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Abstract. The ELM wetted area is a key factor in the peak power load during an

ELM, as it sets the region over which the ELM energy is deposited. The deposited

heat flux at the target is seen to have striations in the profiles that are generated by

the arrival of filaments ejected from the confined plasma. The effect of the filaments

arriving at the target on the ELM wetted area, and the relation to the midplane mode

number is investigated in this paper using infrared (IR) thermography and high speed

visible imaging (>10kHz). Type I ELMs are analysed, as these have the largest heat

fluxes and are observed to have toroidal mode numbers of between 5 and 15. The

IR profiles during the ELMs show clear filamentary structures that evolve during the

ELM cycle. An increasing number of striations at the target is seen to correspond

to an increase in the wetted area. Analysis shows that the ratio of the ELM wetted

area to the inter-ELM wetted area, a key parameter for ITER, for the type I ELMs

is between 3 and 6 for lower single null plasmas and varies with the ELM midplane

mode number, as determined by visible measurements. Monte-Carlo modelling of the

ELMs is used to understand the variation seen in the wetted area and the effect of an

increased mode number; the modelling replicates the trends seen in the experimental

data and supports the observation of increased toroidal mode number generating larger

target ELM wetted areas. ITER is thought to be peeling unstable which would imply

a lower ELM mode number compared to MAST which is peeling-ballooning unstable.

The results of this analysis suggest that the lower n peeling unstable ELMs expected

for ITER will have smaller wetted areas than peeling-ballooning unstable ELMs. A

smaller wetted area will increase the level of ELM control required, therefore a key

prediction required for ITER is the expected ELM mode number.
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1. Introduction

The heat flux to the divertor during ELMs is a key issue for ITER due to the short

duration and high intensity loads that they generate [1]. The ELM heat load can limit

the operational lifetime of future devices due to damage to the divertor and as a result

a means of ELM control is required [2]. A key parameter for ITER in the scaling of

the ELM heat load is the ratio of the ELM to inter-ELM wetted area, as this sets the

divertor area over which the ELM energy is deposited and correspondingly affects the

level of control required to reduce the ELM heat load to tolerable levels [3]. It has been

observed via fast imaging [4] and confirmed via simulation [5] that the ELM ejects a

number of filaments from the midplane of the plasma. The number of filaments ejected

is governed by the mechanism which drives that ELM unstable; with peeling unstable

ELMs exhibiting the lowest toroidal mode numbers and ballooning unstable ELMs the

highest [6]. The filaments travel from the plasma edge, depositing heat and particles

to the target during their motion [7] which results in the formation of striations in the

target profiles which were first observed on ASDEX-Upgrade [8, 9] and subsequently on

MAST [7], DIII-D [10] and JET [11]. In addition to the filament motion, the filaments

have been observed to carry a current and leading to ergodisation of the flux tube

defined by the filament [12]. Generally, the ELMs in MAST are convective in nature for

pedestal temperatures below 150 eV, therefore it would be expected that the profiles

can be generated by considering the motion of ELM filaments over the ergodisation

effects [13]. The ergodisation and the filament motion both contribute to the overall

strike point pattern seen on the divertor target. Recent analysis from NSTX has shown

that the number of striations in the divertor profiles affects the ratio of the ELM to

inter-ELM wetted area [14]. Therefore, as the ELM mode number may differ in ITER

compared to present devices, understanding of how the ratio of the ELM to inter-ELM

wetted area scales with the toroidal mode number is key to predicting the ITER ELM

wetted area.

This paper aims to investigate the effect of the ELM toroidal mode number has

on the wetted area at the target using IR thermography and visible imaging. Type I

ELMs on MAST have mode numbers of the order n=7-20 as measured using fast visible

imaging at the midplane [15], suggesting that the MAST pedestal is peeling-ballooning

mode unstable. In addition to direct measurement of the ELM toroidal mode number

at the midplane, striations in the IR target profiles can be mapped to the midplane and

a mode number determined which can be compared to the visible data [16]. The paper

first investigates IR measurements of the ELMs in MAST in section 2 before generating

a database of ELMs for analysis in section 3. The properties of the ELMs at the target

are then extracted and compared to the midplane in section 5. The scaling between

the number of filaments seen at the target and the ELM wetted area is investigated in

section 5 and then interpreted using modelling in section 6.
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2. IR measurements of the ELM target footprint in MAST

Understanding the evolution of the target heat flux due to an ELM on MAST can

be gained by considering a single ELMy discharge and using this discharge to extract

key ELM parameters and timescales. The example discharge here is MAST discharge

30378 which is a 400 kA lower single null plasma, heated with 3.4 MW of neutral beam

injection, containing 25 type I ELMs. The divertor heat flux from ELMs is measured at

the lower outer divertor using a medium wavelength (4.5-5.0 µm) infrared (IR) camera

operated at 5 kHz, with an integration time of 28 µs and viewing the divertor at a

spatial resolution of 1.5 mm per pixel. In order to measure at this frame rate, the

camera is operated with a 320 pixel wide window in the radial direction and an 8

pixel wide window in the toroidal direction. As a result, the total toroidal coverage of

the divertor target measured by the camera is of the order 0.5 degrees in the toroidal

direction. The heat flux to the target determined from the measured surface temperature

evolution using the inverse heat conduction code THEODOR [17], including a surface

layer parameter of between 70 and 140 kW m−2 K−1, which is determined by energy

balance and consistency of ELM heat flux across the divertor for ELMs of the same

energy. An example of an ELM captured using the IR camera is show in figure 1 a)

which shows the time evolution of the divertor heat flux along the abscissa and the

spatial extent along the ordinate. The increased heat flux from the ELM along with the

characteristic broadening of the ELM footprint can be seen at the target in a). Panel b)

shows a comparison of a profile taken at the peak of the ELM heat flux and one during

an inter-ELM period, normalised to the peak heat flux. The data in figure 1 show a

clear increase in both the width and magnitude of the heat flux to the divertor during

the ELM.

a) b)
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Figure 1. Contour plot of the heat flux from an ELM shown in a), where the abscissa

corresponds to the time during the discharge, normalised to the midplane ELM Dα

emission and the ordinate is the target radial position. Panel b) shows a profile taken

at the peak of the ELM heat flux and one taken 1 ms prior to the ELM during an

inter-ELM period.

Visible midplane imaging of ELMs has shown that the ELM filaments dwell at the

edge of the plasma following formation and then move out across the SOL [18]. The
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timescale over which the particles arrive at the divertor target is set by the motion of

the particles along the magnetic field and is consistent with parallel propagation at the

ion sound speed. The temporal evolution of ELMs in MAST can be characterised using

the 25 ELMs in discharge 30378. In this discharge several ELMs are combined in time

to generate a composite ELM showing the evolution of the heat flux to the target as a

function of time through the ELM. To generate the composite ELM, the Dα from the

25 ELMs is used to align the ELMs in time; the peak of the emission is taken to be

t=0 and the amplitude of the signal is normalised to 1 at this time, as shown in figure 2

a). The data in figure 2 a) shows that each these ELMs have similar rise and fall times

(black dots). A time average of all of the data can be taken to produce the red solid

line shown in the figure which highlights the rapid ELM rise and subsequent decay. By

using the t=0 point defined using the Dα data, other properties of the ELM can be

assessed to see how they vary in time. Figure 2 b) shows that the peak in the heat

flux at the target is of the order 150-200 µs after the increase in light at the midplane,

corresponding to the parallel transit time of ions at the pedestal temperature from the

midplane to the divertor. The ELM wetted area can be calculated using the total power

to the divertor, Ptot, and the peak heat flux qpeak. The total power is calculated using

the integral over the ELM profile as given by;

Ptot = 2π

∫
q(r)rdr (1)

where r is the radial location at the target and q(r) is the radial heat flux profile.

In the case of the ELM heat load, the integral is taken across the whole of the measured

profile. Generating a wetted area for the inter-ELM profiles is required to assess the

broadening that occurs during the ELM. For inter-ELM heat flux profiles the power to

the target is calculated over only the region around the peak of the heat flux. The region

is determined by fitting an exponential to the SOL side of the heat flux profile; using

3 times the fall off of this exponential on the private flux region (PFR) and 4 target

fall off lengths on the SOL side as the radial range of the integral which represents the

region over which the inter-ELM power decays to the background level. Extending the

integral beyond this range causes noise to be included from regions where there is no

heat flux. Once the value of Ptot is calculated, the wetted area, Awet is calculated as

Awet = Ptot/qpeak [14]. Previous methods used to calculate the wetted area involve the

integral of the heat flux in time as well as space [19, 20] which adds uncertainty both on

the definition of the start and end of the ELM and to the radial extent of the ELM heat

flux. The resulting values for Awet using the method by Jachmich et al [19] gives values

of the order half those given by the method used in this paper but result in similar

trends.

The temporal evolution of the ELM wetted area for the ELMs in discharge 30378 is

shown in figure 2 c) for the corresponding peak heat fluxes shown in panel b). The ELM

wetted area can be seen to increase as the ELM peak power load increases, consistent

with the increase in the broadening of the profile seen in figure 1. The wetted area is
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seen to increase from the inter-ELM level of 0.3 m2 to 0.7 m2 during the ELM, which

is a 2.3 fold increase in the wetted area. The data in figure 2 shows that the maximum

wetted area at the target coincides with the peak heat flux to the target.
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Figure 2. Panel a) shows the Dα temporal evolution from an average over 25 ELMs

with the time normalised to the peak in the emission. Panel b) shows the corresponding

ELM heat flux for the ELM, with the temporal evolution of the ELM wetted area shown

in c). For all of the plots, the black circles represent the individual data points with a

binned average shown by the solid red line for the case of a) and red line with triangles

for b) and c). The variation in a given bin is given by the grey error bar.

During the peak of the heat flux the IR profiles are seen to exhibit several distinct

maxima in the SOL part of the profile [21, 22]. Figure 3 shows a typical ELM profile

at the peak of the ELM heat flux. The distinct maxima seen in the profile are seen to

be caused by the arrival of the individual ELM filaments at the target, as confirmed

using visible imaging [7]. The maxima can be used to extract information about the

properties of the ELM such as the radial and toroidal filament diameters and mode

number of the ELM filaments. The peaks are detected using a threshold on the signal

level such that all peaks must have a magnitude greater than 15% of the peak heat

flux in the profile with secondary maxima required to be 30% above the neighbouring

local maxima. These thresholds on the profile level produce accurate identification of

the peaks at the target, which can be seen in figure 3 where the maxima are identified

using the red dot-dashed lines. Once the local maxima have been located, the minima

around them can be found (blue long dashed line) and subsequently the half width, half

maximum (HWHM) determined (grey horizontal lines).

The detection algorithm can be applied to each of the 25 ELMs in discharge 30378

and the temporal evolution of the number of maxima seen in the target profile, ntgt
fil,

as function of the time through the ELM cycle is shown in figure 4. The number of

maxima in the target profile can be clearly seen to increase during the rise in the peak

of the heat flux, although there is some variation from ELM to ELM in the location of

the maximum number of striations seen at the target. The maxima in the profiles are

generated by the arrival of filaments at the target, though it may be the case that a

given filament extends more than once through the field of view of the IR camera. The

correlation between the number of striations seen at the target and the ELM wetted
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Figure 3. Detection of filament local maxima across an ELM profile taken at the

peak of the ELM heat flux. The local maxima are marked by the red dot-dashed and

the corresponding minima by the long dashed blue lines. The HWHM of the maxima

are then indicated by the horizontal grey lines.

area, which both increase together, suggests that the arrival of the filaments at the

target plays a role in the overall size of the ELM footprint [9, 14].
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Figure 4. The number of local maxima corresponding to filaments, n
tgt
fil, as a function

of time during the ELM averaged of 25 ELMs. The black points correspond to the

individual ELM profiles with a binned average shown by the red line and triangles.

3. ELM database used for analysis of target data

The analysis of the single discharge shown in the previous section shows that the peak

heat flux, wetted area and the number of striations at the target occur at similar times.

Therefore, a database of lower single null and double null discharges has been generated

by extracting the wetted area and the number of striations seen in the target IR data

at the time of the peak ELM heat flux. The database allows the effect of the ELM
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properties on the wetted area to be investigated. It is well known that there are several

ELM types, each with different properties such as frequency, magnitude and mode

number [23]. In this study, we restrict ourselves to type I ELMs, as these are observed

to be the ELMs with the lowest toroidal mode number. On MAST, a good discriminator

of ELM type is the electron temperature at the pedestal top, whereby type I ELMs are

seen to have pedestal top temperatures above 100 eV [15]. The type I ELMs in the

database are selected based on this threshold on the pedestal top temperature which is

found using Thomson scattering [24] profiles of the plasma and performing a tanh fit

to determine the pedestal parameters [25]. The parameters for a given ELM are taken

in the last 20% of the ELM cycle. Application of this cut on the pedestal temperature

produces a database of type I ELMs which consists of 84 LSN ELMs and 15 DND ELMs.

The analysis of the target footprints and timescales in LSN data can be complicated

by the existence of secondary filaments that are a result of the interaction of the ELM

filaments with coils or support structures inside the vessel [26]. The secondary filaments

have been seen to extend the duration of the Dα decay at the midplane and the ion

current at the target [26]. In order to understand what effect these secondary filaments

have on the heat flux profiles, a comparison of the Dα duration and the duration of the

target heat flux decay has been made between LSN and DND plasmas. The LSN data

show longer Dα decays than the DND data, but both discharge types show the same

heat flux duration at the target. This suggests that the secondary filaments do not carry

a significant heat flux to the target and as a result do not affect the IR target profiles

and analysis presented here.

4. Type I ELM wetted area and the number of target filaments

The variation of the wetted area as a function of ELM energy for type I ELMs for

both LSN and DND discharges is shown in figure 5 a). Previous studies where all ELM

types are considered has seen an increase in the ELM wetted area with the ELM energy

[20, 16, 15]. However, when only one ELM type is considered the LSN data (black

circles) show a weak dependence of the wetted area increasing with the stored energy

which is within the scatter seen in the points. The variation in the wetted area at a

fixed ELM energy is seen in a number of studies across multiple devices [27, 20] and

suggests that the ELM energy is not the only factor in setting the ELM wetted area.

The data from the DND discharges produces wetted areas that are generally smaller

than the LSN data for a given ELM size and when considered alone there is a similar

weak trend of increasing wetted area with ELM energy, though as with the LSN data,

the scatter is significant. The difference in the wetted area between the LSN and DND

data can be accounted for by the differing flux expansions between the two equilibria.

The LSN data have flux expansions of the order 6.5, compared to typical value of 4 for

the DND data. The wetted area, taking into account the flux expansion, is shown in

figure 5 b). The figure shows that once the flux expansion is taken into account, the

ELM wetted area across both types of plasma configuration are comparable.
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Figure 5. The calculated ELM wetted areas for type I ELMs shown in a), with the

flux expansion removed in b), both as a function of ELM energy. LSN data is shown

by the black circles and DND data by the blue triangles.
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Figure 6. The ELM wetted area (panel a) corrected for flux expansion as a function

of the number of filament peaks seen at the target is shown in a). The ratio of the

ELM to inter-ELM wetted area as a function of the number of striations seen at the

target for type I ELMs is shown in panel b). LSN data is shown by the black circles

and DND data by the blue triangles.

The number of striations seen in the target ELM profiles, nfil
tgt, is calculated as

described in section 2 and varies during the ELM cycle as shown in figure 4. The

variation of the wetted area with the number of striations or filaments in the target

profile can then be investigated using the type I ELM database. Figure 6 a) shows

the variation of the ELM wetted area with the number of striations seen in the target

profiles with the flux expansion taken into account where all of the ELM parameters are

extracted at the peak of the ELM heat flux. The black circles correspond to individual

LSN ELMs and the blue triangles correspond the DND ELMs. The data shows that

the wetted area increases with an increasing number of target filaments in both LSN

and DND plasmas as both sets of data points follow a similar trend. The relationship

between an increase in the number of striations at the target and an increase in the target
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wetted area has also been seen in LSN ELMs on NSTX [14]. It is expected that a larger

wetted area will give an increased number of filaments because of the mapping of the

radial target size to the midplane toroidal angle [9, 16]. Profiles covering larger radial

sizes will encompass larger toroidal angles at the midplane, and as such can capture

more filaments. The scaling of the wetted area with the number of target striations is

stronger than the scaling of the wetted area with the ELM energy, which suggests the

number of filaments arriving at the target is dominant in setting the wetted area at a

given point in the ELM cycle.

The ratio of the wetted areas is an ITER relevant quantity and includes the

correction for the flux expansion which is taken to be the same for ELM and inter-ELM

periods in a given ELM. The use of the ratio of the ELM to inter-ELM wetted area is used

widely in these studies, but it does mix ELM transport and SOL transport which are

governed by different mechanisms. It is likely that as the inter-ELM width scales as the

inverse of the poloidal field and the plasma pressure scales as the square of the poloidal

field, may result in larger broadenings for ITER but similar wetted areas. The scaling of

the ELM/inter-ELM area as a function of nfil
tgt is shown in figure 6 b) and show a similar

trend to the wetted area data. The inter-ELM area in figure 6 b) has been generated

using a parameterisation of the experimentally determined values. A parameterisation

is used to generate a value for the inter-ELM area prior to a given ELM, this is used

instead of the area calculated experimentally as significant scatter is seen SOL width

studies which would affect the analysis of the ELM area. The parameterisation for the

inter-ELM area depends on the plasma current as this has been seen to be the quantity

which most affects the inter-ELM SOL width [28, 29]. The observed range for LSN data

of 3 ≤ AELM
wet /AInter−ELM

wet ≤ 6 is consistent with measurements from other machines

where the upper limit seen is 6 [21, 27, 22]. The broadening seen in the DND data is

smaller, with a range of 1 ≤ AELM
wet /AInter−ELM

wet ≤ 4, which is at the lower end of the

range required for successful ELM mitigation in ITER.

5. Relating the target filament number with the ELM mode number

The model of an ELM as a number of filaments travelling radially and toroidally away

from the plasma edge has been seen to generate profiles at the target that are consistent

with those seen experimentally [7]. If the number of filaments at the target plays a role in

setting the ELM wetted area, then this would suggest that the ELM wetted area would

also scale with the midplane toroidal mode number of the ELM. The spatial structure

seen in the ELM profiles at the target can be used to determine the ELM midplane

toroidal mode number by mapping the IR data to the midplane using the magnetic

field, as previously performed on other machines [9, 11] and on L mode profiles in

MAST [16].
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5.1. Quasi toroidal mode number from IR data

The identification of the filament peaks in the target profiles allows the separation

between the peaks seen in the target profiles to be determined. Figure 7 shows the

variation of the filament separation in the IR profiles and the number of striations at

the target. The data suggests that for both LSN and DND plasmas, higher numbers of

filament peaks in the profile gives rise to a smaller spacing between the filaments at the

target, though there is scatter about a given number of target filaments. The midplane

quasi toroidal mode number (QMN) can be determined using the previously established

relationship between the radial spacing at the target and the toroidal separation at the

midplane [9, 16]. The quasi toroidal mode number is derived from an average toroidal

distance between striations for the observed toroidal angle. High speed imaging shows

that the filaments are equally spaced toroidally which is consistent with the variation

seen in the distance between the striations [30].
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Figure 7. The radial separation between two filament peaks in the target profile as a

function of the number of filament peaks detected. The data for the LSN plasmas are

shown as black circles and the data for the DND plasmas are shown as blue triangles.

Once the location of the filament peak at the target is determined, field line

tracing can be used to map the radial location at the target to the toroidal location

at the midplane. Repeating the mapping for each of the filaments detected in a given

ELM profile then allows the angular separation of the filaments at the midplane to

be calculated. The quasi toroidal mode number (QMN) calculated using the filament

spacing can then be used to estimate the ELM mode number from the IR target data.

The QMN is calculated using the formula (taken from [9]);

QMN =
1

N

N−1∑
i=1

2π

δφi

(2)

where N is the number of striations analysed in a given ELM profile, δφi is the

toroidal angle displaced at the midplane between the ith and the ith + 1 filament. ELM
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filaments located close to the strike point (within 5 cm of the LCFS) show a large

sensitivity of the mapped midplane toroidal angle due to the large variation in connection

length seen close to the X point. At the spatial resolution of the IR camera, the error

on a given toroidal location within 5 cm of the LCFS is between 5 and 20 degrees.

Therefore, assuming a typical mode number of n=10 and the corresponding error in the

separation between two filaments at ∆RLCFS = 5 cm, the error on the calculated mode

number would be 30%. The error decreases with increasing radius, with filaments at 10

cm from the strike point accurate to 10% in QMN.

The QMN calculated at the midplane is seen to lie in the range 5 ≤ QMN ≤ 25, as

shown in figure 8, with the peak of the distribution being in the range QMN = 8− 10.

The spread of values is larger than the error introduced by the mapping, justifying the

use of only the data beyond 5 cm from the LCFS. In addition, the value for the wetted

area can be affected by the time during the ELM cycle and the IR frame rate. The range

and peak value of the QMN from the IR data are consistent with past analysis of the

toroidal mode number calculated using midplane visible imaging in similar discharges

[15]. Studies on JET also show the ELM QMN spanning the same range as the MAST

data presented here, with the JET data showing little scaling with plasma parameters

[31].
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Figure 8. The calculated quasi toroidal mode number (QMN) along the abscissa

against the number of striations seen in the IR target profiles on the ordinate for both

LSN (black circles) and DND (blue triangles) plasmas.

The number of striations seen at the target generally maps to a higher toroidal mode

number at the midplane, with the QMN being approximately 1.5 times larger than the

observed number of target filaments. The discrepancy between these two quantities is

expected as the filaments will not all deposit energy in the field of view of the IR camera

(with the discrepancy suggesting that the toroidal coverage for the MAST data is 240

degrees), and there is variation in the departure time of the filaments which can affect

the target pattern at the divertor by changing the arrival time of one filament relative

to another [30]. The data shows that there is agreement in the range of toroidal mode
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numbers seen for both LSN and DND plasmas.

Figure 9 a) shows the ratio of the ELM to inter-ELM wetted area as a function of

the QMN calculated from the IR data. The data plotted in the figure is equivalent to

the data in figure 6 b) and shows a trend of increasing ratio of ELM to inter-ELM wetted

area with QMN. The increase in the ratio of the wetted areas arises from an increase in

the ELM wetted area, as can be seen in figure 9 b) as both the flux expansion and the

inter-ELM wetted are do not scale with the ELM QMN. The scaling of the wetted area

is expected given the relationship between the QMN and the number of striations seen

at the target shown in figure 8. The scaling of the wetted area with QMN is similar

between both LSN and DND data when the flux expansion is taken into account.
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Figure 9. The variation of a) the target ELM to inter-ELM wetted area ratio with

QMN and b) the ELM wetted area for both LSN and DND plasmas.

5.2. Quasi mode number from visible midplane imaging

The QMN calculated from the IR data can be compared to data from midplane visible

imaging to investigate if the toroidal mode number at the midplane affects the wetted

area of the ELM. Ideally, visible midplane imaging would be available for the data shown

in figure 9 a), however, the analysis of the visible imaging data to determine the mode

number requires high speed visible imaging (> 10 kHz frame rate) of the ELM cycle to

identify the mode number which is not available for the shots shown above. However, a

selection of high speed imaging data is available for DND discharges which are similar

to the data in the IR database, yielding 65 type I ELMs which can be analysed for the

visible mode number. The IR wetted area for these shots can be calculated using lower

spatial resolution IR data (5 mm per pixel), but the number of striations at the target

cannot be accurately determined using the lower spatial resolution IR data.

The QMN from the visible data is obtained by taking a field line generated at the

plasma edge and extracting the pixel intensity at each point along it. If the intensity

is plotted as a function of the toroidal angle at which the field line is overlaid onto the

image, filaments that align to the field line correspond produce large line integrals and
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Figure 10. a) The lower outer divertor ELM to inter-ELM wetted area as a function

of the quasi mode number derived from visible data in double null discharges. b) The

lower outer divertor ELM wetted area as a function of the quasi mode number derived

from DND visible imaging.

allow the toroidal angle at which the filaments are located to be identified [18]. The

visible imaging data is taken during the rise time of the midplane Dα before the filaments

separate from the LCFS and prior to the production of any secondary filaments which

could affect the mode number. The QMN is then calculated by applying equation 2

to the resulting spacing between the filaments. The visible QMN for the type I ELMs

analysed is shown in figure 10 a) against the target ratio of ELM to inter-ELM wetted

area calculated from the IR measurements. The typical visible mode number is in the

range n=10-20 which is consistent with past analysis of DND and LSN ELMs [30, 15]

and of the values calculated from the target IR data. As for the case of the IR data,

the increase in the ratio of the wetted areas is generated due to an increase in the

ELM wetted area (figure 10 b), with the inter-ELM wetted area and flux expansion not

showing a scaling with the mode number.

The QMN from the IR data and the visible data are within the same range, as

shown in figure 11, where the peak value is similar for both, though the visible data

shows a higher upper limit on the mode number. The higher visible mode number

compared to the value calculated by the IR data is consistent with the restricted field of

view of the IR compared to the visible as discussed previously. The overlapping ranges

in the dataset used for the IR analysis of the QMN and the visible QMN supports

the argument that discharges in both datasets are similar and shows that there is a

relationship between the midplane mode number, number of striations at the target

thought to be from the arrival of filaments and the wetted area at the divertor. The

wetted area over the two datasets are similar, with a larger range of values in the visible

data case. The relationship between these quantities is such that increasing midplane the

mode number leads to an increased wetted area at the target from the ELM filaments.

Recent ITER predictions have used the observed range of 3 ≤ AELM
wet /AInter−ELM

wet ≤

6 to estimate the level of mitigation required for ITER [3]. The ITER prediction when
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Figure 11. QMN calculated using the IR data and the visible data for discharges

with similar plasma characteristics.

the ratio is 1, a minimum ELM frequency of 45 Hz is required to control the ELMs

and reduce them to a tolerable level. The broadening seen in the MAST data, which is

consistent with current predications, if it applies to ITER, would allow controlled ELMs

at frequencies of between 7 and 15 Hz, which is consistent with the level of mitigation

currently assumed for ITER [3]. However, this is based on the assumption that the

ELMs in ITER are driven unstable by the same mechanism as seen in MAST. If the

ITER ELMs are peeling unstable, as suggested by modelling [32] then the ELM mode

number will be lower than that seen on MAST. As the trend from the MAST data is

a decreasing amount of broadening with ELM mode number, in agreement with NSTX

[14], this would suggest less broadening on ITER than MAST which would affect the

level of ELM control required. It also assumes that there is a linear reduction in the

ELM heat flux with ELM frequency, which is not observed to be true as the heat flux is

typically observed to fall at a lower rate than the reduction in the ELM energy [27, 20].

Therefore, a key issue for assessing the ELM wetted area in ITER is predicting what

the expected ELM mode number will be.

6. ELM filament modelling

The experimental data show an effect of the toroidal mode number of the ELM on the

strike point footprint, however, there is a significant level of scatter in the data and this

is seen not only in MAST data, but also in data from other machines [27]. In order to

better understand the target profiles during ELMs, modelling can be performed using a

Monte Carlo simulation [7] whereby a filament of fixed radial and toroidal size is followed

as a function of time while it propagates through the magnetic field with a given toroidal

and radial velocity. The particles in the filament have a Gaussian distribution about the

filament centre and are assigned a Boltzmann temperature distribution. The model only

tracks ions and the ion temperature is taken to be 100 eV corresponding to the pedestal
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top electron temperature and assuming that the ion and electron temperature are equal

in the pedestal. The mapping of the particle location through the magnetic field from

the midplane to the target is performed using a parameterisation of the magnetic field

obtained through field line tracing, which is described in Kirk et al [7]. The modelling

described here uses the magnetic equilibrium of a 400 kA LSN discharge for all cases.

The diameter of the filaments in the toroidal direction, perpendicular to the field line,

is 10 cm and the diameter in the radial direction is 7 cm. These parameters are set to

produce a target profile that is representative of the IR measurements.

Experimentally, the ELM filaments are seen to remain stationary at the plasma edge

for a certain period of time and then separate from the LCFS. Following the separation

of the filaments from the plasma edge they decelerate toroidally whilst accelerating

radially out into the SOL. The dwell time at the plasma edge is taken to be 200 µs and

this is determined by matching the heat flux rise time in the modelling with that from

experiment. There is a random time offset of ± 25 µs added to the separation time as

spread of separation times is seen experimentally [7]. The acceleration of the filaments

in the toroidal and radial direction is assigned for a given filament with the value for

the acceleration derived from experimental measurement; the radial acceleration 1x108

ms−2 and the toroidal deceleration is centred on -3x108 ms−2 [7]. Each of the particles

in the filament are then followed until they strike the divertor surface when the location

and time of arrival is recorded. The IR profiles are simulated by selecting all of the

particles that arrive in a radial segment of the target and binning according to the time

of arrival. The size of the time bin of 30 µs is chosen to reflect the integration time of

the recorded IR data.
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Figure 12. a) A modelled ELM profile at the target (red line) compared to the

measured ELM heat flux (black solid line). b) Contour plot of the spatial and temporal

evolution of the ELM at the target to show the obvious similarities between the

modelled data and the IR measurements. The time axis is normalised to the peak

of the heat flux.

In general, these parameters are adjusted to give a good match to the experimental

profiles and timescales seen during the ELMs. A comparison of the modelled profile with

an experimentally measured one is shown in figure 12 a) and it can be seen that the
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overall shape and randomly located filaments can be seen and are consistent across both

modelled and experimental profiles. The temporal evolution of the heat flux is shown in

12 b) and is consistent in terms of temporal evolution of the heat flux experimentally (as

shown in figure 1 a)). The wetted area is calculated by using the same technique as used

for the IR data. A steady state background profile with peak heat flux 10% of the ELM

peak and of width λq = 5 mm at the midplane is added onto the data to represent the

inter-ELM heat flux as the model only recreates the heat flux from the ELM. Further

refinement of the model could be made to make an exact match, however, it is expected

that the target profile will vary from ELM to ELM and with toroidal angle. As such

the general agreement seen between modelling and experiment shows that the model

accurately captures the ELM effects on the target profiles.

The first test of the model is to investigate the effect of the ELM mode number

on the number of striations seen at the target. Modelling using input mode numbers

of n=5, 10, 15 and 20 is used to generate target profiles, which are then analysed

using the peak detection applied to the experimental data. The location of the peaks

can then be converted, as with the experimental data, into a midplane QMN using a

mapping between the target radius and the midplane toroidal angle. Figure 13 shows

a comparison between the modelled midplane mode number and the QMN returned

from the modelled profiles. The modelling supports the experimental data where a

positive scaling between the number of target filaments and the midplane mode number

is seen. The modelling also shows the QMN is lower than the actual ELM mode number,

consistent with the interpretation of filaments at different toroidal locations not fully

extending into the field of view of the IR camera or are not detected due to the target

profile resolution used.

0 5 10 15 20 25
Input midplane n

0

5

10

15

20

25

P
ro

fil
e 

de
te

rm
in

ed
 Q

M
N

Figure 13. Comparison of the input mode number to the model and the QMN

calculated using the modelled profile and peak detection.

The modelled target footprint is available for all toroidal angles at the target at

any point during the ELM cycle, unlike the IR measurements where only one toroidal

location can be measured. The availability of all the toroidal information allows the
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variation of the profile to be investigated for the same upstream ELM conditions. A

sample of 150 toroidal locations are taken, evenly spaced from the full toroidal footprint

obtained from the model. Selecting these locations allows the effect of the toroidal angle

on the wetted area to investigated for the same ELM. The result shows that the wetted

area exhibits scatter about an average value, as is seen experimentally. Figure 14 a)

shows how this toroidally averaged wetted area changes as the number of ELM filaments

in the simulation is increased, whilst keeping the fraction of particles in a filament

constant. The error bars represent the standard deviation of the wetted area returned

by the model as a result of taking profiles at different toroidal angles.
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Figure 14. The modelled target wetted area represented by the ratio of the ELM to

inter-ELM wetted areas averaged over 150 toroidal locations for a fixed ELM energy

and a varying number ELM toroidal mode number is shown in panel a). The error

bars are the standard deviation on the mean of the data. Panel b) shows a comparison

of the toroidally averaged modelled ELM profiles at the peak of the heat flux for ELMs

for two different ELM toroidal mode numbers.

There is a trend of increasing wetted area with toroidal mode number, which is

consistent with the experimental data shown in figure 9 a) and supports the observation

that the QMN affects the wetted area at the target. For each of the modelled cases with

a different toroidal mode number, a profile can be generated from the modelled data to

see what effect the changing mode number has on the profile shape. Figure 14 b) shows

two profiles extracted from the modelling using a toroidal mode number of n=5 and 15

where the profiles have been averaged over all toroidal locations to assess the impact of

increasing the ELM mode number on the profile width. It can be seen from the figure

that the increase in the toroidal mode number of the filaments carries more particle

outwards, in effect broadening the profile and giving rise to the increase in the wetted

area. The variation about the average wetted area for a given mode number, as denoted

by the error bars in figure 14 a) arises from the toroidal variation of the footprint which

is averaged out of the profiles in b). The toroidal variation of the ELM footprint can be

seen in figure 15 which shows the modelled target heat flux for two n=5 cases at the peak

of the modelled heat flux. There is variation in the width of the footprint as a result

of the individual filaments arriving at the target at different times and this produces
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the variation in the wetted area which is seen experimentally. The analysis presented

here can point to some causes of the variation in the wetted area, but is limited in that

for a full understanding a large range of simulations would be required that varied the

separation time and acceleration of the filaments systematically to generate sufficient

statistics.
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Figure 15. The modelled footprint at the divertor from a) a set of filaments that

separate from the plasma edge simultaneously and accelerate at the same rate and b)

for a set of filaments with a variable separation time and acceleration.

7. Conclusion

The heat flux due to ELMs is a key issue for ITER due to the limitations that it places

on the lifetime of the divertor. The peak heat flux deposited to the target depends on

a number of ELM parameters, one being the area over which the energy is deposited,

the understanding of this effect is the aim of this paper. Through the use of data from

MAST, it has been seen that there is significant broadening of the target footprint during

the ELM which can be characterised by the ELM wetted area. Data from composite

ELMs shown that the wetted area peaks at the maximum ELM heat flux and during

the ELM the target footprint exhibits several striations which are generated by the

arrival of individual filaments at the target. Through the generation of a database, the

variation of the wetted area with ELM energy for the type I ELMs analysed is seen to

be weak, but there is a clear dependence of the wetted area and the number of striations

seen in the target profiles. The rising wetted area with the number of striations seen at

the target suggests that the filaments play a role in setting the size of the ELM target

footprint. The ELM wetted area is seen to vary between 3 to 6 times the inter-ELM

width for LSN plasmas, which is greater that then used in ITER predictions. However,

the data shows that the ratio of the ELM to inter-ELM wetted area decreases with

toroidal mode number, and it is suggested that low collisionality ITER pedestal will

be peeling unstable and as such will have lower mode numbers, and correspondingly

less broadening, than the MAST ELMs analysed here. Therefore, a key area of future

research is the factors affecting the ELM mode number and the effect the pedestal

stability has on determining this value.
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The ELM quasi toroidal mode number can be calculated from the target data, and

from visible imaging. The analysis presented here has shown that the mode number

calculated using both of these methods generates a similar value, with the IR data

giving an underestimate. The cause of this underestimate is likely due to the limited

toroidal view of the IR camera, and that not all of the filaments extend into the field of

view of the IR camera. The positive scaling of the midplane mode number and the ELM

to inter-ELM ratio is seen and is similar in both the IR and visible data, though the

mechanism that sets the ELM mode number is not understood and should be the focus

of future work. The use of a Monte-Carlo model has contributed to the understanding

of the experimental data, replicating the variation of the wetted area for a given ELM

due to toroidal variation and showing a trend of increasing ELM wetted area with input

midplane mode number. The use of simulations with variable filament separation times

has been seen to give the best agreement to the experimental data, and is consistent

with visible imaging which shows a period over which the filaments separate [7].
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