Group in the Book Cliffs between Price (UT) and 882 

Grand Hogback (CO) modified after Kirschbaum and Hettinger 2004. (B) Informal stratigraphic 883 

subdivision of the Neslen Formation (cf. Shiers et al. 2014) within the study area. Zones within 884 

the formation are highlighted and a schematic representation of the stacking of sand bodies 885 

(yellow), coal (black) and floodplain fines (gray) is indicated. Sequence boundaries and 886 

flooding surfaces are indicated on Figure 2. TCSB ʹ Thompson Canyon Sandstone Bed, BBSB ʹ 887 

Basal Ballard Sandstone Bed. SB stands for Sequence Boundary, TS is Transgressive Surface 888 

and MFS is Maximum Flooding Surface, numbered surfaces refer to the surfaces in Figure 2.  889 

Fig. 4. Location maps of the study area. (A) Map illustrating the position of the study area 890 

along the Book Cliffs (modified after Taylor and Machent 2011). (B) Location of each study 891 

locality projected onto a west-east transect; (WF = West Floy Canyon; EF = East Floy Canyon; 892 

WM = West Crescent Mine; CC = Crescent Canyon; RHC = Right Hand Crescent Canyon; EC = 893 

East Crescent Canyon; WB = West Blaze Canyon; BC = Blaze Canyon; WT = West Thompson 894 

Canyon; ES = East Sego Canyon; SW = Salt Wash; ESW = East Salt Wash; SC = Sagers Canyon). 895 

Each study locality is composed of measured vertical profiles (Fig. 5) and stratigraphic panels. 896 

Line of transect is indicated by the orange line, and is shown on Figs. 5, 8. 897 

Fig. 5. Sedimentary logs recorded at each study locality, detailing the facies and ichnology 898 

alongside the interpreted architectural elements. Logs are hung from the base of the 899 
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Thompson Canyon Sandstone Bed which acts as a marker for the succession. Refer to Figure 900 

2 for study locations.  901 

Fig. 6 Representative photographs of sedimentary facies and ichnology observed within the 902 

Neslen Formation. (A) Wavy and flaser bedding within a bay-fill sandstone element (S6), 903 

draped asymmetrical ripples are visible in the lower part of the photograph. (S5). (B) Silt-904 

draped asymmetric ripples within a sandstone dominated point bar element (S2). (C) 905 

Sandstone exhibiting cross-bedding with multiple reactivation surfaces within a distributary 906 

channel element (S1). (D) Thalassinoides observed at the base of the lower TCSB (S5). (E) 907 

Teredolites bored wood found in the base of a heterolithic point bar element (S3). (F) Highly 908 

bioturbated sandstone of the TCSB (S5); Thompson Canyon Sandstone Bed; examples of 909 

Ophiomorpha are common; bioturbation index of 3 (Taylor and Goldring 1993) 910 

Fig. 7 Representative architectural elements of the Neslen Formation; description and 911 

interpretation of elements can be found in Table 1. (A) Distributary channel-fill element (S1). 912 

(B) Sandstone-prone lateral accretion element (S2). (C) Isolated heterolithic lateral accretion 913 

element (S3). (D) Amalgamated inclined heterolithic stratification (S4). (E) Tabular reworked 914 

shoreface sandstone element (S5). (F) Bay-fill sandstone element (S6). (G) Stacked overbank 915 

sandstone elements (F1). (H) Repeated arrangements of fining-upwards floodplain elements 916 

(F2). (I) Coal-prone floodplain elements (F3), interbedded with examples of overbank 917 

sandstone and fining-upwards floodplain elements.  918 

Fig. 8 Correlation panel of the logged sections located along the line of section (to scale) 919 

(Figure 4). Interpreted packages (see text) are indicated as are marker units: Basal Ballard 920 

Sandstone Bed and Thompson Canyon Sandstone Bed. Shaded grey regions represent coal-921 

bed correlations. 922 
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Fig. 9 Summary of vertical trends through the lower Neslen Formation. An idealized, 923 

composite sedimentary section is shown on the left-hand side and is divided into the 924 

interpreted depositional packages. Regressive intervals (green) and transgressive intervals 925 

(blue) are indicated the line of section along with the position of interpreted flooding surfaces.  926 

(A) Architectural element proportions (for key see Figure 7). (B) Summary paleocurrent 927 

orientations for each package; orange represents bedding or lateral accretion surfaces, blue 928 

represents the dip direction of ripples and cross-bedded strata. (C) Occurrence of key 929 

indicators of marine (tidal and wave indicators) and brackish water conditions. Sedimentary 930 

indicators (dark blue) are interpreted to represent fluctuations in current energy and 931 

directions. Marine to brackish ichnogenera includes Ophiomorpha, Arenicolites, 932 

Thalassinoides Rhizocorallium, Bergaueria, and Diplocraterion. (D) Paleogeographic 933 

reconstruction for each package; accurate in the proportion and dimensions of architectural 934 

elements and paleoflows. Circles represent study sites. See Figure 5 for key.  935 

Fig. 10  (A) Modified sea-level curve for the lower Neslen Formation; sequence boundaries 936 

and flooding surfaces are named on Figure 2. Depositional packages are as follows: Lower 937 

Palisade Zone (LPZ), Palisade Coal Zone (PCZ), Middle Palisade Zone (MPZ), Upper Palisade 938 

Zone (UPZ), Basal Ballard Sandstone Bed (BBSB), Ballard Coal Zone (BCZ) and Thompson 939 

Canyon Sandstone Bed (upper and lower) (TCSB). Intervals of regression (R; green) and 940 

transgression (T; blue) are indicated along the sea-level curve. (B) Schematic architecture of 941 

the decompacted lower Neslen Formation. (C) Relationship of the lower Neslen Formation 942 

within the broader sequence stratigraphic panel (Fig. 2). Key for architectural elements is 943 

shown in Figure 5.  944 
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Architectural 

element 

Geometry 

and dimensions 

Description Ichnology Relationship to 

other elements 

Interpretation 

S1- 
Distributary 

channel-fill 

Abrupt pinchouts with 
steep cut-banks (35°). 
Basal incision 4-7 m 
which is equal to the 
element thickness. 
Width 35-200 m and 
low aspect ratio of 10-
15. 

Aggradational fine- to medium-sandstone 
arranged into sets separated by erosion surfaces. 
Scour surfaces overlain by intraformational 
conglomerate. Cross bedding is common 
towards the base, passing upwards into ripple 
cross-laminated sandstone. Sigmoidal co-sets; 
convex-up cross bedding are recognized. Drapes 
of siltstone and carbonaceous material occur. No 
Lateral accretion surfaces are observed. 

BI 1; examples of 
Skolithos and 
Arenicolites towards 
the base of the 
element. 

Erosionally 
overlie elements 
F1, F2 and F3. 

Distributary channels (Miall 1996), 
unidirectional flow with migrating, 
large-scale dunes and minor 
modification by tidal currents 
(drapes on foresets) in a backwater 
environment (cf. Colombera et al. 
2016)  

S2- 
Sandstone-

prone lateral 

accretion 

Commonly exhibit a 
lenticular form with 
thicknesses of 2-6 m 
and with basal 
incision up to 3 m 
deep. Width of 90-
500 m. Inclined 
surfaces dip at 6-20°. 

Fining upwards from fine-grained to very fine-
grained sandstone. Lenticular beds (5-40 cm) 
downlap onto lower beds or the basal surface. 
Lithofacies include massive-to-faintly laminated 
sandstone with ripples, climbing ripple cross-
lamination and cross-bedding. 

BI 1-2 in beds at the 
top of element. 

Erosionally 
overlie elements 
F1, F2 and F3. 

Channelized unidirectional flow with 
a high degree of levee confinement. 
Dominance of lateral accretion 
typical of fluvial point bars (cf. 
Bridge, 2006).  

S3- 
Isolated 

heterolithic 

lateral 

accretion 

Thicknesses up to 5 m 
and 50-300 m wide. 
Bed surfaces dip at 5-
25°. 

Alternating tabular- to wedgeʹshaped beds of 
well-sorted, fine-grained sandstone and 
siltstone. Sandstone beds (0.05-1 m thick) 
display ripple cross-lamination, horizontal 
lamination and low-angle cross-lamination. 
Single and double drapes on ripple foresets are 
common. Rare occurrences of opposing dip 
directions in ripple foresets. Siltstone beds (5-10 
cm thick) exhibit lenticular-flaser-wavy 
laminations. 

BI 0-3 (higher in upper 
parts of element) 
including Arenicolites, 
Diplocraterion, 
Rhizocorallium. 
Teredolites is common 
at the base. 

Commonly pass 
laterally and 
erosionally 
overlie elements 
F1, F2 and F3. 

Inclined surfaces represent lateral 
accretion in heterolithic point bars 
(Inclined Heterolithic Stratification; 
Thomas et al. 1987). Presence of 
brackish water ichnofacies, draped 
ripples and current reversals 
indicate marine influence on these 
deposits (Shanley et al., 1992). 



Architectural 

element 

Geometry 

and dimensions 

Description Ichnology Relationship to 

other elements 

Interpretation 

S4- 

Amalgamated 

IHS 

Beds are horizontal or 
inclined up to 8° 
within elements that 
are up to 16 m thick. 
Within each element, 
packages attain a 
maximum thickness of 
4 m and can be traced 
laterally for up to 150 
m. 

Stacked heterolithic bed-sets of alternating 
sandstone, siltstone and mudstone. Overall the 
beds within each package thicken and coarsen 
upwards. Sandstone beds are massive to 
laminated and exhibit ripples with single- and 
double-drapes of mud and carbonaceous 
material. Finer- grained beds are generally 
laminated to massive but in places also exhibit 
flaser, lenticular and wavy bedding. 

BI 0-3 with 
Medousichnus, 
Planolites and 
Palaeophycus. 
Gastropod (Viviparus) 
and bivalve fragments 
with Teredolites at the 
base. 

Commonly 
overlies elements 
F1-F3. Lateral 
relationships are 
typically poorly 
exposed. 

Inclined clinoforms at varying angles 
on a small scale indicate a small-scale  
prograding delta (crevasse delta, 
Gilbert-type delta or bay-head delta)  
in a sheltered marine environment 
(Syvitski and Farrow 1983; Joeckel  
and Korus 2012). A fluvial 
interpretation is rejected based upon 
the ichnology and the thickening and 
coarsening upwards trend within each 
package. 

5- 
Reworked 

Barrier 

Sandstone 
 

Thickness varies from 
1-6 m (for the sandy 
upper part). The finer 
lower part (where 
present) is 1-1.5 m 
thick. Lateral extent is 
100s m to 10s of km. 
In some areas, 
shallowly dipping (up 
to 7°) clinoforms 
dipping to the west 
are observed. Beds 
are tabular, wedging 
out over 100s of 
meters. 

Examples of this element occur in, but are not 
exclusive to, the TCSB and BBSB. 
The finer-grained lower part of this element is 
only observed in examples in the TCSB and is 
composed of heavily bioturbated dark grey 
siltstone and very fine-grained sandstone 
containing shell fragments and siderite bands. 
The sandy upper part is observed in all examples 
and comprises thickening- and coarsening-up 
packages of clean, well sorted sandstone. Where 
not obscured by bioturbation, beds are 50-150 
mm thick and exhibit symmetrical ripple-
lamination (mud draped in lower beds), and 
horizontal lamination. 

Lower TCSB ʹ heavily 
bioturbated (BI 5) 
overprinting of original 
sedimentary 
structures. 
Thalassinoides 
abundant on the base. 
Upper TCSB and other 
examples: BI 0-5 
increases both 
upwards down-dip. 
Bioturbation includes 
Arenicolites, Bergueria 

Planolites and 
Ophiomorpha. 
Crawling and root 
traces on top surfaces. 

Commonly 
underlain and 
overlain by thick, 
well developed 
coal (F3) or by 
floodplain or 
lagoonal fines 
(F2). Lateral 
transitions at the 
point of pinch 
out are not 
directly 
observed. 

The lower division represents a 
lagoonal setting, subject to intense 
bioturbation. 
Sedimentary structures and ichnology 
in the upper part represent a brackish 
water, wave dominated environment 
e.g. washover fans, shoreface, or a 
sand-spit (Kirschbaum and Hettinger 
2004). A retreating barrier bar 
interpretation is favored based on the 
geometry and scale of the elements  
(Penland et al. 1988). A bay-fill is  
discounted due to the down-dip  
extent of the bodies and the lack of 
erosional surface. 



Architectural 

element 

Geometry 

and dimensions 

Description Ichnology Relationship to 

other elements 

Interpretation 

S6- 
Bay-fill 

sandstone 

Elements up to 5 m 
thick and 20-100 m in 
lateral extent. Erosion 
at the base of the 
element is up to 30 
cm. Bed boundaries 
become increasingly 
erosive upwards. 

Thickening- and coarsening-upwards from very 
fine- to fine-grained sandstone characterized by 
horizontal and ripple laminations, commonly 
with single or double drapes (mud, silt or 
carbonaceous). Interbedded sandstone and 
siltstone beds exhibit load casts and convolute 
lamination and lenticular, flaser and wavy 
bedding. Intraformational conglomerate occurs 
on internal scour surfaces. 

BI 0-3 including 
Ophiomorpha, 
Rhizocorallium and 
Diplocraterion. Root 
traces towards the 
top. 

Commonly 
overlies elements 
F1-F3. Lateral 
relationships are 
typically poorly 
exposed 

Tide and wave influence, brackish 
water ichnology and shallowing 
upwards succession indicates 
environments such as crevasse 
deltas or mouth-bars (Joeckel and 
Korus, 2012).  

F1- 
Overbank 

sandstone 
 

Elements are less 
than 2 m thick and 
pinch out gradually 
over tens to hundreds 
of meters. Localized 
erosion up to 30 cm 
at the base. 

Very fine- to fine-grained sandstone and 
siltstone. Beds dip in varying orientations at low 
angles (2-5°). Weathering and the occurrence of 
post-depositional concretions obscure 
sedimentary structures. Lithofacies include 
massive sandstone, climbing and current ripple 
and horizontal laminations  

BI 0. Rare root casts 
are preserved. 

Passes laterally 
and vertically 
into element F2; 
commonly 
overlies element 
F1. 

Un-confined flows on levees, 
crevasse channel and splays. Incision 
indicates slightly higher energy flows 
(Guion et al., 1995; Mjos et al. 
2009). 

F2- 
Floodplain and 

lagoonal fines 
 

Packages are up to 5 
m thick and have a 
lateral extent of tens 
to hundreds of 
meters. 

Brown to black mudstone and siltstone arranged 
into fining upwards packages. 
A: Common sulfur staining, wood fragments, 
coalified wood debris and rooted horizons. 
B: Passes vertically from laminated siltstone to 
massive mudstone, notably absent of rooted 
horizons, deformed (flattened) coal and amber 
clasts. 

A: BI 0. Occasional 
root casts are 
preserved. 
B: BI 0-3 Some 
bioturbation of 
indeterminable origin. 

A: Overlain by 
coals of element 
F3, commonly 
grades upwards 
from F1. 
B: Commonly 
overlain or 
underlain by 
elements S4-S6. 

A: Accumulation in low-energy 
settings such as distal crevasse 
splays (Guion et al., 1995). 
B: Accumulation in quiet water 
brackish settings such as lagoons 
(Horne et al., 1978). 
The two sub-elements are not 
always readily discernible and 
association with other elements 
must be considered. 

F3- 
Coal-prone 

floodplain 

Various scales are 
preserved from mm-
sized ribbons to 
meter-thick beds of 
tens to hundreds of 
meters lateral extent. 

Black, friable coals containing amber and wood 
fragments, as well as sandstone clasts. Coals do 
not occur as simple sheets but interfinger with 
clastic facies. 

Lenses of sand can 
represent sandy infill 
of burrows. 

Commonly occur 
at the top of 
element F2 and 
are commonly 
overlain by 
sandier elements 
(F1, S2-S7) 

Coals formed in raised peat mires in 
humid, swampy conditions (Davies 
et al., 2006; Jerrett et al., 2011a). 
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