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Towards hierarchical blackboard mapping on a whiskeredtrob
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aSheffield Centre for Robotics, University of Sheffield, #vaddank, Sheffield, S10 2TF, UK
bBristol Robotics Laboratory, Bristol, UK

Abstract

The paradigm case for robotic mapping assumes large gieantit sensory information which allow the use of
relatively weak priors. In contrast, the present study mers the mapping problem for a mobile robot, CrunchBot,
where only sparse, local tactile information from whiskemsors is available. To compensate for such weak likelihood
information, we make use of low-level signal processing stndng hierarchical object priors. Hierarchical models
were popular in classical blackboard systems but are hguledpin a Bayesian setting as a mapping algorithm.
The hierarchical models require reports of whisker distatoccontact and of surface orientation at contact, and we
demonstrate that this information can be retrieved by ilass from strain data collected by CrunchBot's physical
whiskers. We then provide a demonstration in simulationaf this information can be used to build maps (but not
yet full SLAM) in an zero-odometry-noise environment cantiag walls and table-like hierarchical objects.

1. Introduction through dark underground tunnels using their whiskers
[7, 2], having ranges of only a few centimetres. In

. ! " robotics, whisker sensors are relatively cheap in both
Firstly, as a sole sensory system in environments wWhere ya4aja| and computational processing terms, and their

other types of Sensors fail, SQCh as smoky or dust_y use has previously been considered in constrained tasks
search_—ar?d-rescues_ltes_, espe(_:lallywhere covert(n03|g-[44' 43, 30, 29, 15]. The previous robotic attempts
nal emission) operation is required. Secondly, as & COM- 5y manning from sparse local sensors have either used
plement to other sensors such as vision, with which it o exiremely strong generic prior that the whole world
can be fused or used as a ‘last resort’ during adverseis made entirely of north-south and east-west straight

conditions as in the SOI? SENsor case. . . edges [53] or have used relatively long range but sparse
However, the paradigm case for robotic mapping, ray sensors integrated over multiscans [3].

as in Simultanepus Localisat_ion and Map_ping (SLAM) We will demonstrate touch-based mapping using a
pr(?blems [501, |nste§d_ considers a mobile rob(_)t with mobile robot, CrunchBot, having six whisker touch sen-
|nO|sy odometry and }:lelcl)n or laser sc?nnfers. \”S'OW e:(nd sors only. First, it is shown that CrunchBot's whiskers
as<te_r scanr;e;s provf|f et_arglje aTOl.Jtn; ot sensory dm O are able to recover approximate position and orientation
mation, and have efieclively unlimited range in indoor reports about contacts with surfaces. Then it is shown
gnwronments. Such Iarg_e quantities (_)f Input '”for”_‘a' how these reports can be fused with strong priors to
gon allgw ';he_(tjjse I(I)f relatively Wezfilktprl(_)rs, SUChtﬁs It? recognise hierarchical objects such as tables and chairs,
ependent grid cefl occupancy or fiat priors overtne be- s 5 step in building a map of the environment.

lief of small feature sets [50]. : . )
. ; . Fig. 1 gives an overview of the general framework for
This study considers the touch-based mapping prob- . oo . ) L .
. ) : : perception and navigation with whiskers within which
lem in which only sparse, local sensory information _ : L o
: . o this study operates. When biomimetically inspired by
is available. Proof that navigation from such sensors . . :
is bossible is readilv found in bioloav: rats navigate rodents, whisker sensors have strain sensors at their base
P y 9y- 9 only. When a rat investigates an object it palpates the
surface in a back and forth oscillatory sweeping be-

Touch-based mapping has two principal applications.

*These authors contributed equally and are joint first agthor haviour known as ‘whisking’ [52],[9]. It is thought that
Email addresseschar | es. f ox@heffi el d. ac. uk [P e ; ;
(C.W. Fox),mat . evans. shef fi el d. ac. uk (M. H. Evans), V\{hlSkIﬂg IS |mp9rtant for gatherlng the mOSt re.“able
martin. pearson@r | . ac. uk (M. J. Pearson), signals from wh!sker contacts [36]. Stralght Whlskers
t.j.prescott@heffield.ac. uk (T.J. Prescott) can make two distinct types of contact with an object,

Preprint submitted to Elsevier December 2, 2011



in individual mobile settings [41]; here we present steps

Imt’?l 4 Tactile integrating them into a single platform for hierarchical
i Surface report for object recognition, along with results and observations
| - —~  angle navigation on their performance ‘in the wild’ in a common arena
A2 E> environment
Whisk  Radius T Texture ' .
& By To compensate for the sparseness of the sensory in-
Shaft formation available from these distance-orientation re-

ports, we fuse them with strong hierarchical priors about
objects in the world. Hierarchical object recognition
models were popular in classical Al in the guise of
‘blackboard systems’ [10, 35, 5] but have recently been
recast in terms of dynamically constructed Bayesian
networks [16, 34, 31, 49]. Here we provide an appli-
cation of Bayesian blackboards to robotic mapping. We
do not consider the full SLAM problem here, but in-
stead work in a simulation of CrunchBot having zero
odometry noise to avoid the localisation problem and
focus on mapping only. Related object-based mapping
models have recently appeared [51, 23, 46, 40] using
laser sensors to recognise and learn complex but non-
hierarchical spatial models. However as data available
contacting it either at their tip or their shaft. Tip con- through whiskers to CrunchBot is much sparser than
tacts are generally the most useful, because they pro-that from laser scanners, the required level of sensor
vide a standardised, constrained setting (i.e. with the detail is unavailable, therefore we compensate with the
contact point at a known location at precisely the end new mapping technique of fusing contact reports into
of the whisker) from which surface properties such as hierarchical models. For example, on recognising a
orientation and texture can be identified [30],[15]. In single table leg, we may infer the probable presence
contrast, shaft contacts are less informative. For exam-the rest of the table, including other leg objects, and
ple, an unknown distance to an object along the shaft edges and corners making up these legs, without ever
can confuse attempts to classify surface orientation andsensing them directly. To construct hierarchical ob-
texture [17]. Shaft contacts are rare in practice in both jects, we use hypothesis priming and pruning heuris-
rodents and mobile robots, occurring only when small tics as in classical blackboard systems. However, fol-
objects enter the field of multi-whisker arrays between lowing [16], we treat such heuristics as approximations
the whisker tip points. In the scheme used here, a fea-to inference in a dynamically-constructed, Monte Carlo
ture based radial distance estimator [13] is first used to Markov Chain (MCMC) sampling Bayesian network,
make a decision of whether the contact is at the tip or whose observations are the distance-orientation reports
the shaft. If it is a shaft contact, then the robot should from the whiskers.

use the radial distance information to move to another

location that is likely to yield a more useful tip contact.

Following a tip contact, we can read surface orientation 2. Methods

and texture information (and possibly speed of object

\ Move to

reposition

Figure 1: A new framework for extracting contact parametéter
initial contact a whisk behaviour allows the discriminatiof object
location. If contact is made along the whisker shaft the agaust
move to reposition the whisker for subsequent contactsorifact is
made at the whisker tip a robust discrimination of surfaapeprties
can be made. Reports of surface properties can be used bysgthe
tems, such as for navigation or to construct complex objextets as
in the present study.

when there are moving objects in the world) and pass
them as an observation to a navigation or mapping sys-
tem.

This study provide an implementation of the dis-

2.1. Whiskers.

CrunchBot’s six whiskers measure 160mm in length,
1.45mm diameter at the base tapering linearly to 0.3mm
at the tip. They are built from nanocure25 using an Evi-

tance and angle stages of this framework on Crunch- siontec rapid prototyping machine. A magnet is bonded
Bot (Fig.2(a)). Individual components of such a system to the base of the whisker and held in place by a plug of
have previously been investigated in isolation, including polyurethane approximately 0.75 mm above a Melexis
whiskered texture recognition [15],[26],[11], [17],[32] 90333 tri-axis Hall effect sensor IC [33]. This sensor

surface shape recognition [30],[24],[21],[13], and ob- generates two outputs representing the direction of the
ject recognition [19]. These components have previ- magnetic field (in two axes) with respect to its calibrated

ously been tested under ideal laboratory conditions or resting angle. These two 16-bit values are sampled by
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which runs hierarchical object recognition and map-
ping.

2.3. Robot movement

Previous work has shown that accurate object locali-
sation with a whisker requires some measure of contact
speed [13], or of the applied forces and bending mo-
ments at the base of the whisker [24],[30], values that
are not always available in the mobile case as agent
movement will affect these contact properties. To ad-
dress these points a ‘body whisk’ behaviour was in-
cluded in the robot program. As the whiskers were
not actuated the whole robot must rotate in a systematic
way. Upon initial contact with an object the robot first
Figure 2: CrunchBot, a whiskered mobile robot platform. reverses away a short distance before rotating/att
radians per second towards the object, then rotating at
/24 radians per second away from the object. This al-
lows this whiskers to move over the surface of the con-
tact object, collecting data about its location and orien-
tation. After the whisk the robot reverses again to clear
the object, then rotates in a random direction and moves
forward again.

a local dsPI1C33f802 micro-controller which, in turn, is

collected using an FPGA configured as a bridge to a
USB 2.0 interface. Up to 28 whiskers can be connected
to this FPGA bridge at one time. Using the vendor pro-
vided software driver and API (Cesys GmbH), a user
can request the data from all whiskers at minimum in-

tervals of 50(s (a maximum sample rate of 2kHz). 2.4, Radial distance reporting

To determine whether an object has made contact
2.2. Robot platform. with any of CrunchBot's whiskers at the tip or the shaft,
and to discriminate between contacts with the surfaces
or corners of objects, object localisation was imple-
mented. Previous work [13] has shown that peak de-
flection magnitude could be used as a feature for radial
distance discrimination at a given speed. Whisker data
was recorded during the ‘body whisk’ contact, and the
maximum whisker deflection was measured. Deflection
magnitude was taken as the Hall effect sensor output
voltage at peak deflection, which is proportional to the
bending moment. This featuye can be defined as,

CrunchBot is based on the iRobot Create base
(www. i robot . conm) platform, with the whiskers
mounted in the cargo bay, being positioned on an
adjustable metal bar and rapid prototyped ball joint
mountings. These mountings allow adjustment of the
whiskers. For data collection experiments in the present
study, only four whiskers are used, configured in the
horizontal plane to detect objects in an arena (the
other two whiskers scrape along the floor and are used
in other experiments, such as for texture discrimina-
tion in our previous study, [20]). We have also ex- f1 = max0(t), (1)
tended the cargo bay mounting to accommodate a net-
book PC, which is used for local control of the robot. wheref(t) is the time-dependent deflection magnitude
The netbook runs Ubuntu 10.10 on a single-core In- measured by the Hall effect sensor.
tel Atom processor. A circular buffer in shared mem-  During the training phase a dataset was collected for
ory is used to make data from the Cesys driver avail- each whisker, consisting of 5 contacts at each point
able to other processes. The netbook hosts a Playeralong the whisker at 10mm intervals over a 50mm range
server pl ayer st age. sour cef or ge. net ) which from the tip of the whisker. Though the whisker is
provides high-level, networked API interfacing to the 160mm long, only 140mm is external to the ‘follicle’.
Create’s serial port commands. Processes such asA model was then generated of the relationship between
texture and shape recognition and basic motor con- the deflection magnitude and the corresponding radial
trol run on the netbook, reading the raw data from distance to contact by fitting a linear equation to the
the fast circular shared memory buffer, and writ- training data in MATLAB. To find an estimate of radial
ing their results every 0.1s to a Python Pyro server distancer,

(pyr o. sour cef or ge. net ) on the remote desktop r = ay f1 + ao, (2)
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was fitted to the data with a linear-in-the-parameters
regression on the line, giving a least-squares fit for
(ap, a1) for each whisker.

2.5. Surface orientation reporting

A complementary data-driven approach to feature ex-
traction methods is to store instances of time series as
a set of templates for comparison to novel data. It
has been shown that simptemeans style templates on
strain time series frorimdividual whiskers can be used
for discriminating contactlistanceclasses in physical
simulation [21], and stationary robot hardware [12]. In
the present study we have access to four whiskers to-
gether, so we can train templates corresponding to sur-
face orientation classes from the 8-dimensional time se-
ries from the wholemulti-whiskerset (four whiskers,
each with vertical and horizontal strain channels). Ori-
entation reports could be used to inform complex object
models as in sec. 2.6. The rationale for this particular
approach is that a template method can utilise bulk data rigyre 3: Simulation screen-shot at low annealing tempezat A
from all whiskers to find surface orientations, without single table hypothesis remains, aligned correctly wita physical
any of the geometric assumptions required when splin- table.
ing individual radial distance reports [30].

Offline training data was collected by programming
the robot to drive into a wall at fifteen different angles
(20°:160 in 10° intervals) four times. Data was aligned
to initial contacts, low pass filtered (17Hz) to remove
oscillations caused by robot body movement, recorded
for 2s, and smoothed with a five-point moving average.
Templates were generated by averaging across three o
the four sets for each angle. Templates for each an-
gle comprised data of all eight channels from the four
whiskers to allow multi-whisker information to inform
classification.

During testing the fourth data set was used compared
to the averaged template using a sum of squared erro
measure. The average squared eredior each tem-
plate,T; is computed over thé/ logged data points,

(T = 00 -TH)7 @

t=1

The template with the lowest sum of squared errors was

determined the winner, and the orientation of this tem- rigyre 4: Simulation screen-shot at high annealing tentpesa

plate recorded. This process was repeated four times,Many hypothesised (wire-frame) tables and legs are on taekbl

each time using a different data set as the test set, and &oard, primed by the shapelets (yellow rectangles) coedaby the

template constructed from the remaining three sets. In robot (cone)’s whisker sensors, in an arena containing aipatable
. . . o ink).

this manner it is possible to generate a robust estlmate(IO )

of mean classifier performance, while preserving indi-

vidual trial differences for inspection in the results.



2.6. Hierarchical Object Models
CrunchBot’s task is to build a map of an arena popu-

lated by four-legged table-like objects as in figs. 4 and 3.
Such objects could include chairs and desks in a home |

or office environment for example. In our object recog-
nition experiment, CrunchBot moves alongpeede-
terminedtrajectory of location-angle poses;?, v, 6%)
around the arena (though we discuss possibilities for au-
tonomous exploration in sec. 2.9), over discrete time
stepst. We assume that at each discrete time step
CrunchBot’s whiskersw € 1 : 6, each report egocen-
tric estimates of the radial distanc¢o, and surface ori-
entationg, using the methods of previous sections, and
of contact texturer of, any contacts made,

=71l + e, (4)
¢l = ¢, + €4, (5)
%t *7’ +ée,, (6)

wheree are i.i.d. Gaussian noises having zero mean and
standard deviations,’, o', o respectively. Assuming
perfect odometric localisation in the present study, these
estimates may be converted into allocentric Cartesian
coordinates to give tupleS(zs, ys, ¢s, Ts) which we
call shapeletand which will be treated as observations
in graphical models.

Tables, 7T, are parametrised by tuples,
T (z7,yr, 01, WS, wh, wk rr), where z,y,0 is
the pose,w% andw?¥ are width and breadthy’ is
the width of the (square) legs, and € (0,1) is a

L=
Figure 5: Hierarchical object recognitionLeft: Robot R (circle)
with six whiskers (lines) makes tactile contact with légs(squares)

of a hypothesised tablgy (rectangle). The two contact points
(‘shapelets’) on the right are sufficient to infer the looatof the cor-

ner of legL4. Coupled with prior knowledge about the shape and size
of tables, and the third shapelet, this can be used to inéithiere is

a table either in the ground truth location or in a second goréition

Ty (dashed rectangleRight: Bayesian network constructed to repre-
sent the same scenario. Square nodes are the shapelettibssrv

(9)

wherea is a (non-normalising) constant, and the dis-
tance measure is

= o exXp (_ATL) ,

i 2 . 2 Or — 0 2
ATLm_in<(zT rr) J;(?J yr) )+< T L)
i (o g9
w%—wL 2 T — TI, 2
+<7> +(7) . o)
Ow Or

where0 < i < 3, and(z%,y%) are the coordinates
of the table’s four corners, ang,, o, are parameters

texture parameter describing roughness or smoothnessspecifing standard deviations of the legis, 7, values

of the material. A generative model of tables is used.
CrunchBot assumes a flat prior probabililensity
generating tables in the world,

0) =cr,

wherecr is a (non-normalising) constant.
If a tableT exists, its presence causes (in the sense of
[38]) the presence of four leg objects,

(7)

p(T(mTa yr, 9Ta w%vw%vw%’; 7-T)|

(8)

wherewp, is the width of the square table leg;, y1., 01
are its location and rotation, ang is its texture, with
probability density

L(zr,yr,00,wr, 71, T),

p(L(zr,yr,0r,wr, 70, T)|T(x7, yr, O, Wh', 71))

1Texture reports are not yet implemented on the physical @run
Bot, but can already be handled by our hierarchical framk\vosim-
ulation so are included for completeness. In the presentlations
we assume all tables and reports have the same textutel].

conditioned on the table’s correspond'm@, 77 values.

The inclusion off" in the parametrisation of (eqn. 8)

means thaf. is the hypothesis that the leg was caused

only by tableT rather than any other table or cause.
Shapelets are assumed to be generated by nearby legs,

p(S(zs,ys,0s,7s)|L(zL,yr,0n, wr, 7, T)) = asexp (—ALg)

where

T, — TS
S
JT

(11)
I

2 2
o= (52) + (7 )
12)

andr is the shortest radial distance from the perime-
ter of the leg to(x 5, ys), computed by basic geometry,
f(0r) = 01, + mm/2 picks the angle of the correspond-
ing sidem of the leg at this shortest-distance contact
point, ands?, o5 , o2 model sensor noise.

We also prowde smalhull priors to allow legs and

shapelets to exist in the absence of any generative par-
ents. (These are required later, during construction on

or)
S

7

)



the blackboard, so that these objects can survive beforeas required.

their parents are constructed), We allow legs to be caused by a mixture of thsgir-
gle specified parent (i.e. thE parameter in egn. 9) and
p(L(zr,yr, 01, wr, 72, 0)|0) = cr, (13) null prior (egn. 13), using a similar combination rule.
Tables are caused by the null prior only (egn. 7).
p(S(ws,ys, bs,7s)10) = cs, (14) Taken together, the equations in this section define a
with constants such that the marginalised densities, Bayesian network for any given collection of tables, legs

and shapelets as shown in fig. 5. However, in addition to
p(S(zL,yr,01)) < p(L(zr,yr,01)) < p(T(xL,yL,0L)), the previous causal probabilities, we need to model the

(15) following constraints: (a) tables always have four legs;

i.e. larger objects are more probable to exist without (b) each table leg is at a different corner of the table (we
high-level causes than smaller objects are. should not see two legs attached to the same corner);
Unlike the parametrisation of. on 7" in egqn. 8,  (c) two objects of the same type (table or leg) cannot
shapelets may be causedrjxturesof multiple leg hy-  overlap in physical space. Standard Bayesian networks

potheses and by the null prior (eqn. 14). For example cannot model such relations, as they are limited to joint
if there are two legs very close together then the density distributions of the form

for observing shapelets in the area increases. We as-

sume that multiple causal sources combine using noisy- P({xz:}i) H P(z;|pa(z;)) (22)

OR semantics,

P(x|pa(z;)) =1 — H (1— P(x]x;)). (16) To mo_del these additional constrains, we extend the
Bayesian network to the factor graph,

@ Epa(z;)
wherepa(z;) denotes the set of parents of generic node
x;. As we use probabilitglensityfunctions we require P({wi}i) = HP zilpa(z:))
the continuous version of noisy-OR, proved below,
Theorem H¢( xl?‘/rj ¢b xuxj <H ¢a £ ) ) (23)
plailpae) = Y plailz;). (17) where Z is a normalising constant, angl,, ¢, ¢. are
j€pa(zi) unnormalised penalty factors corresponding to the three
new constraints. Using superscripts for exponentiation,
Proof
_ i these are
Let Y; range over nodepa(X) in a continuous- bal(wi) = €™ (24)
valued Bayesian network with noisy-OR parent combi- ! ’
nations, ov(zi,25) = €, (25)
P(X|{Yi}) =1-[J1 - P). (18) be(@i, xj) = €, (26)

. ) - wherem is the number of fissing legs iffz; is a table,
with P; = P(XY;). Consider the probability ofasmall 414, — 0 otherwisey is a Boolean (0,1) value, true if
range of hypotheses, hypotheses; andz; are of the same type and enap

3 3 in physical space; andis a Boolean, true if hypotheses
a"p(X|{Yi}s) =1~ H(l —°pa), (19) r; andz; are legs and share the samegpdi(modelling
this parent-sharing is why we parametriseby 7' in

wherep are probability densities ant are probabili- eqn. 8).

ties. Expansion terms with powers &fthat are> 3

vanish, so 2.7. Hierarchical Object Inference
Bp(X{Y:}) =62 Zpi. (20) For a given set of shapelet observations and a set of
candidate hierarchical legs and tables, CrunchBot may
Thed? terms cancel to yield thus construct a factor graph. (We later describe how
such a set of candidates is obtained automatically). In-
p(X|{Y:}i) sz (21) ference would become highly complicated if CrunchBot



Algorithm 1 Blackboard-inspired approximate
Metropolis-hasting proposals generation.
for each time stepdo
update shapelet queeby reading sensors
for each annealing inverse temperatdréo
for each shapeléf; € S do
propose and test pareft; from Q(pa(S;))
if accepted, add{; to hypothesis seB
end for
for each hypothesi#l; € B do
r + rand(0,1)
if r < rq then
propose death afff;
if accepted, removél; from B
else
if r < rythen
propose parent change féf;
if accepted, replacé/;’s parent parame-
ter
else
if r < r3then
propose childd; from Q(ch(H;)|H;)
if accepted, add?; to hypothesis set
B
else
propose parent
Q(pa(H;)|H;)
if accepted, add?; to hypothesis set
B
end if
end if
end if
end for
prune all hypotheses not linked to any shapelet
directly or via a common ancestor.
end for
end for

H; from

Figure 6: Overhead view showing ground truth table configoma
and locations (black dots) of the discrete poses occupigteogobot.
There are four angle poses at each location, facing in cosrgieec-
tions.

had an infinite memory for shapelets, so in the present
study we use a working memory (queue) of the seven
most recent shapelets, and discard all others. At gach
new shapelets are read from the sensors, and inference
is performed with the aim of obtaining the Maximum
A Posterior (MAP) interpretation of their table causes,
before the next time step begins,

MAP; = argq,y max P({T)};[{Sk}x). (27)
Thus CrunchBot currently — naively — treats each time
step as an independent inference problem. Limiting in-
ference to the most recent shapelets also has the effect of
working within a local ‘fovea’ of attention: if no recent
shapelets are from distant areas, then only hypotheses
around CrunchBot’s location will be considered.

There is some subtlety in defining the meaning
of MAP states in continuous parameter spaces. In
the present study, we assume that discrete hypotheses
Hi(z,y,0,0) (whereH € {S,L,T}) represent small
but non-infinitesimal collections of possible:;, y, 6)
poses, with probability

3
=
=
|
TS
&
+
S

), (y—3.y+2).(0-2,0+3),0))

= 53p(H(z,y,9,@)), (28)

whered is a small but nonzero consta®, are the re-
maining parameters, ands the density.



CrunchBot uses the annealed [1] approximate where H; is false; &, = HjEmb(i) op(H;, H;) and
Metropolis-Hastings sampler of algorithm 1 to perform &, = HjEmb(i) ¢c(H;, H;). The update allows com-
inference. Unlike standard inference problems, object- putation to proceed using density functions rather than
based mapping is a form of scene analysis task, i.e. theprobabilities, but depends on the choice of the small
number of objects in the world — and therefore the num- constanty.
ber and type of nodes in the network — is unknown in  Newly proposed nodes must be linked to existing
advance. Algorithm 1 uses blackboard-like priming and ones, so it is necessary to locate all potential parents
pruning heuristics integrated with the sampling, to con- pa(H;). A threshold radius in pose space is used, which
trol the size of the network. Each hypothesis in the cur- |imits this set to candidates which are close enough to
rent ‘blackboard’ sets maintains (amongst other pa- have non-negligible generating probabilities, i.e.
rameters), pose parameterg, 0 and a current parent.

The current parent may be another hypothesis, or may pa(H;) == {H; : P(H;|H;) > 0}. (30)
be null. Importantly, hypotheses that are not currently

‘true’ (according to the sampler) are never stored3in For computational efficiency it is useful to implement a

The setB acts as a factor graph as detailed in the previ- SPatial hash-table to look up these nearby hypotheses.
ous section, and may be thought of as the contents of aThis hash-table may also be reused to look up overlap-
blackboard [10]. ping hypotheses in the computation¢f

To obtain unbiased samples from the true joint distri- .
bution, Metropolis-Hastings sampling requires detailed 2.8. Mapping task
technical conditions to be met, which are complicated ~ To remove the complexities of noisy odometry lo-
by the jumps between factor graphs of different struc- calisation during mapping, a noiseless-odometry sim-
tures and sizes. Reversible jump methods [25] provide ulation of Crunchbot in a world populated by six four-
a rigorous theoretical basis from which to define accep- legged, table-like objects was implemented. The sim-
tance probabilities based on reweighting proposals. Fu- ulation is coded in C++ using the ODE physics en-
ture work should incorporate such theory, for now we gine (wwv. ode. or g) for whisker contact detection.
heuristically choose the distributiong andr; thresh- ~ Source code is available in the supplemental material.
olds; and use the annealed origiatistribution from The sensor noise levels are comparable to those found
the factor graph as a Simp|e Gibbs [1] acceptance prob- in the phySical classifiers. The agent follows a fixed se-
ability, guences of poses around the world and runs algorithm 1
once at each pose. There afex 10 x 4 poses, from 10
P(accept H;) = PP (H;|mb(H;)), (29) discreter andy positions and four compadsangles, as
. . shown in fig. 6. To further simplify the present simula-
wheremb(H;) is the Markov blanket off; containing o, tables and table hypotheses all have fixed identical
its parents, rivalsv(H;), and childrench(H;), ﬁ IS w2, wY andr; parameters; and physical (but not hy-
inverse temperature. The Markov blanket conditional is pothesis) tables and have fixed identic&l parameters.

P(Hi|mb(H;)) = P(H;|pa(H,), cop(H:), ch(Hi), riv(Hi) 5 o - Entropy based exploration

1 ®,9,9.P(H;|pa)P(ch|H;) While the mapping experiment uses a fixed sequence
-7 P(ch|(H;))P(H;|pa) + P(ch|-~H;)P(—H;|pa) of CrunchBot locations, we performed a further exper-
iment to investigate a potential method for autonomous

_1 . Lo Po®ep(Hilpa)p(ch|Hs) 7 exploration. Preliminary experiments suggested that
Z 63(p(ch|Hy)p(Hilpa) + p(ch|=H;)p(—Hi[pa)) a common scenario which could enable exploration
where Z normalizes the factors contributioh, ®, .. is the presence of ambiguity between rival high level
only; ¢ is the constant of eqn. 28,¢, = table percepts, as illustrated in fig. 3.4. In these

$a(H;) [1epa(i) Pa(H;) includes missing children of  cases, CrunchBot's whiskers have seen a set of shapelets

H; and also tile missing child penalty for each parent which enable the presence of one or two legs to be in-

of H; which would have a missing child in the case ferred, but the configuration of the rival tables remains

ambiguous. In fig. 3.4, the Gibbs sampler is switching

—— _ between tableg’1 and7"2 which are equally valid ex-
details can be found in the source code, however note that MH 5 ations of leg€.1 andL2. We note that the presence

sampling can operate @y proposal@ so its precise form is unim- .

portant. Better results are obtained as the approxirGateecomes of 71 and7'2 are strongly corellated .W'th the presence

close to the trueP. of legs (L3, L4) and (L5, L6) respectively. Therefore,




observing the presence or absence of shaplets caused b§® - L1 LS
any of these legs could resolve the high-level ambiguity D — s T2 D
about the tables. s1 |

This idea can be made precise by using a novel hi-

erachical version of well-known entropy-based explo- ®

ration methods (reviewed in [42]), integrated into the i £ .
Bayesian blackboard architecture. During mapping, J
CrunchBot’s goal is to maximize knowledge about ta- “* L2 L6

ble locations (i.e. construct a map showing the tables.) _ , _
Figure 7: Typical ambiguous table scenario. Here the rabdtas

We can write this goal as maximixing entropy of the reported shapelet§1 — 4 and inferred legd.1, 2 unambiguously.

distribution over sets (maps) of tablgg; };, But these legs are equally compatible with tablek 2 having legs
L3,4 and L5, 6. Exploring any of these four legs would remove the

max H({T;};) = ?%a}x (—(log PUT;}:))r)  (31) ambiguity about the tables.
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Future work could explore ways to compute this entropy before the action is performed, by computing the distri-

exactly within the Bay(_esian blackboard fra_mework; in bution of tables conditioned on the possible Boolean leg
the present study we simplify the computation by quan- stateb

tising a local region of space around CrunchBot into a

square occupancy grid, and working with the probaba-

bilities that each grid cell is occupised by a leg or a ta- {P(T(2,y)|L(Ta, Ya) = b)}ay:
ble instead of the full distribution over sets of tables. )

As is common in occupancy grid methods, we assume then computing\H =

(strongly, but falsely) that cell probabilities are mutyal

independent. Under these assumptions the local mapH ({T(,y) }e.y| L(Tas Ya))—H{T (2, y) } oy~ L(Tas Ya))

(34)

probability is, (35)
[P, y) 32) =" H(T(2,y)|L(za,a)) — H(T(z,y)|~L(2a, Ya))
v (36)

whereP(T(x,y)) is the table occupancy probability of
the cell at locatior{z, y). From this we further approx-
imate the entropy of the distribution over sets of tables,

for eacha(z,, y,). The action with the largest differ-
ence in entropy is the most informative about the table

by the sum of the grid cell entropies, distribution and is thus could be a useful candidate to
explore next.

H{T;}) ~ ZH(T(‘T7y))’ (33) In practice, we need a way to approximate equa-

P tion 34. In the present study, we experimented by us-

ing samples of table setsI;}; drawn from the ex-

which is the new goal to minimize. We quanitise isting Metropolis-Hastings sampler. For each sample
CrunchBot’s next possible (greedy) actions as move- of tables, the Boolean cell occpancies are computed
ments to the same set of grid cells, and assume that visit-(by drawing the tables onto a grid using a graphics li-
ing a cell will always find any legs in that cell (as aresult brary, www.cairographics.org), then normalized occu-
of the body-whisks, and radial distance and orientation pancy frequencies summed over samples used as ap-
reports). We ignore any evidence that may be collected proximations to occupancy probabiliti€7'(z, y)). To
during the path to reach the action cell in our approx- avoid estimation bias due to the changing annealing
imiation. Let the action of moving to and observing the temperature, we extended the annealing cycle with a
cell (x4, yq.) bea(za, ya). fixed, high temperature phaset= 1/7.5 for N = 20

Performing actiom(z,, y,) will (by assumption) an-  steps before beginning to reduce the temperate for the
swer with certainty the Boolean question of whether or MAP optimisation annlealing phase. The high temper-
not there is a led.(z,, y,) in cell (z4,y,). It may also ature was used to allow the sampler to jump often be-
reduce the entropy of the tables, by restricting possible tween minima, as at = 1 there is little probability of
percepts to those matching the presence or absence othe rivals and missing children —which are necessary to
this leg, as in fig. 3.4. We can compute this potential transition to alternative ambiguous table percepts — ever
entropy change in advance, from tberrentlocation, occuring.



Figure 8: lllustration of the foveal grid used in entropy mpiyy. The
grid covers a small local region around the robot, within dnena.
Table and leg occupancies are recorded in each cell and ogedi t
regions of interest, such as the ambiguity-resolving lédgo3.4.

3. Results

3.1. Radial distance reports

Peak deflection magnitude for each contact is shown

W 1 2 3 4 Combo

o | 2.78mm 1.82mm 4.37mm 5.68mm 4.98m

Table 1: Standard classification error for radial distarsteretion on

the CrunchBot mobile robot. Results are given for each vemigk

turn, and or all the whiskers together. W = whisker; standard error
of classification
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Figure 10: Surface orientation discrimination error witheaplate
based classifier. Mean classification error is 22 &andard error is

in Fig. 9. Standard deviation of error for radial distance 5, »

estimation is shown in Table 1.

Standard classification error is very low, typically _
less than 5mm over the 60mm range tested. For somelS low enough to ensure a consistent contact force and
whiskers classification error is even lower, below 2mm. speed.

These results compare favourably with previous work

under highly controlled conditions where speed was 3.2. Surface orientation reports

variable. This indicates that the noise in the odometry

160

© Deflection magnitude
1501 Standard error 1

140

130
120 -
110
100

90

Radial distance to contact

80

70F
0 0.15 0.3 0.45 0.6 0.75 09 1
Normalised Hall effect output

Figure 9: Peak deflection magnitude for contacts along tiadt sif
the whisker. Standard error for the regression is 4.98mm
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Fig. 10 displays surface orientation estimation per-
formance for the template based classifier. Mean clas-
sification error is -2.2, standard error is 21°2 Clas-
sification performance is best for orientations nedt, 90
with larger errors being made for large and small orien-
tations. This may be due to fewer whiskers making con-
tact with the surface at the extreme orientations, provid-
ing less information to the classifier with which to base
a classification.

3.3. Hierarchical object mapping

Based in part on the physical classifier results, the
parameters used were:r = 0.4,¢p, = 0.1,cg =
0.05,¢, = 03¢, = 0.1,e. = 0.1,0, = 02,09 =
7/32,0° = 0.4. The annealing schedule wak =
exp{7.5—0.5:}. Steps in the inference are illustrated in
the supplemental video material. The MAP hypothesis

m



Figure 11: Montage showing collection of inferred tablestreach
independent robot pose, for realistic [18}.(= 0.1,09 = 7/32)
sensors.

Figure 12: Montage showing the collection of inferred tableom

sets from all poses are collated and plotted onto a map each independent robot pose, for ideal, noiseless sensors.

of the arena in fig. 11. Comparing against the ground
truth in fig. 6, the collated plot shows that table hy-
potheses are usually found in the correct locations, cor-
responding to the real tables. The average number of
whiskers contacting tables at each pose having at least
one table contact is 4421.7. As we would expect from
such a sparse amount of data, there are thus many incor-
rect hypotheses found in MAPs of the form shown in
fig. 5. These are created from poses which do not pro-
vide enough information about the tables to resolve am-
biguities, for example when the robot is close enough
to touch two legs but no third leg as in fig. 5. Also

of interest in the results are the many table hypotheses
perceived around the edge of the arena. These are due
to the agent observing shapelets from contact with the
walls around the arena. The system does not (yet) have
perceptual models of walls, so the best available expla-
nations for such shapelets are those which postulate ta-
bles with legs at these shapelet locations. (Thisis a form
of perceptual relativism: lacking a WALL concept, the
system explains the data using its best available TABLE
theories.) Similar plots for noiseless and highly noisy
sensor cases are shown in figs. 12 and 13 for compari-
son. In both cases, the approximate locations of inferred
tables are similar, though the accuracy of inferred table
poses depends on the noise.

Figure 13: Montage showing the collection of inferred tableom
each independent robot pose, for very noisy & 0.5,09 = 7/8)

3.4. Entropy based exploration sensors.

While CrunchBot’'s annealed Bayesian Blackboard
was sucessful in finding tables in the arena, it showed
less success in finding good exploration locations. We
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have showed mathematically how to set up exploration
with hierarchical objects as a conditional entropy min-
imisation task, however we noted that computation of
eqn. 34 requires approximation and chose to use occu-
pancy frequencies from the high-temperature sampler
to approximate the occupancy probabilities. The result-
ing behaviour of the simulated CrunchBot was indistin-
guishable from random movements, and CrunchBot did
not appear to explore disambiguating legs as in fig. 7. .
Analysis of the entropy maps gives some idea of the fail-
ure of the approximation of eqn. 34, and examples are
shown in fig. 14. The problem is that the entropy differ-
ences are dominated by the probabilities of the empty
space around the tables. Beginning with a flat prior on
occupancy, and fusing in table percepts conditioned on
leg states, the problem is that some leg states are vis-
ited more times than others. So as well as adding to
the table distributions, the observations of empty space
also deepen the probability of non-occupancy there. As
we do not have access to an infinite number of obser-
vations, we do not reach the true occupancy distribu-
tions, but instead move towards them in proportion the
number of observations. But the number of observa-
tions differs according to the leg state, meaning that
the probability of non-occupancy for the background is
higher for leg states that are visited more by the sam-
pler. Thus the differences in background probability be-

tween common and uncommon leg states can become

large, and contribute more tA H than the actual ta-
ble distribution. This experiment shows that while the
mathematical model and initial approximations may be
sound, the frequency based approximation to the con-
ditional occupancy probabilities is poor in this setting,
and further work should be done to find better approx-
imations. (This is potentially a large area of research,
for example a recent entire PhD thesis was devoted to
similar problems arising from a much more simplified
grid environment, [42]).

4. Discussion

Map building with only CrunchBot's whisker sen-
sors is a difficult task, and our previous paper [20] gave
some indication of the problems faced by conventional
particle filtering and EKF SLAM style approaches to
the mapping and navigation problems. In contrast, the
present paper has shown how to combine signal pro-
cessing for extraction of information about distance and
surface orientation from physical whiskers with strong
hierarchical priors about objects to compensate for the
poverty and locality of the initial touch information.
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Figure 14: Examples of pairs (rows) of entropy maps. Eachgbaiws
the table grid cell occpancy probabilities, conditionedtompresence
(left) or absence (right) of a leg at some location in the ardhcan
be seen that the entropy change is dominated by the shadithg of
background rather than the table distribution proper.



After demonstrating that practical extraction of dis- tures [39],[27] in this way. Though reliable features can
tance and orientation are possible on the real world, mo- be extracted for radial distance estimation in this paper,
bile CrunchBot platform (unlike previous work which and contact speed on a stationary robot [13], it is un-
has performed similar demonstrations in highly con- clear what other features can be extracted from whisker
strained, fixed-base environments, we then showed howdeflection signals for discriminating different kinds of
these reports can be fused together using a Bayesiambject properties. In our own lab we are developing fea-
Blackboard to perceive high level objects such as tables tures for whisker based tactile sensing of contact geom-
that caused the reports. etry [14] and texture [17]. In future we hope to be able

Many simplifications were made in the present black- to combine features for diverse tactile properties in rich
board implementation, which future versions of the sys- environments into a coherent system onboard a mobile
tem should relax. The ‘maps’ presented here are sim- robot, which in turn would provide reports that could be
ply the collation of many independeMtA P, inferences used as inputs to hierarchical object models as presented
made from the different poses, and no information is in this study.
shared between poses. Storing longer-term memories We showed how to frame the exploration question
of shapelets and fusing them into the inferences would for hierarchical objects in terms of entropy, in a related
obviously allow a more refined map of the arena to be but novel approach from standard entropy grid based
constructed: at present each table shown in the resultsmapping (known as Active SLAM, eg. [8]but found
has beeninferred from typically2+1.7 shapeletsonly,  an initial computational approximation to entropy to be
which is extremely sparse. To avoid combinatorial ex- lacking for the implementation purpose. It is possible
plosion from handling many historical shapelets, one that links to work of [42] may be useful to produce bet-
approach would be to discard very old shapelets mem- ter approximations here in future work.
ories but preserve only the locations of recognised ta- Importantly, the present system operates in a world
bles and other high level objects, similar to the approach having only one size and texture of table (though tables
used in [16]. Such an approach raise interesting ques-may have different leg sizes). Enlarging the parameter
tions and analogies about the biological split between space to range over tables sizes and textures will allow
perception of the immediate local present (thought to inference of more realistic four-legged objects such as
occur in cortex), and perception of distinct locations and different kinds of chairs and desks. Other types of ob-
the past (thought to occur in hippocampus [8]). The jects could also be introduced, such as walls, kitchen
present system makes no use of negative evidence, i.eunits and radiators. The Bayesian blackboard architec-
the observed absence of shapelets on non-contactingure is able to automatically select between rival object
whiskers: this could be used to remove some of the models, treating them as rival hypotheses [16]. How-
ambiguous percepts. The heuristic threshold constantsever, as the number of models and parameters grows,
in the proposal distribution should be replaced with sampling of course becomes less efficient. For exam-
Reversible Jump MCMC reweightings to remove bias ple, it becomes less probable that a perfectly-fitting ta-
in the sampling distribution (although in practice the ble will ever be proposed. (Even though once proposed,
heuristic thresholds can work well, as ultimately only it will tend to remain accepted for having such a good
the annealed MAP is sought, rather than an approxima-fit.) Future work should investigate the use of ‘smart
tion to the whole distribution). proposals’ which are classical heuristic object detec-

The template classifier was able to discriminate the tors (e.g. Hough transforms to find edges and corners)
orientation of a surface but was not trained to discrim- but re-purposed as Metropolis-Hastings proposals in the

inate other sorts of contacts, for example with the cor-
ners of objects. In principle it is possible to train a tem-
plate classifier on every possible contact in the arena
However collecting such a data set would be impracti-
cal, and the computations involved in comparing incom-

Bayesian Blackboard. When combined with RJ-MCMC
acceptance probabilities, this gives a way to speed up
.the proposals but retain the probabilistic semantics. Fur-
ther research should also extend the system to recognise
several types of object of varying sizes, incorporate our

ing data to templates for every possible contact could be previous research on CrunchBot's texture recognising
cumbersome. An alternative approach is to extract fea- abilities [20] and move CrunchBot’s hierarchical map-
tures from the tactile data, as was done radial distanceping components from simulation to its physical plat-

estimation in this paper, has been done in the field of
haptic touch [48],[45] and is commonly used in vision
[28], and audition [4]. It has been proposed that cells

3This paper, together with [22, 47], also gives ideas for haw f
ture CrunchBot versions could recover from getting losirdufailed

in the thalamus and cortex of the rat are encoding fea- inference, by monitoring uncertainty about location.
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form. The latter will involve handling the full SLAM
problem rather than just mapping — however once large
objects such as tables are recognised it should be pos-[lg]
sible to treat them as features in a standard EKF type g
approach. New forms of loop-closure in SLAM may be-
come possible by recognising different parts of the same
hierarchical object, for example CrunchBot may be able
to close a loop by recognising a previously unseen leg of
a previously seen table. Tracking of moving hierarchi- [22]
cal objects may become possible by fusing CrunchBot’s

[21]

hierarchical models with the SLAP algorithm [37]. [23]
[24]
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