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ABSTRACT

Aims. We investigate the nature of dissipative instability at the boundary (seen here as tangential discontinuity) between the viscous
corona and the partially ionised prominence plasma in the incompressible limit. The importance of the partial ionisation is investigated
in terms of the ionisation fraction.
Methods. Matching the solutions for the transversal component of the velocity and total pressure at the interface between the promi-
nence and coronal plasmas, we derive a dispersion relation whose imaginary part describes the evolution of the instability. Results are
obtained in the limit of weak dissipation.
Results. Using simple analytical methods, we show that dissipative instabilities appear for flow speeds that are lower than the
Kelvin-Helmholtz instability threshold. While viscosity tends to destabilise the plasma, the effect of partial ionisation (through the
Cowling resistivity) will act towards stabilising the interface. For ionisation degrees closer to a neutral gas the interface will be unsta-
ble for larger values of equilibrium flow. The same principle is assumed when studying the appearance of instability at the interface
between prominences and dark plumes. The unstable mode appearing in this case has a very small growth rate and dissipative insta-
bility cannot explain the appearance of flows in plumes.
Conclusions. The present study improves our understanding of the complexity of dynamical processes at the interface of solar promi-
nences and solar corona, and the role partial ionisation can have on the stability of the plasma. Our results clearly show that the
problem of partial ionisation introduces new aspects of plasma stability with consequences on the evolution of solar prominences.
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1. Introduction

Solar prominences are among the most enigmatic structures in
the solar atmosphere whose study is made difficult by their com-
plex evolution and the multitude of important effects appearing
in them. Prominences are believed to be of chromospheric ori-
gin and some of them show a long-term stability. When formed,
prominences maintain their high density and low temperature
despite being surrounded by the million degree solar corona.
Their stability and thermal shielding is provided by the mag-
netic field. Their importance resides in the recognition that al-
most 80% of the observed coronal mass ejections (CMEs) – be-
lieved to drive the space weather – have a cold chromospheric
core believed to originate from a prominence, which is why
the study of the generation and evolution of prominences is
necessary.

The difficulty in studying prominences arises from the
complex dynamics occurring in these magnetic features, but
also because of their intrinsic structure and properties. Early
observations showed that prominences are made up of fine
structures that are composed of many horizontal, thin dark
threads (filaments) (e.g. de Jager 1959; Kuperus & Tandberg-
Hanssen 1967) with average width of 200 km and lengths
of 3500–28 000 km (see e.g. the review by Lin 2010 and ref-
erences therein). These threads are tracers of the magnetic field.

Recent Hα and UV/EUV observations showed that solar
prominences are also very dynamic with observed bulk flows
in the range of 2–35 km s−1 (e.g. Berger et al. 2008). In active
region prominences, flow velocities seem to be higher than in
quiescent prominences, even reaching 200 km s−1, and some
of these high-speed flows are probably related to the promi-
nence formation itself. The range of observed velocities of fil-
ament flows is between 5 and 20 km s−1. A particular feature
in these observations is the presence of counter-streaming flows,
i.e. oppositely directed flows (Zirker et al. 1998; Lin et al. 2003).
Because of the physical conditions of the filament plasma, all
these flows seem to be field-aligned. For a detailed review of the
observed flows in solar prominences see Labrosse et al. (2010)
and Mackay et al. (2010).

Significant advancement in the study of prominences was
made when high-resolution observations of waves, oscillations,
and flows became available. Scientists were able to connect the-
oretical models with observations through seismological tech-
niques in order to derive quantities and processes (structure of
the magnetic field, transport mechanisms acting in prominences,
internal structure, etc.) that cannot be measured directly or indi-
rectly (for a detailed discussion of seismological techniques and
results see the review by Arregui et al. 2012). There is also some
evidence that velocity oscillations are more easily detected at the
edges of prominences or where the material seems fainter, while
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they are sometimes harder to detect at the prominence main body
(Tsubaki & Takeuchi 1986; Tsubaki et al. 1988; Suematsu et al.
1990; Thompson & Schmieder 1991; Terradas et al. 2002).

One of the fundamental properties of solar prominences is
that because of their relatively low temperature, the plasma is not
fully ionised and its description therefore needs special attention,
especially when compared to the fully ionised coronal plasma
that surrounds prominences. The ionisation degree of promi-
nences is not well known, but there is plentiful evidence that
this cannot be neglected when one studies the dynamics and sta-
bility of these structures (Patsourakos & Vial 2002; Gilbert et al.
2002; Carbonell et al. 2010; Labrosse et al. 2010; Zaqarashvili
et al. 2012; Khomenko & Collados 2012; Soler et al. 2013, etc.).

The problem of prominence stability is paramount for other
effects such as CME eruption due to the connection between
these two solar atmospheric structures. In a recent series of pa-
pers Ryutova et al. (2010), Berger et al. (2010), Terradas et al.
(2012) highlighted a number physical processes taking place in
solar prominences that can be connected to instabilities, such as
Rayleigh-Taylor instabilities (RTI) and Kelvin-Helmholtz insta-
bilities (KHI) under the effect of plasma flows. The effect of par-
tial ionisation on the stability of prominences was investigated
earlier by e.g. Diaz et al. (2012), who analysed the appearance
of RTI in partially ionised prominence plasma. These authors
found that the linear growth rate is lowered by both the com-
pressibility of the gas and ion-neutral collisions, even though the
appearance threshold of this instability is not altered. They also
found that the ion-neutral collisions have a strong impact on the
RTI growth rate, which can be decreased by an order of mag-
nitude compared to the case corresponding to the collisionless
limit. They conclude that their results could explain the exis-
tence of prominence fine structure with lifetimes of the order
of 30 min, a duration that classical theories cannot explain.

In the same year, Soler et al. (2012) investigated the KHI of
compressional and partially ionised prominence plasma. They
considered the stability of an interface separating two partially
ionised plasmas in the presence of a shear flow. In the incom-
pressible limit the KHI was present for any value of the flow,
regardless the degree of ionisation. When extended to a com-
pressible limit, the instability threshold was very much sensitive
to the collision frequency and density contrast between the two
layers of their model. In particular the density contrast is an im-
portant parameter in their model. In classical theories the flow
speed at which the KHI is set is always super-Alfvénic; however,
the results of these authors show that for a high density contrast
the threshold can be even sub-Alfvénic thanks to the ion-neutral
coupling.

In addition to these instabilities there is another, rather un-
expected instability that can arise at the interface between two
media called dissipative instability and it is strongly connected
to the phenomenon of negative energy waves. This instability al-
ways occurs for flows lower than the KHI value. Under normal
conditions the interface between two media allows the propa-
gation of two modes travelling in opposite directions. For flow
speeds larger than a critical value, the propagation direction of
the two waves becomes identical, and the wave whose phase
speed is smaller becomes a negative energy wave (Ryutova
1988). The dissipative mechanisms acting in the two regions can
amplify this negative energy mode leading to dissipative insta-
bility, and the growth rate of this instability is proportional to
the combination of dissipative coefficients. Under solar condi-
tions the problem of negative energy waves has been studied by
many authors (e.g. Ruderman & Goossens 1995; Ruderman et al.
1996; Joarder et al. 1997; Terra-Homem et al. 2003, etc.). In the

present study we consider this problem, but the two regions sep-
arated by the interface are the viscous corona and the partially
ionised prominence plasma.

The concept of negative energy waves is based on the energy
equation

dE
dt
= −D,

where E is the linear part of the energy and D is the dissipa-
tive function. The two functions appearing in the above relation
depend on the choice of the frame of reference. If we choose a
coordinate system where D > 0, then the variation of the energy
with time is negative, meaning that the energy of the system de-
cays as a result of dissipation. In this case E > 0 for positive
energy waves, and dissipation leads to the damping of the wave,
i.e. to a decay in its amplitude. However, if E < 0 the wave is
called a negative energy wave and dissipation leads to an ampli-
fication of the wave amplitude resulting in an instability.

The paper is organised as follows. In Sect. 2 we introduce the
basic assumptions regarding the nature of partial ionisation and
discuss the dissipative mechanisms applied in our study. Here
we also introduce the mathematical framework we employ when
studying the stability of the plasma. In Sect. 3 we derive the dis-
persion relation of incompressible waves propagating at the in-
terface between the viscous coronal plasma and partially ionised
prominence and establish the stability thresholds of this model.
Finally, our results are summarised in Sect. 4.

2. Governing equations and basic assumptions

2.1. Equilibrium

We assume two semi-infinite layers of collisional and incom-
pressible plasma separated by an interface modelling the inter-
face between the solar prominence and solar corona.

The interface between the corona (labelled with index “1”)
and the solar prominence (labelled with index “2”) is situated
at z = 0 in a two-dimensional (x − z) cartesian reference sys-
tem. The homogeneous magnetic field in both regions is along
the x-axis with B01 � B02. The unperturbed state is characterised
by a magnetohydrodynamics (MHD) tangential discontinuity at
z = 0, and all equilibrium quantities are constant at both sides of
the discontinuity. We assume that there is an equilibrium flow in
the positive x direction in the prominence (for the z > 0 region),
while in the corona (corresponding to z < 0) the equilibrium is
static. The above equilibrium describes the interface between a
prominence and the surrounding quiet corona. Although these
two solar regions have been neighbours for a very long time (in
the case of quiescent prominences their stability is shown to be
of the order of several months) they present a very different set
of physical parameters describing them. Solar prominences are
cool and dense plasma material, thought to be of chromospheric
origin that are surrounded by the very hot and very tenuous solar
corona. Accordingly, it is customary to consider that the density
of the prominence is two orders of magnitude larger than the
density of the corona and the temperature two orders of mag-
nitude lower than the coronal temperature. Gravity is neglected
and so the RTI is not present in our problem.

2.2. Basic assumptions

The determination of transport mechanisms acting in solar plas-
mas is a very difficult task. After all, the dominant dissipative
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mechanism depends not only on the location where the dynam-
ics occurs, but also on the nature of the physical mechanisms that
needs describing. Under prominence conditions Ballai (2003)
and Carbonell et al. (2004) showed that none of the classical
dissipative processes (assuming a fully ionised plasma) are able
to describe realistic damping of observed waves in prominences,
except thermal conduction. Recent studies (e.g. Khodachenko
et al. 2004; Arber et al. 2007; Forteza et al. 2007, 2008) also
showed that the dominant transport mechanism in solar promi-
nences is probably due to the partially ionised character of the
plasma. Soler et al. (2009) found that resonant absorption is
dominant over ion-neutral effects in the damping of the kink
mode in prominence threads. In the present study the appear-
ance of resonant absorption is prevented by assuming a sharp
transition between the prominence and corona.

In partially ionised plasmas the classical Coulomb resistivity
is several orders of magnitude smaller than the Cowling resis-
tivity, and the viscosity of the plasma is provided by the fric-
tion between various particles making up the plasma (neutrals,
ions, protons). The second consideration also implies that the dy-
namics in solar prominences has to be described in a multi-fluid
plasma. However, if the resistivity of the plasma is dominant (as
is assumed here) the plasma is described within the framework
of single-fluid MHD. In the present paper we will assume that
these restrictive conditions are satisfied, i.e. we are going to use
a single-fluid description.

In partially ionised prominence plasmas the Coulomb resis-
tivity is many orders of magnitude smaller than the Cowling
anisotropic resistivity (see e.g. Cowling 1957; Khodachenko
et al. 2004). Indeed, their difference is given by

ηC = η +
ξnB2

0

μ0αn
, (1)

where ηC is the Cowling resistivity, η is the classical Coulomb
resistivity, μ0 is the permeability of free space, ξn is fraction of
neutrals, and the frictional coefficient αn in the case of a plasma
assumed to be composed entirely of H is given by

αn = 2ξn(1 − ξn)
ρ2

mp

√
kBT
πmp
Σin,

where mp is the proton (ion) mass, ρ is density, kB is the
Boltzmann constant, and Σin ≈ 5 × 10−15 cm−2 is the ion-neutral
collisional cross-section. The number densities of electrons and
ions are assumed to be approximately equal. The quantity ξn
plays an important role in our discussion as it contains infor-
mation about the ionisation degree of the plasma. By definition
this quantity reflects the number of neutrals in the gas mixture,
i.e.

ξn =
ρn

ρ
≈ nn

ni + nn
· (2)

The degree of ionisation can be characterised by the ionisation
fraction (defined as the mean atomic weight, i.e. the average
mass per particle in units of proton mass) given as

μ =
1

2 − ξn · (3)

According to this definition, a fully ionised gas corresponds to
μ = 0.5, while a neutral gas is described by μ = 1.

Our aim here is to study the appearance and evolution of
instabilities at the interface of two media, therefore we neglect

the effects of particle ionisation and recombination in the solar
prominence. Here we assume a strong thermal coupling between
the species, which means electrons, ions, and neutrals have the
same temperature (i.e. Te = Ti = Tn = T ). Therefore, the three-
component gas can be considered as a single fluid. The concept
of a three-component gas mixture will introduce new types of
transport mechanisms whose importance in the context of solar
prominences was discussed in detail in the pioneering work of
Forteza et al. (2007). Since we are going to limit ourselves to lin-
ear dissipation, we will neglect effects connected to the inertia of
different particles, but also the transversal drift of charged parti-
cles due to the Hall term and consider that thermodynamic quan-
tities (pressure, temperature) are relatively smooth functions of
the spatial coordinates, i.e. the relative densities of neutrals and
ions are constants. Therefore, when describing the dynamics in
solar prominences we will restrict our model to transport mech-
anisms that arise in the induction equation.

Temperatures in the solar corona can reach millions of de-
grees K, therefore the plasma can be considered to be completely
ionised. In this important solar region the product ωciτi � 1
(where ωci is the ion cyclotron frequency and τi is the ion
mean collisional time), therefore ions can gyrate many times
around magnetic field lines between collisions. Under typical
coronal conditions this product is of the order of 105. Provided
the characteristic scales are larger than the mean free path of
ions, viscosity in the solar corona is mainly due to ions and
the viscosity gyrating around the magnetic field is given by the
Braginskii stress tensor (Braginskii 1965) whose linearised ex-
pression takes the form of a sum of five terms each with different
physical meaning (see e.g. Erdélyi & Goossens 1995; Ruderman
et al. 2000; Mocanu et al. 2008). Under coronal conditions the
first term, called parallel or compressional viscosity, is domi-
nant (by several orders of magnitude) and controls the variation
along magnetic field lines of the velocity component parallel to
field lines. The parallel viscosity is due to the collision-induced
random-walk diffusion of particles and is given by

η0 =
ρ0T0kBτi

mp
,

where ρ0 and T0 are the density and temperature of the medium.
In practice it is more convenient to work with the kinematic co-
efficient of viscosity defined as ν = η0/ρ0. As determined by
Ruderman et al. (1996), a property of the highly anisotropic
viscosity is that it allows a jump in the velocity across a mag-
netic surface, since a strong magnetic field causes ions to rotate
around the magnetic field lines, thus preventing the diffusion of
particles across the field lines. This also implies that there is no
momentum transport across the magnetic surfaces, and different
layers of plasma can move with respect to each other without
friction.

Observations show that quiescent prominences are made of
chromospheric material and they live in a relatively stable po-
sition for a long time. High-resolution observations very often
show that the edges of prominences are not still; small- and
large-scale features appear and disappear rather frequently. We
will try to explain these modifications in the interface between
the two media by instabilities that develop owing to the amplifi-
cation of waves propagating along the interface.

2.3. Governing linearised equations

We will consider a two-layer system, where an interface sep-
arates the solar prominence and solar corona. The equations
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describing the dynamics of the plasma are the incompress-
ible dissipative and linear MHD equations. In both regions the
equations

∇ · u = 0, ∇ · b = 0, (4)

are valid. In the solar prominence we assume a field-aligned
equilibrium flow (u0). As a result, the momentum equation
becomes

ρ2
∂u2
∂t
+ v0
∂u2
∂x
= −∇P2 +

B02

μ0

∂b2

∂x
· (5)

In the solar corona the equilibrium is static, but the momentum
equation is supplemented by the viscous force, i.e.

ρ1
∂u1
∂t
= −∇P1 +

B02

μ0

∂b1

∂x
+V. (6)

In the solar prominence the dominant dissipative effect is the
Cowling resistivity, therefore the induction equation becomes

∂b2

∂t
+ v0
∂b2

∂x
= B02

∂u2
∂x
+ R. (7)

In the corona, the flow and dissipative effects do not modify the
induction equation, so we can write

∂b1

∂t
= B01

∂u1
∂x
· (8)

In the above equations ui and bi (i = 1, 2) are the perturbations
of velocity and magnetic field, Pi are the total pressures (the sum
of kinetic and magnetic pressures), and the dissipative terms in
Eqs. (6) and (7) are given by (see e.g. Ruderman et al. 1996)

V = ν
[
b̃(b̃ · ∇) − 1

3
∇
] [

b̃ · ∇(b̃ · u1)
]
,

R = η∇2b2 +
(ηC − η)
|B0|2 ∇ × {[(∇ × b2) × B0] × B0} , (9)

where b̃ is the unit vector in the direction of the magnetic field,
i.e. b̃ = B0/B0.

Because of the orientation of the equilibrium magnetic field
the interface between the corona and solar prominence can be
considered a tangential discontinuity. We write the equation of
the perturbed interface as z = ζ(x, t). We assume that at |x| → ∞
and |z| → ∞ all perturbations vanish. At the interface surface
waves will be able to propagate, as suggested in an earlier inves-
tigation by Roberts (1981). According to his results, in the ab-
sence of any equilibrium flow, incompressible Alfvénic waves
can propagate with a phase speed that lies between the Alfvén
speeds in the two regions, which is given by

ω

kx
= ±

⎛⎜⎜⎜⎜⎝ρ1v
2
A1 + ρ2v

2
A2

ρ1 + ρ2

⎞⎟⎟⎟⎟⎠1/2

= ±
⎛⎜⎜⎜⎜⎝v2A1 + dv2A2

1 + d

⎞⎟⎟⎟⎟⎠1/2

, (10)

where d = ρ2/ρ1 is the density contrast parameter, kx is the par-
allel component of the wavevector to the interface, and vA1 =
B01/
√
μ0ρ1 and vA2 = B02/

√
μ0ρ2 are the Alfvén speeds in the

two regions. This dispersion relation describes the propagation
of the two waves along the interface in opposite directions.

For a stable interface at z = 0 we have to impose the lin-
earised kinetic boundary condition and the condition of the con-
tinuity of normal component of stresses. If ui = (vxi, 0, vzi), then
these conditions read

vz1 =
∂ζ

∂t
, vz2 =

∂ζ

∂t
+ v0
∂ζ

∂x
, (11)

and

P1 + ρ1νb̃ · ∇(b̃ · u) ≡ P1 − ρ1ν
∂vz1

∂z
= P2. (12)

We note here that at the tangential discontinuity used in the
present paper there is no mass transfer between the two me-
dia, meaning that the state of the plasma in each region is not
disturbed by the presence of the other medium. The system of
Eqs. (4)–(9) together with the boundary conditions at the inter-
face will form the starting equations for our discussion on dis-
sipative instability generated at the interface between the two
media.

3. Dispersion relation of surface waves
at the discontinuity

Since we are going to deal with an eigenvalue problem we will
perform a normal mode analysis and take all perturbations pro-
portional to exp[i(kxx − ωt)], where ω is a complex frequency
that can be written as ω = Re(ω) + iIm(ω). This particular form
of perturbations reduces the boundary conditions to

vz1 = −iωζ, vz2 = −iΩζ, (13)

where Ω = ω − kxv0 is the Doppler-shifted frequency of waves
in the solar prominence.

When computing the components of the resistive terms
given by Eq. (9) together with the solenoidal condition (4) we
can obtain that all dissipative terms containing the classical
Coulomb resistivity cancel, therefore the dissipation in the par-
tially ionised prominence is described by the Cowling resistivity
alone.

We introduce the viscous and resistive Reynolds numbers as

Rv =
vA1

kxν
, Rr =

vA2

kxηC
· (14)

Under coronal and prominence conditions both Reynolds num-
bers are very large and therefore waves will propagate with little
damping over a period, meaning that in our subsequent calcu-
lations we will consider that |Re(ω)| � |Im(ω)|. The very large
Reynolds numbers also allow us to consider dissipative terms
much smaller than other terms belonging to ideal MHD, mean-
ing that in our calculations all terms containing ν2 or η2

C are ne-
glected. The interaction between flows and waves propagating
at the interface between the two media is ensured by dissipa-
tion that could play the role of energy sink. Later we will see
that, contrary to our expectations, dissipation does not always
act towards decreasing the wave amplitude; for specific values
of flows or ionisation degree, the interplay between flows, dissi-
pation, and waves could lead to an increase of the waves’ ampli-
tude, i.e. unstable behaviour.

In region 1 the viscous MHD equations can be reduced to
a system of coupled equations for the normal component of the
velocity vector vz1 and total pressure P1 of the form

dvz1

dz
= − ik2

xω

ρ1(DA1 + 2iνk2
xω)

P1, (15)

(
1 − iνω
DA1

d2

dz2

)
vz1 = − iω

ρ1DA1

dP1

dz
, (16)
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where DA1 = ω
2 − k2

xv
2
A1. Taking into account that Rv � 1,

we can eliminate the total pressure from these two equations to
arrive at a single relation for vz1, i.e.

d2vz1

dz2
− k2

x

(
1 − 3iνk2

xω

DA1

)
vz1 = 0. (17)

It is easy to see that vz1 will vanish as z → −∞. In order to use
the boundary conditions (11) and (12) we will also need to find
the value of the total pressure. In order to calculate its expression
we write the equation for the z-component of the velocity (17) as

d2vz1

dz2
− α2vz1 = 0, (18)

where

α = kx

(
1 − 3iνk2

xω

DA1

)1/2

≈ kx

(
1 − 3iνk2

xω

2DA1

)
·

Equation (18) allows us to explicitly find the expression of the
z-component of the velocity in the solar corona. With the help of
Eqs. (11) and (15) we can find that the total pressure in region 1
estimated at the interface between the two regions can be written
as

P1 =
ρ1DA1

kx

(
1 − iνωkx

2DA1

)
ζ. (19)

For the prominence we now have an equilibrium flow in the pos-
itive x direction. Considering again the equations that relate the
z-component of the velocity vector and total pressure we obtain
the systems⎛⎜⎜⎜⎜⎝DA2 +

iηCk4
xv

2
A2

Ω

⎞⎟⎟⎟⎟⎠ vz2 = − iΩ
ρ2

dP2

dz
(20)

and⎛⎜⎜⎜⎜⎝DA2 +
iηCk4

xv
2
A2

Ω

⎞⎟⎟⎟⎟⎠ dvz2

dz
= − iΩ
ρ2

P2, (21)

whereDA2 = Ω
2−k2

xv
2
A2. Eliminating the total pressure from the

above two expressions we obtain an equation for vz2 valid in the
solar prominence of the form

d2vz2

dz2
− k2

xvz2 = 0. (22)

Using Eqs. (11) and (21) we can write that the total pressure at
the prominence evaluated at the interface behaves as

P2 = −ρ2(DA2 + iηCΩk2
x)Ωζ

Ω + iηCk2
x

≈ −ρ2ζ

Ω
(DA2Ω + ik4

xv
2
A2ηC). (23)

The expressions of the two total pressures in the two regions are
inserted in Eq. (12), which leads to the dispersion relation of the
form

D(ω) = Dr + iDi = 0, (24)

where

Dr = DA1 + dDA2,

Di = νk
2
xω +

dk4
xηCv

2
A2

Ω
· (25)

In deriving the dispersion relation (24) we took into account that
a perturbation method is used meaning that terms proportional
to ν2 and η2

C are neglected.

3.1. Instability conditions

Since we assumed that the damping of waves propagating along
the interface is weak, we can write the frequency of waves as
ω = Re(ω) + iIm(ω) with |Re(ω)| � |Im(ω)|. This assump-
tion is in line with our previous statement regarding the high
Reynolds numbers of solar plasmas and the working supposi-
tion that terms containing squares and products of dissipative
coefficients can be neglected. According to the dependence of
perturbations on the variable t assumed earlier, Im(ω) > 0 cor-
responds to an overstability, i.e. to a situation where the ampli-
tude of waves propagating along the interface grows as exp(ωit).
Following the method developed by Cairns (1979) we write the
dispersion relation as

Dr(ω, kx) = −iνk2
xω −

idk4
xηCv

2
A2

Ω
· (26)

The solution of the equation Dr = 0 will result in the real part
of the frequency ω. In ideal MHD the interface between the two
regions is always stable; however, the introduction of dissipation
may lead to instability. The dispersion relation for the ideal case
can be easily solved and leads to the frequency

Re(ω)± =
kxv0d
1 + d

± kx

1 + d

[
d
(
v2KH − v20

) ]1/2
. (27)

Equation (27) describes two waves propagating along the in-
terface in opposite directions. The quantity vKH is the Kelvin-
Helmholtz (KH) threshold velocity given by

v2KH =
1 + d

d

(
v2A1 + dv2A2

)
, (28)

and it plays a very important role in the discussion of stability
of waves propagating in a flowing plasma. It is obvious from
Eq. (27) that the plasma becomes KH unstable for flows that sat-
isfy the condition v20 > v

2
KH. We estimate the value of vKH for

the system under investigation. If we consider typical coronal
and prominence values for density and Alfvén speeds (d = 100,
vA1 = 315 km s−1, vA2 = 28 km s−1, all taken from Joarder &
Roberts 1992) we obtain vKH = 423 km s−1. It is obvious that
observations in the solar prominences do not show equilibrium
flows that are larger than vKH; in reality, these speeds are more
likely to be of the order of a tenth of vKH or smaller. This means
that under prominence conditions the plasma at the interface be-
tween the solar corona and solar prominences is always KH sta-
ble. In the absence of any flow, the two solutions of Eq. (27)
describe two modes propagating in the opposite direction with
equal speeds

∣∣∣vKH
√

d/(1 + d)
∣∣∣. In the presence of a flow (for our

problem the flow is present in the prominence while the coronal
plasma is at rest), waves are drifted by the flow. Since the flow
direction points in the positive direction, the flow affects the two
waves in a different way and the symmetry of the two modes
is lost. It can be easily shown that the difference between the
phase speeds of the two waves is 2v0d/(1 + d). For flow speeds
larger than vKH/

√
(1 + d) the direction of the wave propagating

in the negative direction is inverted and the backward mode be-
comes the forward mode. The two modes can amplify each other
leading to instability. If we plot the two frequencies obtained in
Eq. (27) with respect to an increasing flow speed we obtain that
the KHI occurs when the oscillation frequencies of the forward
and backward propagating surface modes merge for increasing
flow velocity. The merging point then indicates the threshold of
KHI for the single interface. In the present analysis we consider
flows that are less than the KH threshold.
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Since we assume that the damping is weak, the imaginary
part of the frequency can be given by

Im(ω) ≈ − k2
x

∂Dr/∂Re(ω)

⎛⎜⎜⎜⎜⎝νωr +
dk2

xηCv
2
A2

Ωr

⎞⎟⎟⎟⎟⎠ , (29)

where Ωr = Re(ω) − kxv0.
Using Eqs. (26) and (27), it is straightforward to show that

the imaginary part of the frequencies are

Im(ω)+ = − νk2
x

2(1 + d)

(
v0d
Γ
+ 1

)
+

d(d + 1)k2
xv

2
A2ηC

2(v0Γ − dΓ2)
, (30)

and

Im(ω)− =
νk2

x

2(1 + d)

(
v0d
Γ
− 1

)
− d(d + 1)k2

xv
2
A2ηC

2(v0Γ + dΓ2)
, (31)

where Γ =
√

d(v2KH − v20). With the help of Eqs. (1)–(3) we can
write the Cowling resistivity as

ηC =
v2A2mn(2μ − 1)

2ρ2(1 − μ)Σin

(
πmp

kBT2

)1/2

· (32)

As a result, the two values for the imaginary part of the fre-
quency become

Im(ω)+ = − νk2
x

2(1 + d)

(
v0d
Γ
+ 1

)

+
d(d + 1)k2

xmn(2μ − 1)v4A2

4(v0Γ − Γ2)(1 − μ)ρ2Σin

(
πmp

kBT

)1/2

(33)

and

Im(ω)− =
νk2

x

2(1 + d)

(
v0d
Γ
− 1

)

− d(d + 1)k2
xmn(2μ − 1)v4A2

4(v0Γ + Γ2)(1 − μ)ρ2Σin

(
πmp

kBT

)1/2

· (34)

We now discuss the sign of these frequencies for a range of flow
speeds changing in the interval 10–60 km s−1 and for an ionisa-
tion degree varied between the cases corresponding to full ioni-
sation (μ = 0.5) and neutral plasma (μ = 1). A simple graphical
analysis clearly shows that for the spectrum of flows considered
here and for any ionisation degree the imaginary part of the sur-
face waves that propagates in the positive direction (i.e. in the
direction of the flow) is negative leading to a classical physical
damping. In contrast the imaginary part of the wave propagat-
ing backward (in the negative direction) can become positive
for flow speeds larger than 48 km s−1 (see Fig. 1). A positive
imaginary part of the frequency is connected to an instability. A
contour plot of the imaginary part of the frequency for the back-
ward propagating wave is shown in Fig. 2, where the role of the
partial ionisation and plasma flows becomes evident. The region
above the 
(ω) = 0 curve corresponds to the region where the
wave is unstable, while in the region beneath the curve the wave
is stable and damped. It is clear that the flow will destabilise the
interface; for a given value of ionisation fraction there is a flow
value at which the interface becomes unstable (a similar con-
clusion can be drawn from earlier studies by e.g. Ruderman &
Goossens 1995). The variation of the zero-level with respect to
the ionisation fraction shows that as the plasma becomes more

Fig. 1. Variation of the imaginary part of the frequency for the back-
ward propagating wave with the flow speed and the ionisation fraction.
The flow changes in the interval 10–60 km s−1 and the ionisation frac-
tion varies between 0.5 (fully ionised plasma) and 1 (neutral gas). The
horizontal curve is drawn at the Im(ω) = 0 and helps to visualise the
transition of Im(ω)− from the positive to the negative domain.

Fig. 2. Contour plot of the variation of the imaginary part of the fre-
quency for backward propagating waves. The region below the zero
level curve corresponds to a stable regime and waves will have a clas-
sical damping, while the interface described by the quantities in the
region above the curve is unstable.

dominated by neutrals, the plasma interface becomes more sta-
ble, so that for an ionisation degree of 0.93 the interface becomes
stable and waves will damp owing to dissipation. Figure 1 also
shows that the presence of neutrals stabilises the plasma as the
instability sets in for higher values of flows (here with a density
ratio of 100, kx = 5 × 10−6 m−1, ν = 1010 m2 s−1, T = 104 K,
ρ2 = 5 × 10−11 Kg m−3). It is instructive to identify the role of
each dissipative process in the appearance of instability. While
the partial ionisation in the solar prominence has the effect of sta-
bilisation of the interface, the viscosity in the solar corona will
destabilise the discontinuity and the value of the flow at which
waves become unstable has little variation with the ionisation
fraction and significant dependence can be observed for larger
values of μ. We note that the unstable behaviour of the backward
wave is also connected to the very high density contrast between
the solar prominence and corona. For a density contrast of one
order of magnitude the unstable backward wave becomes stable

A82, page 6 of 8

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201423973&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201423973&pdf_id=2


I. Ballai et al.: Dissipative instability in partially ionised prominence plasmas

and the imaginary part of the dispersion relation describes clas-
sical physical damping.

Finally, we explore the connectivity between the dissipative
instability discussed earlier and negative energy waves. As spec-
ified in the Introduction, the term of negative energy wave refers
to the situation when the wave energy decreases with the in-
crease of the wave amplitude. The energy of a wave with am-
plitude A averaged over one wavelength can be given as

E =
1
4
ω
∂Dr

∂ω
|A|2,

where Dr is the dispersion relation of the wave. In this case the
energy of the wave is the phase-averaged difference between the
energy of the system when the wave is present, and its energy
when the wave is absent. A criterion that can be used to deter-
mine the nature of waves is the formula suggested by Cairns
(1979) where a wave is considered to have negative energy if the
quantity

C = Re(ω)
∂Dr

∂ω
< 0. (35)

The function Dr is undetermined up to a multiplicative constant
whose sign has to be determined from the condition that in the
absence of any flows in the system C > 0. Comparing this with
Eq. (26), it is obvious that the condition for the appearance of
dissipative instability is identical with the condition of negative
energy wave generation because the expression

νRe(ω)2 +
dk2

xηCv
2
A2Re(ω)

Ωr

is always positive.
Another possibility for exploiting the effect of partial ionisa-

tion on the stability at a magnetic interface is to model the inter-
face between two partially ionised plasmas of prominences and
dark plumes. Observations by Berger et al. (2010) revealed the
existence of dark plumes within the prominence showing turbu-
lent upflows in prominences of the order of 15–30 km s−1. These
upflows are believed to generate instabilities. In the Ca II H-line
plumes are seen dark in contrast to the prominence material,
which suggests that the plasma in the plumes is hotter and prob-
ably less dense than the prominence material. The width of the
plumes ranges between 0.5 Mm and 6 Mm, and their maximum
heights are between 11 Mm and 17 Mm. The typical plume life-
time is between 400 s and 890 s.

Considering the same prominence/plume parameters as in
Soler et al. (2012), we obtain that the interface between these
two partially ionised media becomes unstable for almost all val-
ues of flows (below the KH threshold) for an ionisation de-
gree of the prominence larger than the ionisation degree of the
plume, but the growth rate of this instability is very low, meaning
that the dissipative instability (at least in this simplified frame-
work) cannot explain the generation of upflows in plumes by
instability.

4. Conclusions

In the present study we explored the stability of a tangential
discontinuity by modelling the interface between the viscous
and fully ionised coronal plasma and the partially ionised so-
lar prominence in which the dominant dissipative effect is the
Cowling resistivity. The magnetic fluids were assumed to be

incompressible and the prominence equilibrium was consid-
ered to be dynamical, with a homogeneous flow parallel to the
interface. Assuming a weak damping (confirmed by the very
large Reynolds numbers) we obtained the dispersion relation of
Alfvénic waves propagating along the interface. The presence
of dissipative effects on both sides of the interface renders the
dispersion relation to be complex with the imaginary part of this
quantity describing the decay or the growth of waves. Our results
show that while the forward propagating wave is always stable,
with the amplitude of the wave decaying because of dissipation,
for the backward propagating wave there is a threshold of the
flow (below the KHI threshold) for which the wave becomes un-
stable. A careful analysis proves that the partial ionisation has
a stabilising effect on the interface for any value of the ionisa-
tion fraction and the unstable behaviour can be connected to the
viscous nature of the coronal plasma. We also showed that the
partial ionisation has little effect on the threshold where waves
become unstable. For a plasma where neutrals are abundant, the
instability appears for higher values of flows, i.e. neutrals have
a stabilising effect. The above results were obtained under the
strict restriction of incompressible plasma and a sharp tangential
discontinuity between the two plasma layers. The same model
was used to study the generation of dissipative instability at the
interface of two partially ionised plasmas modelling the promi-
nence and dark plumes. The unstable mode obtained in this case
shows a very low growth rate, meaning that this type of instabil-
ity (at least in this simplified model) cannot explain the appear-
ance of turbulent upflows in plumes that can be attributed to in-
stability. The problem of compressibility and a smooth transition
between the dynamical solar prominence and static corona in the
presence of ion-neutral friction will be addressed in a forthcom-
ing study.
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