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2 

 

Are continuing changes in the Arctic influencing wind patterns and the occurrence of extreme 30 

weather events in northern midlatitudes? The chaotic nature of atmospheric circulation precludes 31 

easy answers. Yet the topic is a major science challenge, as continued Arctic temperature 32 

increases are an inevitable aspect of anthropogenic global change. We propose a perspective that 33 

rejects simple cause-and-effect pathways, notes diagnostic challenges in interpreting atmospheric 34 

dynamics, and present a way forward based on understanding multiple processes that lead to 35 

uncertainties in Arctic/midlatitude weather and climate linkages. We emphasize community 36 

coordination for both scientific progress and communication to a broader public. 37 

  38 

Various metrics indicate that the recent period of disproportionate Arctic warming relative to 39 

midlatitudes—referred to as Arctic Amplification (AA)—emerged from the noise of natural 40 

variability in the late 1990s1. This signal will strengthen as human activities continue to raise 41 

greenhouse gas concentrations2. The assessment of the potential for AA to influence broader 42 

hemispheric weather (referred to as linkages) is complex and controversial3-6. Yet with 43 

intensifying AA, we argue that the key question is not whether the melting Arctic will influence 44 

midlatitude weather patterns over the next decades, but rather what is the nature and magnitude 45 

of this influence relative to non-Arctic factors, and is it limited to specific regions, seasons, or 46 

types of weather events7? 47 

 48 

Although studies arguing for linkages often highlight a single causal pathway, the complexity of 49 

atmospheric dynamics implies that such singular linkage pathways are unlikely. Nonlinearities in 50 

the climate system are particularly important in the Arctic and subarctic8,9,10. The climate change 51 

signal is larger than anywhere else in the Northern Hemisphere and the region possesses multiple 52 
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feedbacks. Coupling exists between the Arctic troposphere and the wintertime stratospheric polar 53 

vortex, which itself is highly nonlinear. A linkage pathway that may appear to be responsible for 54 

one series of events may not exist in another scenario with similar forcing. This is potentially 55 

reflected in observationally based studies that have struggled to find robust linkages11,12. Further, 56 

multiple runs of the same model with similar but slightly different initial conditions, termed 57 

ensemble members, show linkages in some subsets of ensemble runs but not in others13. This 58 

failure to detect direct connections is sometimes interpreted as evidence against linkages.  Four 59 

properties (limitations) that contribute to the complexity of attribution of linkages are developed 60 

in this Perspective:  itinerancy [seemingly random variations from state to state], intermittency 61 

[apparently different atmospheric responses under conditions of similar external forcing, such 62 

as sea-ice loss], multiple influences [simultaneous forcing by various factors, such as sea-63 

surface temperature anomalies in the tropics, midlatitudes and Arctic], and state dependence [a 64 

response dependent on the prior state of the atmospheric circulation, e.g., the phase of the Arctic 65 

Oscillation (AO) atmospheric circulation index or the strength of the stratospheric vortex].  66 

 67 

We propose a system-level approach that recognizes multiple simultaneous processes, internal 68 

instabilities, and feedbacks. Progress in understanding Arctic/midlatitude linkages will require 69 

the use of probabilistic model forecasts that are based on case studies and high-resolution, 70 

ensemble solutions to the equations of motion and thermodynamics. Community coordinated 71 

model experiments and diagnostic studies of atmospheric dynamics are essential to resolve 72 

controversy and benefit efforts to communicate the impacts of linkages and uncertainties with a 73 

broad public.  74 

 75 
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Arctic warming is unequivocal, substantial, and ongoing 76 

Changes in Arctic climate in the last two decades are substantial. Since 1980 Arctic temperature 77 

increases have exceeded those of the Northern Hemisphere average by at least a factor of two14. 78 

Over land north of 60°N, 12 of the past 15 years have exhibited the highest annual mean surface 79 

air temperatures since 1900.  AA is also manifested in loss of sea ice, glaciers, snow and 80 

permafrost, a longer open-water season, and shifts in Arctic ecosystems.  Sea ice has undergone 81 

an unprecedented decline over the past three decades with a two-thirds reduction in volume2. 82 

Comparable decreases in snow cover have occurred during May and June.  AA is strongest in 83 

fall/winter with largest values over regions of sea ice loss15, while the areas of greatest warming 84 

in summer are located over high-latitude land where spring snow loss has occurred progressively 85 

earlier16.  86 

 87 

This amplification of warming in the Arctic occurs for several reasons, all based on fundamental 88 

physical processes17,18. Among these are feedbacks related to albedo owing to a loss of snow and 89 

sea ice along with increases in heat-trapping water vapor and clouds. Increasing temperatures in 90 

the lower atmosphere elevate the height of mid-level pressure surfaces (geopotential height), 91 

leading to changes in poleward and regional gradients and, consequently, wind patterns19,20,21. 92 

 93 

Based on over 30 climate model simulations presented in the most recent Intergovernmental 94 

Panel on Climate Change (IPCC) Assessment Report, future winter (November-March) surface 95 

temperatures in the Arctic (60-90°N) are projected to rise ~4°C by 2040, with a standard 96 

deviation of 1.6 °C, relative to the end of the previous century (1981-2000)2. This is roughly 97 

double the projected global increase and will likely be accompanied by sea ice free summers.  98 
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Past and near future emissions of anthropogenic CO2 assure mid-century AA and global 99 

warming. 100 

 101 

Living with an uncertain climate system  102 

The task of unraveling cause and effect of mechanisms linking changes in the large scale 103 

atmospheric circulation to AA is hampered by poor signal detection in a noisy system and 104 

complex climate dynamics, regardless of whether the approach is statistical analyses or targeted 105 

model simulations.  Nonlinear relationships are widespread in the Arctic climate system, in 106 

which responses are not directly proportional to the change in forcing8,10,22. Further, when 107 

discussing anomalous weather or climate conditions, causation can have different meanings. 108 

Typically one factor is necessary but several supplementary factors may also be required. This 109 

can lead to confusion because only sufficient causes have deterministic predictive power23,24. 110 

Together these factors make linkage attribution challenging. Many previous data and modeling 111 

analyses start with straightforward Arctic changes using, for example, diminished sea ice, and at 112 

least implicitly assume quasi-linear, sufficient causal connections5,7,25-37. While this approach has 113 

been helpful in elucidating relevant linkage mechanisms, we provide a view at the system level 114 

that can mask simple cause and effect.  115 

 116 

Thermodynamically (i.e., related to temperature gradients) forced wind systems on a rotating 117 

planet produce west-to-east flow at midlatitudes. This flow is dynamically unstable, creating 118 

north–south meanders that generate high- and low-pressure centers which can produce disruptive 119 

weather events.  In addition to internal instability, variability in the wind pattern is forced by 120 

influences external to the midlatitude atmosphere that may themselves reflect internal variability 121 
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on longer timescales, such as sea-surface temperature anomalies in the tropics, midlatitudes, and 122 

ice-free parts of the Arctic. Remote forcings (i.e., changes outside the midlatitudes, remote in 123 

space and perhaps time) can influence the midlatitude circulation through linear and nonlinear 124 

atmospheric patterns, known as teleconnections. Extensive regions of positive temperature 125 

anomalies in the Arctic may increase the persistence of weather systems 20,38. Further, 126 

troposphere-stratosphere connections can trigger changes in the regional wind patterns39. 127 

Contributors to a lack of simple robust linkages include the four properties discussed as follows:  128 

 129 

Itinerancy 130 

Itinerancy refers to the atmosphere spontaneously shifting from state to state based on 131 

instabilities in the wind field that can be amplified by internal and external variability. Such 132 

states can persist through nonlinear mechanisms10,22.  Fig. 1(a, b) illustrates two configurations of 133 

the northern hemispheric wind pattern (tropospheric polar vortex) occurring at different times: 134 

the case shown in Fig. 1a is for a day in November 2013 that had a relatively circular flow 135 

pattern around the North Pole, and Fig. 1b shows another day two months later exhibiting a more 136 

north-south wavy flow pattern. Although the phrase polar vortex is formally reserved for the 137 

stratosphere, it is a useful term for discussing tropospheric geopotential height/wind 138 

configurations such as those shown in Fig. 1.  The jet stream flows from west to east parallel to 139 

these geopotential height contours and is strongest where the contours are closest together. Shifts 140 

to and from a wavy pattern—known historically as the index cycle—and the varying longitudinal 141 

locations of ridges (northward peaks) and troughs (southward excursions) in the geopotential 142 

height pattern are part of the seemingly random, internal variability of atmospheric circulation. A 143 

wavier jet stream allows cold air from the Arctic to penetrate southward into midlatitudes, and 144 
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ridges transport warm air northward. Fig. 1(c, d) are corresponding temperature anomaly patterns 145 

for these two days. For the more circular jet stream, cold anomalies are mostly contained within 146 

the polar region along with warmer anomalies around midlatitudes (Fig. 1c). This particular 147 

pattern is not perfectly symmetric around the North Pole, as the center of the vortex is shifted 148 

into the western hemisphere. The wavier jet stream case has two warm and two cold anomaly 149 

regions in midlatitudes (Fig. 1d), to the west and east of the region of increased heights (ridges) 150 

over Alaska and Scandinavia. Many extreme weather events associated with wavy circulation 151 

patterns have occurred in the last decade40,41,. 152 

 153 

Multiple studies 42,43,44 illustrate the paradigm of itinerancy in describing the physical 154 

mechanisms driving shifts in atmospheric circulation.  Atmospheric circulation can fluctuate 155 

between multiple states (referred to as local attractors) in irregular transitions, resulting in 156 

chaotic-like behavior on monthly, seasonal, and interannual time scales42. Chaos theory argues 157 

that the climate system can destabilize and suddenly shift into a new stable state45,46. On decadal 158 

timescales, increasing variability within a time series is a possible early-warning signal of a 159 

critical transition to a different state47.  160 

 161 

Do observations indicate a recent increase in these types of sudden shifts in the atmospheric 162 

circulation?  Although one might expect decreased sub-seasonal variability as the temperature 163 

contrast across the jet stream declines with AA48, recent observations suggest contrary evidence 164 

of stable or larger circulation variability and new extremes in several circulation indices. For 165 

example, an enhanced magnitude of both positive and negative excursions of the AO circulation 166 

index is evident in the last decade during Decembers based on data from 1950-201449. Cohen50 167 
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notes an increase in midlatitude intraseasonal winter temperature variability from 1988/89 to 168 

2014/15.  Periods of relative persistence as well as increases in interannual variability have been 169 

noted in other related winter climate indices–such as the North Atlantic Oscillation (NAO), 170 

Greenland Blocking Index (GBI), and jet latitude metrics–although stability is more evident at 171 

other times of the year51,52,53. Observations from the next decade should reveal much about 172 

whether increasing variability and weather extremes are ongoing features of climate change or 173 

whether circulation-related extremes are damped by AA. 174 

 175 

The ability of state-of-the-art climate models to correctly simulate the interplay between thermal 176 

and dynamical processes producing itinerancy on different spatial scales is limited. One 177 

manifestation of this is the continuing tendency for climate models to underestimate the 178 

frequency of blocking (a regional slowing of tropospheric winds)54. Also the signal to noise in 179 

models could be too weak, as appears to be the case for seasonal forecasts of the NAO55,56,57.  180 

 181 

Intermittency 182 

Intermittency refers to necessary but insufficient causation and suggests an inconsistent response, 183 

evident at some times and not at others, or the same response arising from different combinations 184 

of Arctic conditions. In other words, the response is not a unique function of the forcing. If 185 

responses are intermittent, one will need a longer time series and/or a stronger signal to detect 186 

them. Often climate models and correlation analyses of observations produce differing estimates 187 

of how the climate will respond to the ongoing AA and loss of sea ice48,58. For example, climate 188 

model studies have reported shifts towards both the positive or negative phases of the AO and/or 189 

NAO, or no apparent shift, in response to AA13,19,34,39,59. Analyses that involve averaging over 190 
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large areas, long time periods, and/or many ensemble members may not reveal specific 191 

atmospheric responses to AA, such as enhanced jet-stream ridges and troughs that occur in 192 

specific locations. Despite some clear hypotheses for linkages, it remains difficult to prove that 193 

Arctic change has already had or not had an impact on midlatitude weather based on 194 

observations alone because of the short period since AA has become apparent5.  195 

 196 

One approach to overcome the signal-to-noise problem is to use model simulations59. Large 197 

ensembles of climate simulations have been run with observed sea ice loss as the only forcing 198 

factor. In such large ensembles it is possible to answer the question: how many years of 199 

simulation are required for the impacts of sea ice loss to become detectable over the noise of 200 

internal climate variability? Depending on the metric used to detect changes, the spatial/temporal 201 

mean response to forcing often exceeds the length of observational records, suggesting that it 202 

may be a decade or more before the forced response to sea ice loss will clearly emerge from the 203 

noise of internal variability. Thermodynamic responses may be detected sooner than dynamical 204 

responses59,60.  It may be that regional sea-ice loss will elicit robust signals in a shorter period.  
205 

 
206 

The Arctic climate system is especially sensitive to external forces that can fundamentally alter 207 

climate and ecosystem functioning62. Nonlinear threshold behavior of the Arctic climate system 208 

to the loss of sea ice has been discussed63. There are qualitative hypotheses for the coupled 209 

Arctic/subarctic climate system64 and new approaches such as nonlinear auto-regressive 210 

modeling for constructing linear and non-linear dynamical models (e.g. NARMAX)65,66. So far, 211 

NARMAX has been used to discern changing effects of glaciological, oceanographic and 212 

atmospheric conditions on Greenland iceberg numbers over the last century67. Novel methods to 213 
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distinguish between statistical and causal relationships68, the application of artificial intelligence 214 

such as evolutionary algorithms69, and a Bayeasian Hierarchical Model approach may enable 215 

progress. 216 

 217 

Evidence of systematic midlatitude responses to Arctic warming is beginning to emerge28-38. 218 

Linkage mechanisms vary with season, region, and system state, and they include both 219 

thermodynamic and dynamical processes. A complex web of pathways for linkages, as well as 220 

external forcing, is shown in Fig. 2, which summarizes selected recent references. Whilst these 221 

linkages shape the overall picture, considered individually they are subject to intermittency in 222 

cause and effect. To date, the most consistent regional linkage is supported by case studies and 223 

model simulations showing that reduced sea ice in the Barents/Kara Seas (northeast of 224 

Scandinavia) can lead to cold continental Asian temperatures33,70-74. A doubled probability of 225 

severe winters in central Eurasia with increased regional sea ice loss has been reported75. This 226 

singular linkage mechanism may be the exception rather than the rule7. Intermittency implies that 227 

frameworks allowing for multiple necessary causal factors may be required to accurately 228 

describe linkages in multiple locations.  229 

 230 

Multiple influences 231 

Whilst a more consistent picture of linkages may emerge in future scenarios as AA strengthens, 232 

one needs to remember that sea ice loss is only one factor of many that influences, and is 233 

influenced by, climate change. For example, eastern North American weather is affected by sea-234 

surface temperature patterns in the North Pacific and tropical Pacific76-79 and also by sea ice loss 235 

in the Pacific sector of the Arctic32,33.  The so-named Snowmageddon blizzard that hit eastern 236 
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North America in February 2010 was strengthened by the coincidence of moist, warm air 237 

associated with El Niño colliding with frigid air originating from Canada. Downstream 238 

influences on the Barents/Kara Sea region, noted for initiating sea ice linkages with eastern Asia, 239 

have been connected to the western North Atlantic80.  240 

 241 

The Arctic can also be influenced by variability from midlatitudes. January through May 2016, 242 

for example, set new records for globally averaged temperatures along with the lowest recorded 243 

sea ice extent in those months since 1880.  Extensive Arctic temperature anomalies of over 7o C 244 

were associated with strong southerly winds and warm air originating from the North Pacific, 245 

southwestern Russia and the northeastern Atlantic; anomalies for January 2016 are shown in Fig. 246 

3. In contrast, the large scale wind pattern also resulted in a severe, week-long cold surge over 247 

eastern Asia during January 2016, evident as the blue region in Fig. 3.  248 

 249 

On a hemispheric scale, the relative importance of Arctic versus non-Arctic forcing on 250 

atmospheric circulation patterns is uncertain.  While models generally suggest that AA and sea 251 

ice loss favor a weakened and equatorward-shifted midlatitude storm track, warming of the 252 

tropical upper troposphere favors the opposite response81. Recent work suggests that Arctic 253 

influences may have started to exceed tropical influences in explaining subarctic variability50,82. 254 

In the long term, the direct warming effect of raised greenhouse gas concentrations favors warm 255 

anomalies over cold anomalies, leading to an overall hemispheric tendency for warmer winters4. 256 

 257 

State dependence 258 

Arctic thermodynamic influences (e.g., heat fluxes due to snow and sea ice loss, increased water 259 

https://en.wikipedia.org/wiki/February_5%E2%80%936,_2010_North_American_blizzard
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vapor, changes in clouds) can either reinforce or counteract the amplitude of regional 260 

geopotential height fields60,83. This response can depend on preexisting atmosphere-ocean 261 

conditions and the intensity of the index cycle49 (state dependence), and can be considered a 262 

specific type of intermittency. For example, model simulations suggest that an amplification of 263 

the climatological ridge-trough pattern over North America, in response to Arctic sea ice loss, is 264 

conditional on the prevailing surface ocean state (Fig. 4). State dependence provides one 265 

explanation for why particular causal linkages may only constitute necessary but not sufficient 266 

causation.  267 

 268 

Variability in the wintertime Arctic stratospheric is another mechanism for state dependence. In 269 

winter, planetary waves propagate between the troposphere and stratosphere, and the impacts of 270 

this propagation are sensitive to the state of the stratospheric polar vortex84. While a strong 271 

vortex is characterized by relatively fast-moving westerly winds and a cold core, sudden 272 

stratospheric warmings can occur, in which temperatures can increase by over 40° C in a matter 273 

of days85. These events can weaken, or even reverse, the stratospheric winds, leading to an 274 

eventual downward propagation of the circulation feature into the troposphere86 and a tendency 275 

for a negative phase of the AO.  This mechanism establishes memory in the system, as sea ice 276 

loss and snow cover in late fall can affect the tropospheric jet stream in late winter through 277 

lagged transfer of wave-induced disturbances involving the stratosphere39. Only models with 278 

realistic stratospheres are able to capture this mechanism.  279 

 280 

Way Forward 281 
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To summarize, the various linkages between AA, large scale midlatitude and tropical sea surface 282 

temperature fluctuations, and internal variability of atmospheric circulation are obscured by the 283 

four limitations discussed above. These limitations reflect the nonlinearity of climate system 284 

dynamics, and the study of linkages remains an unfinished puzzle. Handorf and Dethloff87 report 285 

that current state-of-the-science climate models cannot yet reproduce observed changes in 286 

atmospheric teleconnection patterns because of shortcomings in capturing realistic natural 287 

variability as well as relationships between the most important teleconnections and patterns of 288 

temperature change. Until models are able to realistically reproduce these relationships, an 289 

understanding of subarctic climate variability and weather patterns in a warming world remains a 290 

challenge. 291 

 292 

The complexities and limitations of the linkage issue work against the idea of parsimony in 293 

science, of direct causality, or of finding simple pathways. Given the complex web of linkages as 294 

illustrated in Fig. 2, an appropriate physics analogy is the effort to understand bulk 295 

thermodynamics for an ideal gas by examining only the mechanisms of individual molecular 296 

collisions without aggregating statistics. An approach is needed that recognizes multiple 297 

processes that act sometimes separately, sometimes interactively in a framework based on the 298 

equations of motion and thermodynamics. This is not an easy task but may be achieved through a 299 

combination of carefully designed, multi-investigator, coordinated, multi-model simulations, 300 

data analyses, and diagnostics. 301 

 302 

Studies of linkages are motivated by the potential that a better understanding will benefit 303 

decision-makers in their efforts to prepare for impacts of climate change on multi-annual to 304 
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decadal timescales, as well as weather-prediction centers producing operational forecasts, 305 

particularly at the subseasonal to seasonal timescale. We offer the following recommendations: 306 

 307 

 The climate science community needs to develop appropriate diagnostics to analyze model 308 

and reanalysis output to detect regional and intermittent responses. Here, major progress is 309 

achievable. Although internal variability is a principal characteristic of large scale 310 

atmospheric motions, there can be order in large scale atmospheric dynamics that should be 311 

further exploited, such as analyses based on potential vorticity (PV), progression of long 312 

waves, blocking persistence, and regional surface coupling.  313 

 Nonlinearity and state dependence suggest that idealized and low-resolution climate models 314 

have limited explanatory power. Ultimately we need to use realistic models that are validated 315 

against observations. Improving the horizontal and vertical resolution is required to properly 316 

represent many regional dynamic processes such as jet stream meanders, blocks, polarity of 317 

the AO and NAO, teleconnections, surface-atmosphere interaction, stratosphere-troposphere 318 

interactions, atmospheric wave propagation, and shifts in planetary waviness88,89,90.   319 

 Arctic and subarctic sub-regions are connected over large scales. System-wide studies can 320 

help in assessing polar versus tropical drivers on midlatitude jet stream variability.  321 

 Model realism as well as improvements to weather forecasts would benefit from additional 322 

observations91
 in the Arctic and subarctic, and by improving global and Arctic 323 

meteorological reanalyses, particularly in their representation of surface fluxes92,93.  324 

 Better coordination of the research community is needed for model experiments and data 325 

analyses, as the current controversy stems in part from uncoordinated efforts. 326 

 327 
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Summary 328 

Many recent studies of linkages have focused on direct effects attributed to specific changes in 329 

the Arctic, such as reductions in sea ice and snow cover. Disparate conclusions have been 330 

reached owing to the use of different data, models, approaches, metrics, and interpretations. Low 331 

signal-to-noise ratios and the regional, episodic, and state-dependent nature of linkages further 332 

complicate analyses and interpretations. Such efforts have rightly generated controversy.  333 

 334 

Based on the large number of recent publications, progress is evident in understanding linkages 335 

and in uncovering their regional and seasonal nuances. However, basic limitations are inherent in 336 

these efforts. Fig. 5 offers a visualization of the current state of the science, presenting likely 337 

pathways for linkages between AA and midlatitude circulation at both the weather timescales 338 

(days) and for planetary waves (weeks), as noted on the left. Understanding such pathways can 339 

benefit from advanced atmospheric diagnostic and statistical methods. Limitations (center) in 340 

deciphering cause-and-effect derive from both itinerancy and multiple simultaneous sources of 341 

external forcing. A way forward (right) is through improved data, diagnostics, models, and 342 

international cooperation among scientists. 343 

 344 

Wintertime cold spells, summer heatwaves, droughts and floods–and their connections to natural 345 

variability and forced change–will be topics of active research for years to come. We recommend 346 

that the meteorological community “embrace the chaos” as a dominant component of linkages 347 

between a rapidly warming Arctic and the midlatitude atmospheric circulation. Scientists should 348 

capitalize on and seek avenues to improve the realism and self-consistency of the physical 349 

processes in high-resolution numerical models that simultaneously incorporate multiple 350 
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processes and internal instabilities. Use of multiple ensembles is essential. Coordination efforts 351 

are necessary to move toward community consensus in the understanding of linkages and to 352 

better communicate knowns and unknowns to the public. Because of the potential impacts on 353 

billions of people living in northern midlatitudes, these priorities have been identified by national 354 

and international agencies, such as: the WMO/Polar Prediction Program (PPP), WCRP Climate 355 

and Cryosphere (CliC), WCRP Polar Climate Predictability Initiative (PCPI), the International 356 

Arctic Science Committee (IASC), the International Arctic Systems for Observing the 357 

Atmosphere (IASOA), the US National Science Foundation, NOAA, and the US CLIVAR 358 

Arctic-midlatitude working group. 359 

 360 
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 627 

Figure captions 628 

Figure 1: (a, b) Geopotential height (units of meters) of the 500 hPa pressure surface, illustrating 629 

the northern hemisphere’s tropospheric polar jet stream where height lines are closely spaced. 630 

Winds of the jet stream follow the direction parallel to contours, forming the persistent vortex 631 

that circulates counterclockwise around the North Pole. The primarily west-to-east wind flow 632 

can adopt a relatively circular pattern (a, for 15 November 2013) or a wavy one (b, for 5 January 633 

2014). The lower panels (c, d) show the corresponding air temperature anomaly patterns (units of 634 

°C) for the same days at a lower atmospheric level (850 hPa).  635 

 636 

Figure 2:  A complex web of pathways that summarize examples of potential mechanisms 637 

that contribute to more frequent amplified flow and more persistent weather patterns in mid-638 

latitudes. Numbers 1-11 refer to original literature listed below diagram, and [ ] refer to 639 

these citations in the current reference list. BK is Barents/Kara Seas area, EKE is eddy 640 

kinetic energy, and SLP is sea-level atmospheric pressure. For details on processes consult 641 

the original references. 642 

 643 

Figure 3: Global air temperatures anomalies (°C) for January 2016 were the highest in the 644 

historical record for any January beginning in 1880. Southerly winds from midlatitudes 645 

contributed to the largest anomalies in the Arctic (+7° C). Note the cold anomaly (blue) over 646 

Asia. Source: NASA. 647 

 648 
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Figure 4: State dependence of the atmospheric response to Arctic sea-ice loss. Model simulated 649 

wintertime 500 hPa geopotential height responses to Arctic sea ice loss for two different surface 650 

ocean states. The responses are estimated from four 100-yr long atmospheric model simulations, 651 

with prescribed sea ice concentrations and sea surface temperatures. Experiments A and C have 652 

identical below-average sea ice conditions. Experiments B and D have identical above-average 653 

sea ice conditions. Experiments A and B, and C and D, have identical sea surface temperatures, 654 

but the two pairs have different sea surface temperatures from one another (i.e., A and B differ 655 

from C and D; see Supplementary Figure 1), capturing opposite phases of the Atlantic 656 

Multidecadal Oscillation (AMO). The response to sea-ice loss, under different surface ocean 657 

states, is estimated by contrasting experiments (a) A and B, and (b) C and D. The grey box 658 

highlights the midlatitude Pacific-American region, where a wave-train response to sea-ice loss 659 

is simulated for one SST state (a; negative AMO) but not the other (b; positive AMO), implying 660 

that the response to sea-ice loss is state dependent. Green hatching denotes responses that are 661 

statistically significant at the 95% (p=0.05) confidence level. 662 

 663 

Figure 5: Current state of the science for selected linkages. Arctic amplification and some 664 

pathways are known (left), but chaotic instabilities and multiple external forcing sources are 665 

noted under Limitations (center). (Right) A way forward is through improved data, models, and 666 

international cooperation of individual researchers.  667 

 668 
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31 

 

 670 
 671 

Figure 1. (a, b) Geopotential height (units of meters) of the 500 hPa pressure surface, illustrating 672 

the northern hemisphere’s polar jet stream where height lines are closely spaced. Winds of the jet 673 

stream follow the direction parallel to contours, forming the persistent vortex that circulates 674 

counterclockwise around the North Pole. The primarily west-to-east wind flow can adopt a 675 

relatively circular pattern (a, for 15 November 2013) or a wavy one (b, for 5 January 2014). The 676 

lower panels (c, d) show the corresponding air temperature anomaly patterns (units of °C) for the 677 

same days at a lower atmospheric level (850 hPa).  678 

 679 



32 

 

 680 

Figure 2:  A complex web of pathways that summarize examples of potential mechanisms 681 

that contribute to more frequent amplified flow and more persistent weather patterns in mid-682 

latitudes. Numbers 1-11 refer to original literature listed below diagram, and [ ] refer to 683 

these citations in the current reference list. BK is Barents/Kara Seas area, EKE is eddy 684 

kinetic energy, and SLP is sea-level atmospheric pressure. For details on processes consult 685 

the original references. 686 

 687 



33 

 

 688 
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historical record for any January beginning in 1880. Southerly winds from northern midlatitudes 690 

contributed to the largest anomalies in the Arctic (+7° C). Note the cold anomaly (blue) over 691 

Asia. Source: NASA. 692 
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Figure 4:  695 

State dependence of the atmospheric response to Arctic sea-ice loss. Model simulated wintertime 696 

500 hPa geopotential height responses to Arctic sea ice loss for two different surface ocean 697 

states. The responses are estimated from four 100-yr long atmospheric model simulations, with 698 

prescribed sea ice concentrations and sea surface temperatures. Experiments A and C have 699 

identical below-average sea ice conditions. Experiments B and D have identical above-average 700 

sea ice conditions. Experiments A and B, and C and D, have identical sea surface temperatures, 701 

but the two pairs have different sea surface temperatures from one another (i.e., A and B differ 702 

from C and D; see Supplementary Figure 1), capturing opposite phases of the Atlantic 703 

Multidecadal Oscillation (AMO). The response to sea-ice loss, under different surface ocean 704 

states, is estimated by contrasting experiments (a) A and B, and (b) C and D. The grey box 705 

highlights the midlatitude Pacific-American region, where a wave-train response to sea-ice loss 706 

is simulated for one SST state (a; negative AMO) but not the other (b; positive AMO), implying 707 

that the response to sea-ice loss is state dependent. Green hatching denotes responses that are 708 

statistically significant at the 95% (p=0.05) confidence level. 709 
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 711 

Figure 5. Current state of the science for selected linkages. Arctic amplification and some 712 

pathways are known (left), but chaotic instabilities and multiple external forcing sources are 713 

noted under Limitations (center). (Right) A way forward is through improved data, models, and 714 

international cooperation of individual researchers.  715 
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 717 

 718 

Figure S1: Prescribed surface boundary conditions. Differences in prescribed winter sea ice 719 

concentrations (a) and sea surface temperatures (b) between the experiments presented in 720 

Figure 4 of the main material. Experiments A and C have identical below-average sea ice 721 

conditions whilst experiments B and D have identical above-average sea ice conditions, and the 722 

difference between these is presented in (a). Experiments A and B, and C and D, have identical 723 

sea surface temperatures, but the two pairs have different sea surface temperatures from one 724 

another, with this difference shown in (b). 725 

 726 


