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Abstract 

Thin-skinned fold-and-thrust belts (FTBs) have been extensively studied through both 

field examples and modelling. The overall dynamics of FTBs are, therefore, well understood. 

One less understood aspect is the combined influence of across-strike changes in the 

detachment properties and the basement topography on the behaviour of an orogenic wedge. 

In this paper, we use field data together with reflection seismic interpretation from the 

External Zones of the Central Betics FTB, S Spain, to identify a significant increase in the 

wedge basal dip (a basement "threshold") coinciding with the pinch-out of a weak substrate. 

This induced both changes to the wedge geometry and to the basal friction, which in turn 

influenced the wedge dynamics. The changing dynamics led to a transient “stagnation” of the 

FTB propagation, topographic build-up and subsequent collapse of the FTB front. This in 

turn fed an important Langhian depocenter made up of mass transport deposits. Coevally with 

the FTB propagation, extension took place both parallel and perpendicular to the orogenic 

trend. This case study illustrates how across-strike changes in wedge basal properties can 

control the detailed behaviour of a developing FTB front, but questions remain regarding the 

time-space interaction and relative importance of the basal parameters. 

 

Keywords: fold-and-thrust belt, basal detachment, mass transport deposit, seismic 

interpretation, orogenic wedge shape, frictional properties. 
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1. Introduction.   

Fold-and-thrust belts (FTBs; [Poblet and Lisle, 2011]) are one of the most common 

features accommodating orogenic shortening (e.g. Jura belt, [Burkhard and Sommaruga, 

1998], Variscan FTB and the External Zones of the Appalachian Orogen [Woodward, 1987; 

Gallastegui et al., 1997; Mount, 2014]).  

The understanding of FTBs is developed from surface and subsurface data together 

with analytical, numerical, and analogue modelling, which have successfully simulated their 

mechanical properties and kinematics. Analogue modelling has been extensively reviewed in 

Graveleau et al., [2012] with respect to: (1) the classical critical taper theory and its 

applications [e.g. Davis et al., 1983; Dahlen, 1984; 1990; Suppe, 2007]; (2) models of the 

effect of frictional vs. plastic substrates [e.g. Liu et al., 1992]; (3) inversion tectonics [e.g. 

Buchanan and McClay, 1991]; (4) fold vs. fault controlled belts [e.g. Simpson, 2009]; (5) the 

effect of basal dip [e.g. Koyi and Vendeville, 2003]; and (6) geometries resulting from the 

accretion of syn-orogenic deposits [e.g. Storti and McClay, 1995]. The vast majority of 

models assume a planar detachment and uniform detachment mechanical properties and, 

although a few studies address the influence of changes in either of these [e.g. Calassou et al., 

1993; Cotton and Koyi, 2000; Argawal and Argawal, 2002; Bahroudi et al., 2003; Luján et al, 

2003; Miyakawa et al., 2010], the interaction of these parameters at a developing thrust front 

remains unclear. Field studies also show that the interaction of basement topography and 

substrate properties is complicated but significantly affect the behaviour of the FTB [e.g. 

Davis and Engelder, 1985; Verges et al., 1992; Krzywiec and Verges, 2007; Fagereng, 2011; 

von Hagke et al., 2014; this paper]. 

Foreland and intermontane basins are typically associated with FTBs. Foreland 

basins form as lithospheric thickening at the orogenic hinterland induces flexure of the 
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lithosphere [Davis et al., 1983; DeCelles and Giles, 1996; DeCelles, 2012]. Additionally, the 

continuous evolution of the topography and the slope gradient of the tectonic wedge induce 

slope breaks at various scales, favouring erosion and/or gravitational collapse and leading to 

mass transport deposits (MTD). MTD often include the so-called “mélange units” (e.g. in 

Alps and Apennines; [Burkhard and Sommaruga, 1998; Lucente and Pini, 2008; Festa et al., 

2010; Codegone et al., 2012]). In this context, “mélange” are rocks consisting of a plastic 

matrix wrapping around variably-sized blocks of more competent rocks. Because of the 

plastic matrix rheology, mélanges commonly act as detachments during later deformation 

events, when over-run by advancing thrust sheets [e.g. Festa et al., 2010]. Furthermore, mass-

wasting itself has been modelled to potentially influence FTB evolution by altering the 

surface slope angle, overall wedge internal friction, and/or wedge thickness [e.g. Smit et al., 

2010].  

The main aim of this paper is to study how the time-space evolution of an FTB 

wedge is influenced by the interaction of wedge-base dip and frictional properties, and how 

this evolution relates to the initiation of mass wasting and orogen-frontal collapse. We focus 

on the External Zones of the Central Betics of S Spain (Figs. 1 and 2), where changes in 

orogenic wedge geometry can be identified by surface and subsurface data. Previous work 

have established the overall structural features of the area [e.g. Roldán et al., 1988a, b, c, 

1992, 2012a, b; Crespo-Blanc, 2007, 2008; Rodríguez-Fernández et al., 2013], but several 

questions remain concerning the evolving wedge architecture. These include a) the nature and 

significance of the structural variations along and across the FTB and b) the tectonic 

significance and origin of the mélange units (the Olistostromic Unit, OU; Fig. 2a). In 

particular, it is unclear why and how the FTB front seemingly accumulated significant 

topography during the Langhian (16-14 Ma; see age intervals in Fig. 2b), allowing the 

erosional and/or extensional dismantling of the FTB front. This is evidenced by the OU 
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deposition, which requires the presence of a topographic high as source area in this part of the 

FTB. Using field data and seismic reflection profiles with well data from the central External 

Zones and the southern part of the Guadalquivir foreland basin (Fig. 1), we address the 

influence of basement topography and basal detachment properties on the evolution of the 

FTB, the structural changes and the formation of the OU. Finally, using the critical taper 

model, we will discuss the relationships between the orogen frontal dismantling, the role of  

syn-orogenic extensional systems and the FTB front stagnation.  

 

2. Geological Setting 

The case study used in this paper comes from the Gibraltar Arc (GA). GA comprises 

the Betic and Rif chains together with the Alboran basin (Fig. 1). GA formed during the last 

25 Ma by the collision of their Internal Zones (upper plate, Alboran domain rocks) against the 

South Iberian and Maghrebian paleomargins [Vera et al., 2004; Michard et al., 2008]. So-

called Flysch Through units, partly deposited on now subducted oceanic lithosphere, are 

sandwiched between the Alboran domain and the paleomargin units [Durand-Delga et al., 

2000]. The GA is broadly divided into the Internal Zones, consisting of the Alboran domain 

rocks and volcanics, and the External Zones comprising Flyschs Trough units and the 

paleomargin-derived units (Fig. 1). Most of the Internal Zones are made up by tectono-

metamorphic complexes, the lowest being recently interpreted as a subducted South Iberian 

unit that crops out in a tectonic window [Booth-Rea et al., 2015]. Tectonic stacking in the 

External Zones was coeval with the extension in the Internal Zones that generated the 

Alboran Basin [e.g., García-Dueñas et al., 1992; Comas et al., 1999; Platt et al., 2013]. 
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The paleomargin units of the External Zones were deformed in a mainly thin-skinned 

style during the Miocene [e.g. Balanyá and García-Dueñas, 1987; Crespo-Blanc and Campos, 

2001; Luján et al., 2003; 2006; Crespo-Blanc, 2007; Expósito et al., 2012; Platt et al., 2013]. 

Recent studies on the Betic FTB show that shortening was partially coeval with the 

development of both arc-parallel and arc-perpendicular extension in the External Zones [e.g. 

Balanyá et al., 2007, 2012; Azañón et al., 2012; Rodríguez-Fernández et al., 2013; Jiménez-

Bonilla et al., 2011, 2012, 2015a, b, 2016]. Erosional processes and gravitational collapse of 

the orogenic front led to intense reworking of the paleomargin and the Flysch units, forming 

the so-called “Olistostromic Unit” mélange (OU). OU deposition is dated between Langhian 

and lower Serravallian (Figs. 2a and b) [Roldán et al., 2012a, b; Rodríguez-Fernández et al., 

2013].  

In the External Zones, the pre-orogenic sequences deposited onto the Hercynian 

basement of the South Iberian paleomargin start with Triassic evaporites (mainly gypsum), 

sandstones and carbonates (Fig. 2b) [Pérez-Valera and Pérez-López, 2003; Pérez-López and 

Pérez-Valera, 2007]. The overlying Jurassic and Cretaceous marine sequences are shallow-

water where deposited on the proximal part of the margin (Prebetics units), while the deeper-

shelf and pelagic units of were deposited onto the distal margin (Subbetic units) (Fig. 2) 

[García-Hernández et al., 1980; Vera et al., 2004]. Only the Subbetic units, thrusted over the 

Prebetic units, are exposed in the study area (Fig. 2). 

The pre-orogenic sequences are unconformably overlain early syn-orogenic 

Oligocene-Lower Miocene deep-water sediments, followed by the Langhian OU, which is 

only present along the FTB front (Fig. 2). The youngest units are the para-autochtonous 

Serravallian-Messinian packages with shallowing-upwards, marine-to-continental sequences 

are deposited (Fig. 2b) [e.g. Sierro et al., 1996; Roldán et al., 2012a; b; Rodríguez-Fernández 

et al., 2013]. 
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The main deformation is considered to have progressed into the External Zones of the 

Central Betics with the stacking and folding of the Subbetic and Prebetic units through the 

Lower Miocene, although the FTB deformation continued in the NW part of the FTB until 

Late Miocene. A major detachment developed at the base of the FTB within the Triassic 

evaporites and mudstones. Above the detachment, the internal stacking of the Subbetic units 

and their thrusting onto the Prebetics were accommodated by SW-NE to WSW-ENE striking 

folds and thrusts [Crespo-Blanc et al., 2007; Crespo-Blanc, 2007; 2008; this paper]. After 

Serravallian times, the orogenic front migrated outward into the Guadalquivir foreland basin 

[e.g. Maldonado et al., 1997; Medialdea et al., 2004; this paper]. Various studies suggest that 

this late deformation continued until at least the Messinian, and some areas remain 

seismically active [e.g. Buforn et al., 1995; Medialdea et al., 2009; Balanyá et al., 2012; 

Vitale et al., 2014; Jiménez-Bonilla et al., 2015a; Serrano et al., 2015; this paper].  

 

3. Data and Methodology 

We analyse 17 commercial multichannel 2D seismic reflection lines, data from 13 

wells, and mesoscopic structural data collected through fieldwork in the studied area (Fig. 

2a). Modifications to appropriate geological maps and cross-sections [Leyva, 1975; Roldán et 

al., 1988a, b; c; 1992; Hernáiz et al., 1992; García-Cortés, 1992; Díaz de Neira et al., 1992; 

Roldán et al., 2012b] have been made through this fieldwork and review of recent 

publications [Crespo-Blanc, 2007; 2008; Azañón et al., 2012; Rodríguez-Fernández et al., 

2013; Roldán et al., 2012a].  

The seismic profiles form a grid with > 400 km of total profile length (Fig 3a). Only 

the most representative profiles and their interpretations are presented in this paper. The well 

data helped to better constrain the interpretation (Fig. 2a). The seismic lines and well data 
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were acquired by Exxon, Hispanoil and Chevron between 1950 and 1990, and they are 

publically available from www.ign.es or http://info.igme.es/infogeof/. The images are also 

available on the Virtual Seismic Atlas (www.seismicatlas.org). The NW-SE oriented seismic 

lines are subparallel to the tectonic transport direction, and the NE-SW lines are subparallel 

to orogenic strike. The grid extends from the inner part of the External Betic FTB to the 

Guadalquivir basin (GB), but the data are scarcer and of poor quality in the frontal part of the 

FTB (the FFTB in Fig. 3a). 

In the seismic images, both coherent and incoherent seismic noise is substantial. The 

probable causes are: (1) the low reflectivity and intense deformation of salt and evaporites; 

(2) abrupt lateral velocity changes (i.e. across thrust planes); (3) diffractions associated with 

faults and folds; (4) an unknown noise source, probably ground roll, accounting for coherent 

noise; (5) the lack of coherent reflector structure within the OU, where it has been deposited 

(mainly in the FFTB and GB) [Roldán et al., 2012a]; and (6) side-swipe (out-of-plane 

reflections). To help address the noise and artifacts, a seismic facies interpretation method 

was applied to the seismic profiles [approach of Mitchum and Vail, 1977]. Seismic facies 

refers to an assemblage of reflections with characteristic parameters (e.g., energy, continuity, 

dip) and geometrical configurations that can be related to physical changes in the rock. The 

analysis of seismic facies is a more reliable approach to seismic interpretation than 

identifying individual (strong) reflections that may result from artefacts such as side-swipe, 

diffraction, or multiples. In our case, the most identifiable seismic facies coincide with the 

Jurassic limestones intersected by the well Río Guadalquivir-H1 (Fig. 3a). They are 

distinguished by their continuous, thick and strongly reflective packages. These form the 

geometric basis of much of our interpretation. These packages are commonly underlain by 

noisy packages, usually interpreted as Triassic evaporites. The Tortonian-Messinian 

sediments of the GB also show good reflectivity, and are underlain by either the chaotic OU 

http://www.ign.es/
http://info.igme.es/infogeof/
http://www.seismicatlas.org/
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or the Hercynian basement. The interpretations are constrained by surface and well data (Río 

Guadalquivir H-1 and Río Guadalquivir N-1), where available. Thus, although significant 

uncertainties remain in the interpretation of structures and due to the poor data quality of 

some seismic profiles, the elements important for our objectives are identifiable.  

The seismic data are displayed in two way travel time (TWT). The maximum 

penetration is ~4.5 seconds. Assuming an average seismic P-wave velocity of 5300 ms-1, as 

constrained by well data, is assumed for the Subbetic units [Chourak et al., 2005], this TWT 

represents c. 12 km depth. The data are, however, commonly too noisy for detailed 

interpretation below c. 2 s TWT. A velocity of 2500 ms-1, based on well data and Soto et al., 

[1996], is used for Tortonian to Quaternary sediments within the GB and within the 

intermontane basins.  

The seismic and well data permit the approximation of the main basement 

topographic features and their slope ȕ [e.g. Dahlen, 1984]. The geometry of the FTB orogenic 

wedge is obtained by combining ȕ with the surface slope Į. The angle Į was calculated by a 

regression analysis of a representative topographic profile with a sampling interval of 1 km.  

 

4. Structure of the Central Betic FTB 

Using field data and seismic interpretations, we describe the changes in the structural 

style of the external Central Betics along a NW-SE cross-section. The studied area is divided 

into four sectors based on differences in the structural style and the lithostratigraphy of their 

outcropping units. From SE to NW, they are: the inner fold-and-thrust belt (IFTB), the 

middle fold-and-thrust belt (MFTB), the frontal fold-and-thrust belt (FFTB) and the 

Guadalquivir basin (GB).
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4.1. Inner fold-and-thrust belt (IFTB) 

The IFTB consists of the pre-orogenic Triassic to Palaeogene rocks of the Subbetics, 

thrusted over the Prebetic units, together with the syn-orogenic, Lower Miocene packages 

(Figs. 3 and 4). The topographic highs (reaching up to 1570 m) coincide with kilometric-scale 

anticlines (Figs. 3a, b and 5a), defining fold trains that strike approximately WSW-ENE to 

SW-NE. The Triassic evaporites commonly crop out in the anticline cores [Crespo-Blanc, 

2007; 2008] (Figs. 3a and 4a). Structural features suggest the anticlines are detachment folds: 

most of them are box-shaped or upright open folds, which often develop high-angle reverse 

faults along both fold limbs (Figs. 4a, b and c). Folds axial traces generally exceed 10 km and 

are doubly plunging. Wavelengths are between 2 and 5 km. The axial traces strike N59.5ºE 

on average (Fig. 4d). The Lower Miocene packages show syn-deformational growth features 

such as onlaps onto the fold limbs (Figs. 4b and c) and have also been partly folded (Fig. 4b). 

The seismic interpretations suggest the presence of two thrust sheets defined by the 

reflective Subbetic Jurassic packages, each of them underlain by less reflective zones 

interpreted as Triassic evaporites that host the detachments (Fig. 4e). Using seismic velocity 

of 5300 m/s, the upper detachment level is located at a depth of around 2.7 km depth (c. 1 s 

TWT) and the lower at c. 6.6 km depth (c. 2.5 s TWT). The lower detachment is just above 

an apparently less deformed, reflective package presumably consisting of Prebetic units (Fig. 

4e). Indications of these units are identified down to at least 3.5s TWT (c. 9.3 km), giving the 

minimum depth to basement which must be deeper. The two thrust sheets have displacements 

in the order of tens of kilometers and the interpreted geometries in the seismic are consistent 

with the box-fold structure on the surface (Figs. 4e and f).  

The NW boundary of the IFTB sector coincides with a change in the structural style. 

The detachment-fold dominated zone passes into a domain characterized by NW-verging 

thrusts rooting into the deeper detachment. The change in style corresponds to the changes in 
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the syn-orogenic lithostratigraphy of the units, in particular, with the first appearance of the 

Langhian-Serravallian formations that characterize the MFTB and the FFTB (Fig. 3a). 

 

4.2. Middle fold-and-thrust belt (MFTB)  

The MFTB includes the area of Sierra de Cabra (SC) and its surroundings (Figs. 3a 

and 6a). The SC consists mostly of Triassic to Palaeogene rocks of the Subbetic. The 

envelope of the MFTB surface topography is sharply interrupted in the northern limit of the 

Sierra, with a steep topographic drop from 1380 to 600 m (Fig. 3b). This slope break is 

associated with the mountain front, also considered as the MFTB/FFTB boundary (Figs. 3a 

and b). The overall structure of the SC is dominated by forethrusts up to 20 km long along 

their strike (Figs. 3a and 6a). The strikes of thrusts and reverse faults vary from N85ºE in the 

northernmost SC to N30ºE in the southernmost SC and the dip ranges from 45º to 90º in their 

present position (Figs. 3a, 5b, c, 6a, b, and c). Kilometric-scale, NNW-verging folds are 

developed in the thrust hanging walls (Figs. 5b and 6a). The slickenlines pitches are 

commonly > 45º, forming two clusters with roughly SE and SW plunging directions (Fig. 

6b). Kinematic indicators (S-C structures and slickenfibers; Fig. 6b) show that the transport 

sense of the thrusts varies significantly, even for the same thrust. This kinematic variation 

could be assigned to the slip partitioning along curved thrust planes. Nevertheless, part of this 

variability may reflect some reactivation of these surfaces due to younger extensional events 

[Azañón et al., 2012]. 

Thrusts surfaces are interpreted to form an imbricate stack with a detachment located 

within the Triassic evaporites. Seismic data combined with well data imply the presence of a 

detachment between the Prebetic and Subbetic units, at c. 3.7 km depth (between 1 and 1.5 s 

TWT overall and at c. 1.4 s TWT, with depths constrained from the well H-1; Figs. 6f, g, and 
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7). In the underlying Prebetic unit is also deformed by thrusts that root into a basal 

detachment located on top of the Hercynian basement (Figs. 6f, g and 7). In the seismic 

strike-lines, lateral ramps are interpreted, particularly beneath the northern SC (Fig. 7a).  

The OU is either completely eroded or not initially present within the SC, but 

outcrops around it to the W, E and N. Earlier Lower Miocene sediments show syn-growth 

features and are also affected by thrusting (Figs. 3a and 6a). Moreover, some Serravallian to 

Lower Tortonian sediments are also deformed by thrusts associated with the SC mountain 

front (Figs. 3a, 5b, c, 6a and f). Displacement along the thrusts within these younger units is 

small, but they do constrain the timing of the thrust system progression toward the NW (Figs. 

6a and f). 

 

4.2.1. Extensional structures 

Apart from the contractional faults that define the main thrust system described 

above, two main extensional fault systems have been observed within the MFTB (Fig. 3a). 

They strike N-S to NW-SE (Fig. 6d) and WSW-ENE (Fig. 6e), respectively.  

The approximately N-S to NW-SE striking, arc-perpendicular normal faults are seen 

both in the field and in the seismic images (Figs. 3a, 6a, d, 7a and c). These faults carry 

significant displacement and strongly control the current W and E limits of the SC with a 

topographic expression (> 400 m) and structural relief drop (Figs. 3a and c). The faults are 

planar to listric and they dip between 60º and 90º mostly outward from the SC (Fig. 6d). 

Slickenfibers show that they are dominantly dip-slip faults (Fig. 6d). Normal faults cut and 

displace the thrust surfaces, the Lower Miocene rocks and, in some cases, Quaternary 

sediments (Figs. 5d). The outcropping normal faults exhibit a maximum throw of c. 1.2 km, 

obtained by means of the Jurassic-Cretaceous boundary offset at cross-section. In addition to 
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the steep faults, low-angle normal faults of similar strike have been also reported [Azañón et 

al., 2012], although these have not been observed in our study area. 

The minibasins formed by these N-S and NW-SE normal faults are filled with 

Langhian to Tortonian sediments, characterized by their poorly defined reflector character in 

the seismic images (e.g. the Cabra basin; Figs. 3a, c, 7a and c) The basin-fill sediments 

include the Lower Serravallian and OU deposits (Hernáiz et al., 1992). In the seismic images, 

the Lower Miocene sediments are interpreted to be cut by the normal faults and they have 

roughly wedge-shaped geometries indicative of growth strata (Fig. 7c). Consequently, the 

Langhian packages within the Cabra basin are interpreted as syn-extensional. Seismic images 

(Figs. 7b and 7c) suggest that the NW-SE striking normal faults have throws of up to ~1s 

TWT (c. 1.25 km) and are detached between the Subbetic and the Prebetic units at around 2.5 

km (2s TWT). Throws of around 1.25 km are of a similar magnitude to the throw calculated 

from cross sections. A comparable listric fault system is interpreted ENE of the SC, although 

these faults do not penetrate below 0.4 km on seismic profiles (0.5 s TWT; Fig. 7a).  

The other major normal fault system within the MFTB, defined by WSW-ENE, arc-

parallel faults is likewise seen both at the surface and from seismic images. The Langhian 

timing of the onset of deformation along these faults is constrained by the interpreted growth 

structure of the OU packages in the seismic lines (Fig. 6g). The faults extend down to 2.65 

km (c. 1 s TWT), accommodating significant NW-SE extension of the MFTB in c. NW-SE 

orientation (Figs. 6e, f and g). A maximum throw for the outcropping normal faults of c. 600 

m is estimated by using the offset of the Jurassic-Cretaceous boundary on cross-sections. The 

throw from the seismic interpretation is c. 0.4s TWT, corresponding to c. 500m. Some of the 

SE-dipping normal faults, particularly in the S margin of the SC (Figs. 3a and 5e) may be 

inverted older thrust planes originated from the Lower Miocene deformation (Fig. 3a and 5e).  
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In addition to the main fault groups, Messinian to Recent, N-S striking, normal faults 

cut the WSW-ENE normal faults (Fig. 3a). These are not discussed further in this paper as 

they are not linked to the Langhian evolution of the FTB which is the focus of this study. 

 

4.3. Frontal fold-and-thrust belt (FFTB) 

With the exception of the transitional zones into the MFTB and the GB, the very poor 

quality of the seismic data from the FFTB has hindered the interpretation of the subsurface 

geology. Thus, the interpretation of the structural style in the FFTB is mainly derived from 

surface mapping. In contrast, the seismic images immediately to the N of the SC 

(MFTB/FFTB transition zone) show highly reflective packages, presumably made up of 

Prebetic or Subbetic limestones, as in the MFTB. The MFTB/FFTB transition zone coincides 

with both the northern limit of the exposed pre-orogenic sequences (Fig. 6g) and the 

southernmost OU outcrops. The dominant structures are inferred to be blind backthrusts 

accommodating significantly less shortening than in the MFTB (Figs. 3a, 6a, 6f and 6g). 

Despite the poor seismic quality, the presence of highly reflective Jurassic limestones permits 

estimation of minimum depths to basement in the transition zone (c. 6.2-6.9 km, i.e. c. 2.35-

2.6s TWT).  

North of this transitional zone, the FFTB is characterized by extensive outcrops of the 

OU and Upper Serravallian to Lower Tortonian sediments (Fig. 3a). The OU can be defined 

as a “block-in-matrix” unit [sensu Festa et al., 2010]: the blocks (olistholits) are composed of 

Jurassic limestones, and Triassic evaporites, wrapped in a plastic matrix of Langhian to 

Lower Serravallian deep water sediments (Fig. 5f) [Roldán et al., 1992; Roldán et al., 2012a]. 

The blocks have sub-angular to rounded shapes and show a gradual but clear size reduction 

toward the NNW: hectometric–scale blocks are common close to MFTB and their abundance 
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progressively decreases toward the GB (Fig. 3a). The OU is onlapped in the NW by shallow 

marine, Upper Serravallian to Lower Tortonian, calcareous sandstones (Fig. 3a). This 

package is further onlapped by Upper Tortonian to Messinian calcarenites and marls that 

thicken irregularly toward the N (Figs. 3a, 8a, b and c).  

In the FFTB, the OU forms the cores to open, upright antiforms that on average strike 

N62ºE (Figs. 3a and 8d). These folds are doubly plunging, without a dominating vergence, 

and have kilometric-scale wavelengths, suggesting they are detachment folds (Figs. 3a, 8a 

and 8b). The OU presumably overlies the basement here because Lower Miocene or older 

rocks have not been identified at outcrop and are absent in wells in the GB farther to the NW 

(Figs. 3a and 8b). The Prebetic units that underlie the Subbetic thrust sheets and are 

encountered in well H-1 within the MFTB must, therefore, pinch out within the FFTB.  

Another structural change occurs at the FFTB/GB boundary where mostly NW-

verging imbricate structures are again interpreted in the seismic images, with some SE-

verging backthrusts (see S83-48; Fig. 8b). These structures are blind thrusts detached at the 

bottom of the NW-thinning OU (Fig. 8b). Both folds and faults affect the Upper Serravallian 

to Lower Tortonian packages that we interpret to show syn-deformation growth structures 

with beds tilted up to 80º in the fold limbs (Figs. 3a, 8a and 8b). 

 

4.4 Gualdalquivir Basin (GB) 

The FFTB/GB boundary is marked by a topographic break that coincides with the 

boundary between the outcropping syn-orogenic Langhian-Lower Serravallian and the Upper 

Tortonian-Quaternary sediments (Fig. 8a). The seismic interpretation of the GB subsurface is 

constrained by surface geology and the well Río Guadalquivir N-1 (Figs. 8a, b and c). The 

GB form the fill to the foredeep depozone infill (see S83-40; Fig. 8b) [sensu DeCelles and 
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Giles, 1996]. In the Carmona-5 well (Fig. 2a), Upper Tortonian-Messinian sediments overlie 

the OU whilst in the well Río Guadalquivir N-1 the Tortonian to Messinian package overlies 

the Hercynian basement (Fig. 8c). The OU pinches out approximately along the line defined 

by Carmona-5 and Río Guadalquivir N-1 (Figs. 2a and 8c), which is in agreement with 

previous works [Martínez del Olmo and Martín, 2016].  

Within the southwestern GB within the study area, the syn-orogenic packages are 

interpreted to be deformed and detached from the basement by NW-verging thrusts. The 

thrust displacements decrease NW-ward. Our interpretations show apparent differences in 

length between hanging wall and footwall ramps cutting Langhian-Lower Serravallian rocks 

(Fig. 8b). Out-of-plane thrust movements may explain this unusual interpreted pattern. We 

have not validated these interpretations by restoration because reliable markers are lacking, as 

seismic reflections do not necessarily correspond to formation boundaries, and because the 

data are not depth converted using reliable velocity data. The interpreted Upper Tortonian-

Messinian package also shows thrusting, unconformities and growth structures such as onlaps 

onto the folds. Deformation intensity within the Upper Tortonian to Messinian sediments 

decreases toward the NW (Figs. 8b, 8f and 8e). Toward the NE part of the study area, the 

Hercynian basement is weakly deformed by reverse faults. Many of these structures possibly 

resulted from positive inversion of earlier normal faults inherited from the rifted paleomargin. 

The current basement depth below the GB varies across and along the GB axis. The 

Tortonian-Messinian packages thicken irregularly toward the FFTB (Fig. 8b). The basement 

also deepens toward the SW, changing from 0.3 to 0.8 s TWT in the NE and from 0.5 to 1.2 s 

TWT further SW (Fig. 8b). Applying an average P-wave velocity of 2500 ms-1 (constrained 

from well Río Guadalquivir N-1), the GB infill is ca. 1.9 km thick in the deepest parts of the 

study area close to the boundary of the FFTB (Figs. 8b and 8c, see also Fig. 6 in Iribarren et 

al., [2009]). 
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4.5. Geometry of the external orogenic wedge  

Combining previous works [e.g. Crespo-Blanc, 2007; 2008] with our data and 

interpretations, we suggest that the main detachment of the External Betic FTB is within the 

Triassic sequence under the IFTB and MFTB. However, we suggest that, as the Triassic 

evaporites pinch out, the detachment moves into the OU in the southern FFTB (Figs. 2a, 6f, 

6g, 7a and 9a). In the MFTB, well and field data show that Subbetic and para-autochthonous 

Prebetic thrust sheets overlie Triassic evaporites (e.g. Figs. 6f, 7b and 8c) whereas the 

evaporites are absent in the wells in the GB and no indication of them are seen at outcrop NW 

of the MFTB/FFTB transition zone (Fig. 8b).Thus, the evaporites pinch-out along the Betics 

has been constrained using the well and outcrop data in our study and is consistent with 

previous works (Fig. 2a; e.g. Pérez-López and Pérez-Valera., 2007). The base of the thrust 

wedge base in the entire area is, despite the detachment being hosted by different units, likely 

to be along the basement top (Fig. 9a). The top-basement dip value (ȕ) is only reliably 

constrained by the seismic and well data within the GB, giving a maximum depth of 2000 m 

and an average ȕ = 4º (Fig. 9c). Under the MFTB and IFTB, we have been able to estimate ȕ 

and the basement depths. Well Río Guadalquivir H-1 gives a reliable constraint to the 

absolute minimum depth to basement of >5000 m below the frontal MFTB. Furthermore, 

seismic interpretation suggests that depth to basement is 6-7 km (Figs. 6 and 7). The  value 

below the MFTB and IFTB is about 5º (Fig. 9c). Given the large depth difference to top-

basement between the GB and the MFTB, a significant increase of ȕ must occur between GB 

and MFTB, forming a basement sloping step (“threshold”) under the FFTB (Fig. 9c). The 

minimum ȕ at this basement threshold must be ~ 12-13º based on simple geometric 

relationships (Fig. 9c). Changing ȕ value under the MFTB within reasonable limits will not 

affect our main conclusions or the requirement for a presence of a basement threshold below 

FFTB as the minimum depth to top-basement is constrained by well Río Guadalquivir H-1. 
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Based on regression analysis, the topographic relief envelope Į is more than 0.2° over 

the GB and the FFTB, and more than 1° over the MFTB-IFTB, with the slope break located 

between the FFTB and MFTB (Fig. 9b). The present Į, especially in the MFTB and IFTB, 

may have been different during the main wedge propagation and Į = 1 is possibly a minimum 

value. However, we consider it to be a reasonable estimate of Į at the time of the wedge 

propagation: the external orogenic wedge is still active evidenced by the presence of 

seismicity that can be associated with the advance of the Betic front (Sánchez-Gómez and 

Torcal-Medina, 2002). Hence, the tectonic wedge is likely to be reasonably close to 

equilibrium. Furthermore, and perhaps most importantly, changing the value within 

reasonable limits do not affect our main conclusions as discussed below. 

  

The slope and base angle changes described above indicate that the wedge geometry 

varies significantly from MFTB-IFTB to GB. Several features described herein coincide 

spatially at the MFTB/FFTB transition: a) the lithological and deformational transition, b) the 

basement threshold, c) the slope break, and d) the pinch-out of the Triassic evaporites and the 

interpreted step-up of the main detachment from the evaporites to the OU. 

 

5. Discussion 

 In this section, we will discuss the timing, the style, and the controlling factors of the 

external orogenic wedge evolution in the External Central Betics.  

5.1 Aquitanian-Burdigalian deformation 

Previous work concludes that the main thrusting within the External Zones of the 

Central Betics occurred during Lower Miocene (Aquitanian-Burdigalian; ca. 20 Ma) [Crespo-

Blanc, 2007; 2008] and that the FTB front was subsequently dismantled generating the OU 
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during Langhian times (ca. 16-14 Ma) [Azañón et al., 2012; Roldán et al., 2012a, b; 

Rodríguez-Fernández et al., 2013] (Figs. 10a and b). However, post-Langhian extensional 

and contractional structures have been widely observed both in the Western Gibraltar Arc 

[Balanyá et al., 2012; Barcos et al., 2012; Jiménez-Bonilla et al., 2015a, b] and in the Eastern 

Betics [e.g. Giaconia et al., 2012; Pérez-Peña et al., 2010; Azañón et al., 2015]. Our 

observations from the IFTB-MFTB agree with these previous results. Because of the age of 

the OU, we suggest that orogenic contraction within the FFTB started after the Langhian 

(Fig. 10).  

The main shortening in the study area may be equivalent to the main deformation 

events in other segments of the External Gibraltar Arc, which is responsible of the tectonic 

stacking of the Betic external zones [e.g. Expósito et al., 2012; Vitale et al., 2014]. Our 

results indicate that the main deformation in the Central Betics is slightly earlier than in the 

Western Betics (upper Aquitanian to lower Langhian, Fig. 10a) [e.g.; Crespo-Blanc and 

Frizon de Lamotte, 2006; Expósito et al., 2012]. This may be an expression of the W-

migration of the Rif-Betic chains (Fig. 1). 

 

5.2 Evidence for Langhian orogen-frontal collapse 

The OU, a chaotic, mass wasting complex deposited c. 15-13 Ma in marine 

conditions, crops out mainly along the frontal MFTB and northwards. It is affected by the 

MTFB frontal thrusts and by folding farther into the FFTB. The significant extent of the OU 

in front of the MFTB, the concentration of hectometric-scale olistoliths close to the MFTB 

front, and the widespread Langhian normal faulting all imply that the mountain front was 

situated in the area of the present MFTB during the Upper Burdigalian-Lower Langhian and 

underwent rapid orogen-frontal gravitational dismantling (Fig. 10b). The MFTB/FFTB 
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boundary and the topographic slope break overlie the basement threshold (Figs. 9a, b and c). 

The basement threshold may be located at an ancient major fault scarp to a normal fault 

inherited from the Mesozoic rifting of the Subbetic paleomargin. The presence of a basement 

threshold, combined with the thinning out of evaporites suggests that wedge basal properties 

varied across the orogenic strike. These variations in turn led directly to the topographic 

build-up in the MFTB, triggering the Langhian gravitational collapse and consequent 

formation of the OU. 

5.2.1. Application of the critical taper model on the Langhian gravitational collapse 

According to the review of Graveleau et al., [2012], the critical taper theory and 

modelling results show that multiple causes can be involved in the transition from “regular” 

wedge propagation to build-up and subsequent gravitational collapse. At a wedge scale, some 

of the most important causes include vertical, lateral and transport-parallel changes in 

material strength of the thrust wedge (lithological/facies changes), changes in the detachment 

frictional properties, and the inherited sub-detachment topography and structure [e.g. Davis et 

al., 1983; Dahlen, 1984; 1990; Calassou et al., 1993; Macedo and Marshak, 1999; Cotton and 

Kovi, 2000; Suppe, 2007; Bahroudi and Koyi, 2003; Luján et al, 2003; Miyakawa et al., 

2010; Graveleau et al., 2012]. Mass wasting recorded by olistostrome formation may itself 

directly affect the subsequent orogenic wedge development by changing the overall wedge 

geometry [Smit et al., 2010]. We focus on the potential effects and interactions of the 

observed basal friction and ȕ variations on the Langhian evolution of the Central Betics FTB 

below (Figs. 11a and b). 

We approximate that the IFTB/MFTB deformed initially very close to critical taper 

and that the present Į value is reasonably close to the Į during Aquitanian-Langhian (Fig. 

11c). The change in the structural style from detachment folds to forward vergent thrusts 

conforms to critical taper models where the basal friction angle b increases [e.g. Dahlen, 
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1984; Argawal and Argawal, 2002]. Detachment folds above weak evaporitic/shaly 

detachments are also well known from natural cases such as the Jura Mountains [Burkhard 

and Sommaruga, 1998; Smit et al., 2003]; the Appalachians [Mount, 2014]; the outer Niger 

Delta toe thrust belt [Cobbold et al., 2009]; and Northern Israel [Gradmann et al., 2005]. The 

effect of ȕ is more controversial. Critical taper theory [e.g. Dahlen, 1984] predicts that, all 

other parameters being equal, moderately increasing ȕ will not increase Į in non-cohesive 

wedges unless the wedge stability field is already very narrow. However, some modelling 

results imply that ȕ might increase Į [e.g.; Koyi and Vendeville, 2003].  

Using equations 9, 17 and 19 of Dahlen [1984], we illustrate the possible effects of b 

and ȕ changes at the FFTB basement threshold on the wedge stability and behaviour (Figs. 

11b and c). Pore fluid factors of Ȝ=0.6 and Ȝb=0.75 are used; other realistic lower pore fluid 

factors (e.g. Ȝ=0.6 and Ȝb=0.85) yield approximately similar results as long as Ȝb> Ȝ. The 

effect of cohesion is estimated to be negligible. The Fig. 11c illustrates two possible end-

member scenarios for the ~Langhian evolution of the FTB front, both of which have a 

basement threshold (ȕ increase from ~5° to 12°) but the role of the pinch-out of the Triassic 

evaporites vary. 

In scenario 1 (path I-III in Fig. 11c), ĭb increases due to the pinch-out of the Triassic 

before the wedge reaches the basement threshold. In this end-member case,,an increase in ĭb 

causes shrinkage of the wedge stability field and raises the taper angle by increasing Į to ~3° 

(path I). Į may increase even more if ĭb approaches unity with ĭ (no weak substrate). As the 

frontal part of the wedge progresses onto the basement threshold (ȕ=12°), it enters the 

overcritical (extensional) domain (path II) as illustrated in Fig. 11c. As a result, the orogenic 

front collapses (path III) creating the OU and the orogen-parallel normal faults form as Į 

evolves towards critical taper. 
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In scenario 2 (path IV), ȕ increases without considerable changes in basal frictional 

properties. In this case, the frontal FTB encounters the basement threshold without Triassic 

pinch-out, i.e. no change in ĭb (path IV); this scenario is the other end-member for this 

particular system. However, we consider it to be unlikely as a pinch-out is interpreted from 

seismic and well data (Figs. 6f, g, 7a and b). This end-member scenario will not itself 

increase Į and cause collapse because the stability field remains unchanged. Subsequent or 

simultaneous shrinking in the stability field for the orogenic wedge due to an increase in ĭb 

would be needed to bring the frontal FTB into the extensional domain. 

Scenario 1) is more likely than scenario 2) because we interpret that the Triassic 

evaporites thickness diminishes significantly from the IFTB to the MFTB (Figs. 6f, g, 7a and 

b), although in reality the tempo-spatial relationships between the basal friction and ȕ are 

probably somewhere between 1) and 2). Nevertheless, an orogen-frontal collapse following 

significant topographic build-up, caused by a combination of increase in both ĭb and ȕ, is the 

most likely explanation for the widespread extent of the OU, the large olistolith size, and the 

extensive orogen-parallel normal faulting observed throughout the frontal part of the 

Langhian FTB.  

Slab dynamics/rollback and/or mantle delamination in the Betics and Rif chain 

development need to be briefly discussed in this context as these processes have played a 

crucial role in the post-Langhian development of the Betic FTB. Late Miocene to Holocene 

slab rupture and associated delamination resulted in topographic uplift and typical volcanism 

[Lonergan and White, 1997; Duggen et al., 2003; Booth-Rea et al., 2007; García-Castellanos 

and Villaseñor, 2011; Bezada et al., 2013; Thurner et al., 2014; Mancilla et al., 2015]. This 

mechanism also drove Late Miocene and younger extension and volcanism in the external 

thrust belt in the eastern Betics [Pérez-Valera et al., 2013] and crustal-scale boudins 

[Mancilla et al., 2015]. However, as the slab effects were more pronounced east of our study 
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area and younger than the proposed wedge stagnation, we consider slab dynamics to have 

little impact to our results illustrating the importance and interaction of the local basement 

properties: a local dip increase has a potential to significantly add to the effects of increasing 

b, and to the magnitude of the subsequent collapse of the orogenic front.   

As a summary, we suggest that i) the front of the orogenic wedge had migrated to the 

MFTB area by the Langhian, and ii) the main shortening and wedge propagation (early 

Miocene) and the post-Langhian shortening and propagation migrating further NW were in 

the study area separated by a intra-Langhian “stagnation” phase where the wedge propagation 

was temporarily disturbed by local topographic build-up and subsequent collapse. This 

stagnation and the building up to a supra-critical state of the wedge taper at the wedge front 

was caused by a combination of the basal dip steepening and pinch-out of the Triassic 

evaporites. The topographic build-up and the resulting collapse coincided in time and space 

with the formation of the OU and the minibasins, likely caused by the Langhian stagnation.  

 

5.3 Post-Langhian evolution  

Post-Langhian deformation is identified throughout the area, and although it is not the 

focus of this paper, this phase is briefly described below. The Langhian-Tortonian sediments 

within the MFTB, FFTB and GB, including the OU which resulted from the frontal collapse, 

are affected by thrust deformation and folding [see also Roldán et al., 2012a, b]. Therefore, 

shortening deformation lasted until at least the Messinian as the orogenic front and its 

foreland basin propagated farther towards NW. In addition, the positive inversion of pre-

existing basement normal faults in the GB (Fig. 8b) could be associated with seismically 

active faults reported in this area (magnitudes 1-6 [e.g. Sánchez-Gómez and Torcal-Medina, 

2002; Pedrera et al., 2013; Sánchez-Gómez et al., 2014]). It is noteworthy that the 
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earthquakes distributed along the FFTB-GB boundary show focal mechanisms congruent 

with the ENE-WSW reverse faults and NNW-SSE normal faults [Sánchez-Gómez and 

Torcal-Medina, 2002]. It appears that the strain partitioning into NE-SW stretching and 

NNW-SSE shortening may still be currently active in the frontal FTB of the Central Betics. 

Moreover, post-Langhian NNW-SSE stretching seems to have taken place.  

The new detachment under the FFTB developed within the OU, which is mostly 

composed of limestone clasts in a matrix of marls, gypsum and clays (Fig. 11a). The 

rheological change between the Triassic evaporites and the OU, the latter presumably having 

higher internal friction than the evaporites, may have contributed to the change on the 

structural style between the MFTB and the FFTB, but the detailed investigation of this is 

outside the scope of this paper. The OU thickness is interpreted to change from 200 m in the 

MFTB to around 1.5 km in the FFTB where it was deposited in the Langhian foreland basin. 

As a result, the double verging detachment folds in the FFTB would be controlled by the 

detachment within the OU. The OU pinches out within or possibly before the GB, associated 

with the dying out of NW-verging fault-propagation folds. These folds, however, together 

with some basement inversion only accommodate a limited amount of shortening, effectively 

marking the end of the main wedge propagation in this area. Inversion of basement faults is 

interpreted to accommodate some of the shortening, whereas there is no evidence of 

basement involvement in the Western Betics, where a thick weak substrate is still present 

farther NW with respect to the FTB deformation front [González-Castillo et al., 2015] (Fig. 

2a). 

The progressive younging of the depocenters NNW-ward is consistent with a post-

Langhian NNW-ward progression of the FTB, probably coeval with tightening of previous 

shortening structures in the MFTB and IFTB (Fig. 10b; see also Crespo-Blanc [2007; 2008]). 
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Although a further subsidence analysis must be considered, it appears that the GB subsidence 

may have continued until the Upper Miocene, migrating progressively toward the NW. 

 

6. Conclusion 

The main conclusions of this study can be summarised as: 

- Four structural domains have been distinguished across the Central Betics from the inner 

FTB to the Guadalquivir foreland basin. They differ in their prevailing type and vergence of 

structures, age of deformation and nature of the involved rock formations. 

- The observed structural style changes and the Langhian orogen-frontal collapse are 

explained through the critical taper theory and result largely from changes in the wedge basal 

properties; the FTB progression slowed down in the area of the present MFTB during the 

Upper Burdigalian-Lower Langhian, with a rapid increase in topography and subsequent 

orogen-frontal collapse, induced by changes in the basal friction and dip angles. 

Simultaneously, N-S normal faults accommodated arc-parallel stretching, some of which 

have remained are active into the Quaternary; 

- The frontal collapse was a major contributor to the formation of the Olistostromic Unit. 

The OU went to become the weak substrate to subsequent thrusts and enabled the renewed 

NW progression of the FTB after the Langhian, once the critical taper was re-established; and  

- The FTB front migrated further into the present Guadalquivir Basin, with the foreland 

depocenter also migrating NW-wards.  
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Figure 1. Location and tectonic map of the Gibraltar Arc (GA) within the Western 

Mediterranean; the Western GA (WGA) is a major salient 
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Figure 2. (a) Simplified geological map of the Betic Chain (northern branch of the 

Gibraltar Arc) showing the main structures (modified from Gabaldón et al., [1994]; geology 

based on Vera et al., [2004] and references therein). OU pinch out boundary constrained 

using information from Martínez del Olmo and Martín, [2016]. (b) Simplified stratigraphy 

and main tectonic units across the Betics (based on Vera et al., [2004]). 
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Figure 3. (a) Structural map of the studied area. The location of the well and seismic 

lines are indicated. (b) and (c) Representative topographic profiles along and across the 

orogenic strike. 

 



 

© 2016 American Geophysical Union. All rights reserved. 

 

Figure 4. (a) Geological map of the IFTB. (b and c) Cross-sections subperpendicular 

to the fold train strike, displaying the detachment-fold geometry. (d) Rose diagram showing 

fold axial trace trends. (e) Interpreted seismic line parallel to the IFTB transport direction. (f) 

Detailed seismic interpretation of a detachment fold limb. (g) Detailed seismic interpretation 

of the IFTB/MFTB boundary showing a change in the thrusting style with clear NW 

vergences. All seismic lines are presented at rough 1:1 scale. 
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Figure 5. Photographs of representative geological features in the study area. (a) NW-

SE striking folds and reverse faults of the IFTB; (b) NW-verging thrusts in the MFTB; (c) the 

frontal thrust scarp of the Sierra de Cabra controlling a significant relief drop; (d) Quaternary 

sediments in the MFTB cut by normal faults associated with arc-parallel stretching; (e) 

previous thrust surface reactivated as a normal fault; (f) Langhian-Serravallian matrix 

wrapping a Subbetic olistolith. 
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Figure 6. (a) Geological map of the MFTB. (b and c) Stereoplot and a rose diagram 

showing the orientation of the main shortening structures (fold axial traces and thrust strikes). 

(d and e) Stereoplots of the N-S, NW-SE and WSW-ENE normal faults with the approximate 
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orientation of the x, y and z stress axes of the ellipsoid. (f) Seismic interpretation of AES-

831B correlated with lithological surface data (color bar); (g) Seismic interpretation of 

AES84-20 with lithological surface data (color bar) showing the deformation at the 

MFTB/FFTB boundary.  
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Figure 7. (a) Seismic interpretation of AES84-16 with lithological surface data (color 

bar) and well data. This seismic line is perpendicular to the transport direction and shows 

multiple lateral ramps, and normal faults caused by arc-parallel stretching. (b) Well 

lithological column and estimations of the average P-wave velocity (well bottom at 2.1s TWT 

from 0.3s above datum). (c) Seismic interpretation of AES83-15 at the W end of the Sierra de 

Cabra, showing the structure of the Cabra Basin. 



 

© 2016 American Geophysical Union. All rights reserved. 

 



 

© 2016 American Geophysical Union. All rights reserved. 

Figure 8. (a) Geological map of the FFTB and GB, and the location of the analysed 

seismic lines and the well Río Guadalquivir N-1 (b, c, f and e). (b) Fold axial traces within 

the FFTB and seismic interpretations. (c) Well Río Guadalquivir N-1 lithological column. P-

wave velocity is estimated to 2500 m/s (well bottom at 0.6s TWT from 0.13s above datum). 

(d) Rose diagram showing the fold axial trace direction. (e) Detailed seismic profiles 

interpretation of the Betic frontal thrust and (f) the geometry of the fault-propagation folds in 

the GB. 
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Figure 9. (a) 3D block diagram covering the studied sector and illustrating the spatial 

relationships of the wedge structures, the topography, and the FTB/basin migration. (b) 

Representative topographic profile (Location in Fig. 2a) and the topographic relief envelope Į 

(black line). Examples of the linear regression used to calculate Į in different sectors are also 

shown. (c) Basal slope ȕ changes across the study area, based on seismic interpretations and 

well data. ȕ steepening within the FFTB is not directly observed but a minimum ȕ of ~12° is 

suggested to explain the different basement levels below the GB and the MFTB/IFTB. 



 

© 2016 American Geophysical Union. All rights reserved. 

 

Figure 10. (a) Chronologic chart of the deformation phases of the Central Betics FTB 

compared with the phases in the Western Betics [Jiménez-Bonilla et al., 2015a]. (b) 

Schematic 3D block diagrams illustrating the evolution of the External orogenic wedge. 
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Figure 11. (a) Schematic diagram illustrating the tectonic model where the variations 

of ȕ and detachment strength are correlated with the different structural styles. (b) Schematic 

diagrams illustrating the effect of frictional vs. non-frictional detachments on wedge 

geometry. (c) A simple wedge stability analysis accounting for the changes in ĭb and ȕ 

beneath IFTB/MFTB and MFTB/FFTB threshold. The approximate stability field when 

b=35° is shaded with grey. The graph illustrates the two scenarios as discussed in the text: 

1) growth of the taper, FTB migration to the basement threshold (ȕ=12°), resulting in the 

orogen-frontal collapse (I-III); 2) the frontal FTB encounters the basement threshold 

before/simultaneously with encountering the Triassic pinch-out (IV). Illustrations of wedge 

faulting styles outside the wedge stability field are adopted from Dahlen [1984].    


