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The influence of random microstructure on wave
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Abstract In this paper the influence of mechanical
and geometrical properties, both deterministic and sto-
chastic in nature, of a heterogeneous periodic compos-
ite material on wave propagation has been analysed
in terms of the occurrence of stop-bands. Numerical
analyses have been used to identify those parameters
that have the most significant effect on the wave filter-
ing properties of the medium. A striking conclusion is
that randomness in geometrical properties has a much
larger effect than randomness in mechanical properties.
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1 Introduction

It is well known that heterogeneous materials behave
very differently compared to their homogeneous coun-
terparts, in particular when they are subjected to
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dynamic loading. This is principally ascribed to the
presence of wave dispersion in heterogeneous mate-
rials, which leads to a wide variety of interesting
dynamic effects. One particular well-studied phenom-
enon caused by wave dispersion is the presence of
so-called stop-bands or band-gaps, i.e. intervals of
frequencies where wave propagation does not occur.
Well described by Brillouin (1946), the phenomenon
has mainly been studied in two-phase materials with
periodic structure (Kushwaha et al. 1993; Sigalas
and Economou 1994; Vasseur et al. 1994). However,
when heterogeneous materials do nor have a peri-
odic structure, the notion of propagation of waves
within the medium is more difficult to quantify pre-
cisely.

In a material with disorder there is no longer the
clear notion of a stop-band as in the periodic case
(Sheng 1995). The literature discusses strong and weak
disorder, most commonly in the positional disorder of
e.g. inclusions in a matrix medium. The transition from
weak to strong disorder results in the loss of the band-
gap structure present in periodic media. The effective
wavenumber becomes complex at all frequencies and
so for an infinite medium the theory predicts broad-
band attenuation, although this depends on the relative
magnitude of the imaginary and real parts of the effec-
tive wavenumber. Furthermore, in reality the priority
is to understand wave propagation through media of
finite extent and so what is perhaps most important
is the magnitude of a transmission coefficient across
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the medium, measuring the amount of energy that has
passed through the system. The aim of this work is
therefore to understand the influence of non-periodic
internal structure of materials on time-harmonic elas-
tic wave propagation, and specifically how this affects
the presence or otherwise of stop-bands.

Analogous to the term photonic media associ-
ated with electromagnetic waves, heterogeneous elas-
tic media composed of periodic arrays of inclusions
embedded in a matrix are usually called phononic crys-
tals. In some ways this is unfortunate terminology since
more recently the study of heat transmission in periodic
media has also taken place (see e.g. Maldovan 2013)
which really should be classified as phononic interac-
tions. As described above, the propagation of sound and
vibrations in periodic media can be strictly prohibited in
certain frequency ranges (Kushwaha and Djafari 1998;
Vasseur et al. 1994, 2002). Hence, it is possible to use
phononic crystals in order to design elastic wave filters
to create silent environments, amongst other applica-
tions. Understanding the stop-band phenomenon aids
more effective design of materials by enabling better
control of wave propagation through them. Theoret-
ically, several methods have been applied to predict
stop-bands for materials with both periodic and ran-
dom geometrical microstructure, see for instance Liu
et al. (2000) and Sigalas et al. (2005). In what follows,
the analysis will be focused on compressional wave
propagation in a two-phase bar and two techniques
will be employed: the Plane-wave expansion method
(Kushwaha et al. 1993; Sigalas and Economou 1994),
and the Finite difference time domain method (Vasseur
et al. 2001; Lu et al. 2009; Yukihiro et al. 2000).

The mass density and Young’s modulus of each
phase comprising the unit cell, their volume fraction
and the size of the unit cell relative to the medium itself
are all parameters that influence the stop-band phenom-
enon. However a thorough study of their influence on

the properties of stop-bands does not appear to exist in
the literature. Furthermore, when these parameters are
subject to various degrees of random perturbation it is
not clear how this will affect the stop-band properties.
Thus, in this paper randomness in both mechanical and
geometric properties will be studied; the analyses will
be carried out numerically and the wave filter effects
will be compared with those of the undisturbed, peri-
odic medium.

2 Set-up of the numerical experiment

Figure 1 illustrates the configuration analysed through-
out: numerical simulations, using the Newmark con-
stant average acceleration time integration method, are
conducted on a finite bar of total length L. This bar
comprises four different regions Vp, Vi, Vo and V3
with the last three being split up into subdomains V}
and Vj’ which are located on the left and right of the
domain V), respectively. In order to ensure that no
waves are reflected back into the domain of interest,
we have chosen a bar length with sufficiently large
zones beyond the actual domain of interest. In order to
slow down wave propagation significantly, two zones
of impedance-matched layers have been taken on either
side of the central zone, leading to L/Ly = 2.2 (see
below for full details). The medium in Vj is chosen to
have properties that correspond to the harmonic mean
of the Young’s modulus and arithmetic mean of the
density of the material that occupies Vj (this will be
discussed in more detail below).

The source of longitudinal elastic waves is located
at the centre of region Vll and the receiver is placed
at the centre of the region V|. Regions V> and V3
are so-called Perfectly Matched Layers (PMLs) and
are impedance matched to Vi. PMLs are used here
as an alternative to absorbing boundary conditions.
PMLs slow the wave down, ensuring that no reflec-

Fig. 1 Tllustration of the L
configuration used in
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tions can be generated which would travel back into
the domain of interest over the timescale of the simula-
tion. In order to ensure equal impedance across regions
Vi, V2 and V3, we set /o1 E1 = ;2 Ex = /p3E3.
The density and Young’s modulus contrasts in these
domains are taken as follows: po = 1001, p3 = 500
and £y = 0.1E1, E3 = 0.02E. This implies that the
wave speeds c1, ¢2 and c3 in the outer sub-domains are
related by the expressions ¢; = /E,/p; = 0.1¢; and
c3 = +/E3/p3 = 0.02¢1, noting that the wave speeds
in the PMLs are very small as required.

The microstructure of the material occupying sub-
domain Vj is defined by a repeating unit cell com-
prising of two phases denoted by a and b with asso-
ciated Young’s moduli and densities E,, Ep, and p,, pp
respectively (see Fig. 2). For simplicity, equal volume
fractions for both phases are assumed. Young’s modu-
lus and density of phase a are taken as E, = 2x 10! Pa
and p, = 8 x 103 kg/m?, whereas the material proper-
ties of phase b are defined through contrast parameters
Be = Ep/E, and B, = pp/ps. In order to identify
the influences of relative Young’s moduli, densities and
geometrical properties (in terms of unit cell lengths)
on the band-gap structures, numerical analysis of lon-
gitudinal wave propagation through the finite domain
occupied by the composite material will be performed,
enabling the prediction of the associated transmission
coefficient. Its magnitude will indicate the presence of
either a stop-band or pass-band.

The transmission coefficient can be defined as
T(f)= %, with amplitudes A(f) and B(f) being
obtained after Fourier transform of a received dis-
placement, following a continuous sine wave passing
through homogeneous (resulting in B(f)) and hetero-
geneous (resulting in A(f)) specimens. The sine wave

Fig. 2 The laminate under
study is a periodic
two-phase material with
unit cell length ¢ and equal
amounts of each phase

within the unit cell Phase a

starts at ¢+ = 0 with angular frequency w, amplitude F
and associated forcing F' = Fcos (wt) at the source
point and, as usual, frequency f = 5.

In a finite domain simulated numerically, it is
expected that there may always be a very small
amount of energy transmitted; thus a stop-band cri-
terion is adopted according to which a frequency
resides in a stop-band when 7 < 0.05. In all tests
an angular frequency ranging from w = 10°rad/s
to 4.5 x 10°rad/s, in intervals of 5 x 10*rad/s is
considered.

3 Influence of mechanical and geometrical
properties of a periodic composite

In this section the influence of deterministic mechanical
and geometrical properties will be studied. Of specific
interest are the contrasts in these properties between
phases. These results are well known from the litera-
ture but serve as benchmarks for the analyses of non-
periodicity reported in Sect. 4. Three different sets of
parametric studies were carried out as follows:

e Contrastin Young’s moduli: Vary the contrast para-
meter B whilst keeping 8, = 1 and £/Ly = 0.1
Four different contrasts have been analysed: B =
0.05, 0.1, 0.25, 0.5,

e Contrasts in mass densities: Vary the density con-
trast parameter B, whilst keeping Bg = 1 and
/Ly = 0.1. Four different contrasts have been
analysed: g, = 0.05, 0.1, 0.25, 0.5,

e Variation in unit cell lengths: Take £ = 0.002 m,
£ =0.004 m, £ =0.01 mand ¢ = 0.02 m, while
keeping constant B = 0.25, B, = 0.1 and Ly =
0.1m.

Phase b
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transmission
coefficient T

Fig. 3 The transmission coefficient 7" as a function of nor-

malised frequency f for the given configuration: contrast in
Young’s modulus of material’s phases (left); contrast in density of
the material’s phases (center); contrast with respect to the overall
length of unit cell lengths of the phases (right). Contrast para-

Predictions of the transmission coefficients associated
with these three parametric studies are presented in
Fig. 3 (left, center and right, respectively).

Note that transmission coefficients are presented
here as functions of normalised frequencies. The nor-
malisation has been performed with respect to the

characteristic time scale t, = L,/c (with averaged
microstructural properties used in order to compute ¢)
via f = f 1.

The results are summarised as follows:

e Increasing the contrast in Young’s moduli (decreas-
ing BEg), leads to a band-gap at lower frequency and
the transmission coefficient in the pass-band drops
slightly. Low frequency band-gap widths are rela-
tively insensitive to changes in 8, however (Fig. 3-
left);

e Increasing the contrast in density leads to a sig-
nificant increase in the width of the first stop-band
and the transmission coefficient associated with the
second pass-band also decreases (Fig. 3-centre);

e Increasing the unit cell length whilst keeping Lo
fixed gives rise to a stop-band at lower frequency
(Fig. 3-right).

4 Influence of randomness on the band-gap
structure of composites

So far the discussion has focussed on materials with
heterogeneous but strictly periodic structure. In this
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meters B and B, range from 0.5—solid, 0.25—dotted, 0.1—
dashed, and 0.05—dot-dashed (left and center); and unit cell
length ranges from 0.002 m—solid, 0.004 m—dotted, 0.01 m—
dashed, and 0.02 m—dot-dashed (right)

section, the influence of randomness in the mechani-
cal and geometrical parameters will be studied.

The reference (periodic) case with £, = 2 x 10! Pa
and p, = 8 x 10° kg/m? as defined in Sect. 2 and con-
trast parameters B = 0.25 and B, = 0.1, unit cell
length £ = 0.01 and test specimen length Ly = 0.1 m
has been taken. A normal distribution with mean u
and increasing standard deviation o, resulting in coef-
ficient of variation C,, = o/u (see Table 1), has been
assumed to represent the random character of corre-
sponding parameters. Specific values of coefficients of
variations for Young’s moduli, mass densities and unit
cell lengths are indicated in Table 1. The top line of
Table 1 contains the periodic reference case. For each
case, five realisations have been taken.

In Fig. 4 the average transmission coefficients as
functions of frequency are plotted for the cases of ran-
domness introduced in Young’s moduli (Fig. 4-left),
densities (Fig. 4-centre) and geometry (Fig. 4-right).

It is clear that randomness in both the Young’s mod-
uli and density has a minimal effect on the band-gap
structure of composites. The picture changes dramati-
cally when randomness is introduced in the geometry of
a material’s microstructure: as it can be seen in Fig. 4-
right. In the second pass-band the transmission coeffi-
cient drops significantly with increasing contrast while
increasing the coefficient of variation; this means that
adding moderate perturbations to the geometry trans-
forms an existing pass-band into a stop-band.

This can be understood as follows. From Fig. 3-
right it is clear that the position of the first pass-band
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Table 1 Randomness in

mechanical and seometrical  C%% Co(E))  Co(En)  Colp)  Colp)  Coll)  Cyllp)
parameters: associated Periodic 0 0 0 0 0 0
random properties .
Random Young’s moduli 0.05 0.05 0 0 0 0
0.1 0.1 0 0 0 0
0.2 0.2 0 0 0 0
Random densities 0 0 0.05 0.05 0 0
0 0 0.1 0.1 0 0
0 0 0.2 0.2 0 0
Random geometry 0 0 0 0 0.05 0.05
0 0 0 0 0.1 0.1
0 0 0 0 0.2 0.2
A
1 1
g3
2 § 0.5 0.5
53
0 0
0 5 10 15 0 5 10 15 15

Fig. 4 The (averaged) transmission coefficient T as a function

of normalised frequency f for the given configuration: random-
ness in Young’s modulus of material’s phases (/eft); randomness

scales directly with the value of the unit cell length, and
higher pass-bands appear at certain intervals along the
frequency axis. However, when this is translated into
corresponding wave lengths A according to A = c¢/f
(taking the averaged material properties to compute ¢),
it becomes clear that the higher pass-bands are asso-
ciated with smaller wave lengths; these smaller wave
lengths eventually become smaller than the length of
the unit cell. Thus, a randomised unit cell length has
very little influence on the position and extent of the first
pass-band, but it affects the subsequent pass-sbands.

5 Conclusions

In this study, the influence of both heterogeneous
mechanical and geometrical properties on wave prop-

normalised frequency f

in density of the material’s phases (center); randomness in unit
cell lengths of the phases (right). Coefficients of variation ranges
from O—solid, 0.05—dotted, 0.1—dashed, and 0.2—dot-dashed

agation has been tested, in particular their effects on
stop-bands. Randomness in the mechanical properties
does not appear to affect band-gap structure signifi-
cantly. On the other hand, randomness in the geometri-
cal properties, even in the form of moderate perturba-
tions, can lead to a significant reduction of the transmis-
sion coefficient in the second pass-band, and, eventu-
ally, with sufficient randomness, this second pass-band
can be transformed into a stop-band. This difference
can be ascribed to the fact that in this study the source
of heterogeneity is predominantly a geometrical distri-
bution of material phases configured in series.
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