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Abstract: Butt weld connection is one of the most commonly used connection types in steel 

structures, and its post-fire mechanical property is crucial for the estimation of the residual 

mechanical capacity of steel structures after building fires. To study the mechanical properties of 

butt weld connections after being exposed to high temperatures, Q235 and Q345 butt weld 

specimens were designed, heated to various high temperatures between 400 °C and 800 °C, and 

then naturally cooled to room temperature. Tensile tests were conducted on these butt weld 

specimens to obtain the force–displacement curves and relevant mechanical properties(yield and 

ultimate strengths) at various temperatures. The following conclusions were obtained from the test 

results:(1)The post-fire mechanical properties of the butt weld specimens were affected by 

material grade and heating temperature; (2)When the temperature exceeded 600°C, the yield and 

ultimate strengths of the Q235 and Q345 butt weld specimens began to decrease; the strength 

reduction of the latter was greater than that of the former; (3)When the temperature was800°C, the 

yield strength and ultimate strength of Q235 decreased to 87% and 91%of the 

ambient-temperature yield and ultimate strengths, respectively; and (4) the yield and ultimate 

strengths of Q345 decreased to 83% and 87% of those at room temperature. Computational 

formulas for the yield and ultimate strengths of the butt weld specimens at high temperatures were 
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also fitted and verified with test data to provide a safety evaluation method for steel structures 

after a fire. 
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1Introduction 

A review of past fire accidents has indicated that most steel structures exhibit severe local 

damage after a fire, but overall structure collapse is rare because of the highly 

staticallyindeterminate times, the cooperative spatial bearing of the steel members, and the 

adoption of passive and active fire protection solutions. For instance, the Biosphere Building of 

the 67th World Expo in 1976 suffered from a big fire [1], as shown in Figure 1. All the cladding 

materials wereburned, butthe space steel truss structure was not seriously damaged. After careful 

investigation, the steel structure was reused in 1995. After a fire, the strength of steel can partially 

recover after cooling, and the structure retains some of its design loading-bearing capacity. 

Therefore, most post-fire structures can be reused through damage detection, repair, and 

consolidation to reducethe loss caused by fire. However, the high temperature of a fire influences 

the properties of steel materials, reduces the loading-bearing capacity of the steel members and 

joints, and affects the load-carrying properties of the overall structure. Therefore, systematic 

experimental study on the residual bearing capacity of common steel materials, connections, and 

joints of steel structuresissignificant in the evaluation and repair ofpost-fire structures. 



 

 

 

(a)Duringfire(b)After repair 

Figure 1.Biosphere Dome in Canada during fire and after repair [1] 

Extensive studies have been conducted to investigate the high-temperature performance of 

steels of various grades and types [2–10]. These studies have revealed thatgenerally, the strength 

andstiffness of steels significantly decreasewith increasedtemperature. Furthermore, corresponding 

recommendations have been provided in design guides, such as the British Standard BS5950 Part 

8 [11] and EC3 [12]. 

Currently, an increasingnumber of studies that are still limited [13–22] are being conducted 

on the post-fire mechanical properties of steels mainlyin Europe, USA, Australia, and China. 

Outinen and Makelainen [13, 14] conducted an experimental study to determine the mechanical 

properties of S355 cold-formed steels at elevated temperatures and after cooling. Qiang et al. [15, 

16] conducted experimental studies to estimate the mechanical properties of high-strength 

structural steels S460 and S690 and the veryhigh-strengthsteel S960 after cooling from an elevated 

temperatureof 1000 °C. A similar experimental study was performed by Gunalan and Mahendran 

[17] to identify the post-fire mechanical properties of cold-formed steels G300, G500, and G550 

after exposure to temperatures reaching 800°C. Chiew et al. [18] investigated the mechanical 

properties of reheated, quenched, and tempered high-strength steel plates(Grade S690) at elevated 



 

 

temperatures and after cooling.Wang et al. [19] conducted an experimental research on the 

mechanical properties of high-strength Q460 steel after exposure to temperatures reaching 900 °C. 

The researchers considered natural air and water cooling methods. Other studiesfocused on the 

post-fire mechanical properties of pre-stressedsteel wires [20], reinforcedsteels [21], and stainless 

steels [22]. In Annex B of BS 5950-8 (2003) [11], severalrecommendations are available for the 

reuse of mild steels after fire exposure. 

Bolt and welded connections are the two major connectiontypes of steel space structures and 

are key points in the identification of the residual carrying capacity of post-fire steel structures. 

Most previous studiesfocused on the residual mechanics of bolt connections after a fire [23–25], 

and only a few studies focused on the post-fire residual carrying capacity of butt weld 

connections.  

A brief review of existing literature showed that few studies have explored the post-fire 

mechanical properties of the extensively usedbutt weld. In this study, butt welds with Q235-E4303 

and Q345-E5016 welding wereutilized, and the influence of excessively high temperature during 

afire on the tensile strength and damage position of the butt weld was analyzed. The research 

results not only revealthe mechanical performance properties,including yield and ultimate 

strengths, of the butt weld after treatment with different high temperatures, but also provide a 

scientific basisto evaluate the residual mechanical propertiesof the butt weld connection of steel 

structure after a fire. 

2Experiment Design 

2.1Test specimen 

To study the effects of steel grade and welding rod typeon the post-fire mechanical properties 



 

 

of butt weld, two specimen types were selected and tested based on Chinese standards [26,27]. 

The parameters of the two specimens arelisted in Table 1. Two hot-rolled steel plates with a width 

of 120mm were connected toa completely welded butt weld, as shown in Figure 2a., The butt weld 

was then cut into a standard shape throughcold line cutting, as shown in Figure 2b. The butt weld 

of the specimens was subsequentlypolished, as shown in Figure 2c. 

 

Table 1.Parameters of the butt weld specimens 

Specimen 

No. 
Steel 

Thickness 

(mm) 

Welding 

Rod 

Rod 

Diameter 

Welding 

Current  

Arc 

Voltage 

Welding 

Speed 

Q235-E4303 Q235B 10 E4303 4mm 

4mm 

160A 

190A 

26V 

22V 

15–20cm/min 

15–20cm/min Q345-E5016 Q345B 8 E5016 

120 120

10

butt weld

plate A plate B

 
(a)Steel plate size (dimensions in mm)(b)Specimen size (dimensions in mm) 

 
(c) Specimen after polishing 

Figure 2.Butt weld specimens 

2.2Test equipmentand procedure 

Based on the test results presented in References [28] and [29] in revised paper, the residual 

mechanical properties of Q235 and Q345 butt weld specimens stay the same as the 



 

 

ambient-temperature properties when the test temperatures were below 400°C and the test 

temperatures were mostly below 800°C. Therefore, five test temperatures between 400 °C and 

800 °C were adopted in this study and three repeating tests were conducted at each temperature. 

A middle-ring energy-saving electric box furnace(Figure 3a)was utilized as the equipment to 

heat the specimens (maximum temperature of 1200°C). Six different temperatures of 20°C, 400°C, 

500°C, 600°C, 700°C, and 800°Cwereutilized. A SANS 600kN universal testing machine with 

microprocessor control and electro-hydraulic servo(Figure 3b)was used for the tensile test onthe 

specimens after high-temperature treatment. 

The test proceeded as follows. 

1) High-temperature processing. The butt weld specimens were placed in ahigh-temperature 

furnace and heated to the target temperature at a rate of 10°C/min to 20°C/min. The temperature 

was maintained for 30min, after which the specimens were removed from the furnace. The 

specimens were cooledtoindoor temperaturein air and labeled individually afterward. 

2) Tensile test. Before this test, the sectional dimension of the specimens was measured with 

a Vernier caliper. The specimenswere placed on a universal testing machine and stretched until 

damage occurred. The force–strain curve of the specimens was recorded. The load was controlled 

by force inthe preliminary stage of the tensile test with rate of 10N/mm2; upon entering the stage 

of yield, the load was controlled by displacement at a rate of 4mm/min. 



 

 

 
(a) High-temperature furnace(b) Universal testing machine 

Figure 3. Test equipment 

3Experimental Results and Analysis 

3.1Test phenomenon 

The appearance of thespecimens afterbeing subjected tohigh temperature is shown in Figure 

4. After subjecting the specimens to 500°C, a carbonization zone appeared on the surface. 

At800°C, the carbonization became increasingly serious. 

The fracture modes of the typical specimens after the tensile testareshown in Figure 5. The 

positions of the constriction and fracture of the Q235 butt weld specimen were both inthe parent 

metal. This condition indicates that the rigidity and strength of the Q235 butt weld connection 

were greater than those of the parent metal both at normal temperature and after experiencing 

400°C to 800°C. For the Q345 butt weld specimen, the constriction and fracture positions were at 

the butt weld when the temperature was below 600°C.The specimen fractured at the parent metal 

when the temperature exceeded700°C. This result indicates that the rigidity and strength of the 

parent metal of the Q345 butt weld specimen weregreater than thoseof the weld joint when the 

temperature was below 600°C. Meanwhile, the rigidity and strength of the parent metal of Q345 

were greater than those of the weld joint when the temperature exceeded 700°C.  



 

 

 
(a) Q235-E4303    (b) Q345-E5016 

Figure 4.Specimens after high-temperature processing 

 

  
(a)Q235-E4303 (b)Q345-E5016 

Figure 5. Fracture modes of the specimens 

3.2Force–displacement relationships 

The force–displacement curve of the Q235 and Q345 butt weld specimens obtained from the 

tensile test isshown in Figure 6. It is clear that the force–displacement curve of the Q235 and 

Q345 butt weld specimens changed considerably after exposure to high temperature. The ductility 

of the Q235 butt weld specimen barely changedwhen the temperaturewasbelow 500°C, but the 

ductility of the specimen increasedrelatively when the temperature exceeded600°C. The ductility 

ofthe Q345 butt weld specimen decreasedwhen the temperature wasbetween 400°C and 600°C 

and significantlyincreasedwhen the temperaturewas800°C. 



 

 

 
(a)Q235-E4303(b)Q345-E5016 

Figure 6. Force–displacement curves of the butt weld specimensafterbeing subjected to 

high temperature 

3.3Yield and ultimate strengths 

The yield and ultimate loads of all the specimenswere obtained from the force–displacement 

curves. Tables 2 and 3 showthe test results of Q235 and Q345 butt weld specimens, respectively. 

In the results, the reduction factor of yield strength under different temperatures is the ratio of the 

corresponding average yield strength under a certaintemperature to the average yield strength 

under normal temperature. The reduction factor of ultimate strength corresponding toeach 

temperature can be obtained in a similar manner. 

Table 2. Experimental results of the Q235 butt-welded joint specimens 

No. T˄ć˅ 
Yield strength/MPa Ultimate strength/MPa 

Fy Fay Ry Fu Fau Ru 

Q235-20-1 

20 

320.0 
  

435.0 
  

Q235-20-2 310.0 316.9 1.00 425.0 427.3 1.00 

Q235-20-3 320.7 
  

422.0 
  

Q235-400-1 

400 

338.0 
  

432.0 
  

Q235-400-2 345.0 338.0 1.07 435.0 430.7 1.01 

Q235-400-3 331.0 
  

425.0 
  

Q235-500-1 

500 

311.6 
  

418.5 
  

Q235-500-2 314.5 318.3 1.00 420.5 419.5 0.98 

Q235-500-3 328.7 
  

419.6 
  

Q235-600-1 

600 

310.7 
  

414.7 
  

Q235-600-2 308.4 309.7 0.98 416.2 416.1 0.97 

Q235-600-3 309.9 
  

417.5 
  

Q235-700-1 
700 

301.1 
  

407.3 
  

Q235-700-2 301.6 298.8 0.94 414.4 414.4 0.97 



 

 

Q235-700-3 293.6 
  

421.4 
  

Q235-800-1 

800 

282.9  
  

392.7  
  

Q235-800-2 271.7  274.9  0.87  383.3  388.7  0.91  

Q235-800-3 270.1  
  

390.2 
  

 

Table 3. Experimental results of the Q345 butt-welded joint specimens 

No. T˄ć˅ 
Yield strength/MPa Ultimate strength/MPa 

Fy Fay Ry Fu Fau Ru 

Q345-20-1 

20 

410.0 
  

520.0 
  

Q345-20-2 402.7 411.5 1.00 520.6 522.7 1.00 

Q345-20-3 421.7 
  

527.6 
  

Q345-400-1 

400 

420.0 
  

515.0 
  

Q345-400-2 439.0 431.3 1.05 504.0 509.7 0.98 

Q345-400-3 435.0 
  

510.0 
  

Q345-500-1 

500 

430.0 
  

520.0 
  

Q345-500-2 437.3 433.1 1.05 532.0 524.5 1.00 

Q345-500-3 431.9 
  

521.5 
  

Q345-600-1 

600 

440.0 
  

515.0 
  

Q345-600-2 431.7 431.5 1.05 511.0 508.3 0.97 

Q345-600-3 422.8 
  

498.8 
  

Q345-700-1 

700 

370.0 
  

475.0 
  

Q345-700-2 386.9 378.8 0.92 489.4 480.8 0.92 

Q345-700-3 379.4 
  

477.9 
  

Q345-800-1 

800 

345.0 
  

460.0 
  

Q345-800-2 351.8 342.6 0.83 461.9 456.4 0.87 

Q345-800-3 330.9 
  

447.4 
  

 

Figures 7 and 8 show the changing curve of the reduction factor of the yield and ultimate 

strengths of the Q235 and Q345 butt weld specimens under different temperatures. A comparison 

was conducted with the test results (Q345-14) in Reference [28]. Materialgrade and 

temperatureexerteda significant influence on the reduction factor of the yield and ultimate 

strengths of the butt weld specimens. 

When the temperature wasbelow 600°C, the yield strength of the Q235 and Q345 butt weld 

specimenswas almostconstant. Yield strengthbeganto decrease when the temperature 

exceeded600°C, and the decrementrange of the Q345 butt weld specimenwasgreater than that of 



 

 

the Q235 specimen. When the temperature reached800°C, the yield strength of the Q235 and 

Q345 butt weld specimensdecreasedto 87% and 83% of that under normal temperature, 

respectively. 

At 800°C, the ultimate strength of the Q235 butt weld specimensand the Q345 butt weld 

specimensdecreasedto 81% and 87%of that under normal temperature, respectively.The decreases 

in the ultimate strengths of the Q235 butt weld specimens were less than the Q345 butt weld 

specimens. 

 

Figure 7.Reduction factor of yield strength   Figure 8. Reduction factor of ultimate 

strength 

3.4 Ductility 

The ductility is ankey parameterto reflect the plastic deformationcapacity of the steel butt 

welds, which is quantitatively evaluated by elongation. The elongation and corresponding 

reduction factor of the steel butt welds after exposure to high temperature was shown in Table 4 

and Figure 9.Following conclusions were obtained from Table 4 and Figure 9:  

1) When the thermal treating temperature below 500°C, the ductility of Q235 steel butt welds 

had little change, and when the thermal treating temperature above 600°C, the ductility of Q235 

steel butt welds was significantly increasing with temperature before and after exposure to high 

temperature. 

2)When the thermal treating temperature below 700°C, the ductility of Q345 steel butt welds 

were reducing to some extentbefore and after exposure to high temperature, and when the thermal 

treating temperature above 800°C, the ductility of Q345 steel butt welds was significantly 



 

 

increasing before and after exposure to high temperature. 

3)The ductility of Q235 and Q345 butt weld specimensincreased by 42% and 

38%respectivelyafter exposure to high temperature with 800ć, and the ductility of Q235 butt 

weld specimenswas higher than that of Q345 butt weld specimens. 

Table 4. Experimental results of the butt-welded joint specimens 

T(ć) percentage elongation of fracture (%) Residual factors 
 Q235-E4303 Q345-E5016 Q235-E4303 Q345-E5016 

20 24.3  23.8  1.00  1.00 

400 23.4  19.2  0.96  0.81 

500 25.3  20.9  1.04  0.88 

600 27.1  20.2  1.12  0.85 

700 29.7  24.6  1.22  1.03 

800 34.4  32.8  1.42  1.38 

 

 

Figure 9Reduction factor of ductility 

4 Results comparison with previous test data 

In this section, the residual factors of the mechanical properties of the Q235 and Q345 butt 

weld specimensafter exposure to high temperatures are compared with the corresponding data for 

the Q345-ER50 butt weld specimens in [28] and the hot-rolled Q235&Q345 steels in [29]. In this 

study, the Q235 and Q345 butt weld specimens were welded with E4303 and E5016 welding rod, 

respectively. While in reference [28], the Q345 butt weld specimens were welded with ER50 

welding wire. 

The yielding strength comparison was shown in Figure 10. The yield strength residual factors 

of the Q235-E4303 butt weld specimens decrease when the exposure temperature exceeds 500°C, 



 

 

while the yield strength of the Q235 steel remained almost the same when the temperatures were 

below 700°C. As showed in Fig.10 the decreases in the yield strengths of the Q235 steels were 

less than that of the Q235-E4303 butt weld specimens. The reduction factors of the yield strength 

of the Q345-E5016, Q345-ER50 butt weld specimens and the Q345 steel begins to decline when the 

temperature exceeds 600°C. And the yield strength of the Q345-E5016 butt weld specimens 

decreased more than that of Q345. 

 

Figure 10. Yielding strength comparison of various specimens after exposure to high 

temperature 

The ultimate strength comparison was shown in Figure 11. The ultimate strength of the 

Q235-E4303 butt weld specimens and Q235 steel decrease when the exposure temperature 

exceeded 400°C and 500°C respectively. And the decreases of ultimate strengths of the 

Q235-E4303 butt weld specimens were more than that of Q235 steels.The reduction factors of the 

ultimate strength of the Q345-E5016, Q345-ER50 butt weld specimens and the Q345 steel begins 

to decline when the temperature exceeds 500°C. And the yield strength of the Q345-E5016 butt 

weld specimens decreased less than that ofthe Q345-ER50 butt weld specimens, but more than 

that of Q345 steel. 



 

 

 
Figure 11.Ultimate strength comparison of various specimens after exposure to high temperature 

5 Development of design equations 

The experimental results show that the mechanical properties of the Q235 and Q345 butt 

weld specimens degrade as temperature rises. Design equations have been developed for the 

reduction factors of the yield and ultimate strengths of Q235 and Q345 butt weld.. Given that the 

maximum temperature that a test specimen experienced was the main reason for the degradation 

of its mechanical properties, the reduction factors were presented as functions of temperature. 

Since the residual mechanical properties of steel butt welds in this study were different from that 

in reference [28], the developed equations were presented for each steel butt welds based on their 

tested data as it shown in this section. 

5.1Yield strength 

Equations(1)-(3) are proposed for the reduction factors of the yield strength of Q235 and 

Q345 butt weld based on test data, where ௬்݂ is the yield strength corresponding to temperature T 

and ௬݂ is the yield strength under room temperature.  

Q235-E4303: 

20൑T≤800ć ௬்݂/ ௬݂=0.994+4.139×ͳͲିସT-7.129×ͳͲି଻ܶଶ˄1˅ 

Q345-E5016: 



 

 

20൑T≤800ć ௬்݂/ ௬݂=1.002-1.582×ͳͲିସT+1.527×ͳͲି଺ܶଶ-2.011×ͳͲିଽܶଷ ˄2˅ 

Q345-ER50: 

20൑T≤800ć ௬்݂/ ௬݂=1.004-1.872×ͳͲିସT+9. 748×ͳͲି଻ܶଶ-1.257×ͳͲିଽܶଷ ˄3˅ 

5.2Ultimate strength 

Equations(4)-(6) are proposed for the reduction factors of the ultimate strength of Q235 and 

Q345 butt weld based on test data, where ௨்݂  is the ultimate strength corresponding to 

temperature T and ݂௨ is the ultimate strength under normal temperature.  

Q235-E4303: 

20൑T≤800ć ௨்݂/ ௨݂=0.997+1.384×ͳͲିସT-2.919×ͳͲି଻ܶଶ             (4) 

Q345-E5016: 

20൑T≤800ć ௨்݂/ ௨݂=1.006-3.422×ͳͲିସT+1.259×ͳͲି଺ܶଶ-1.310×ͳͲିଽܶଷ ˄5˅ 

Q345-E5016: 

20൑T<500ć ௨்݂/ ௨݂=1                                       ˄6a˅ 

500൑T≤800ć ௨்݂/ ௨݂=-10.750-5.850×ͳͲିଶT+9.500×ͳͲିହܶଶ-5.000×ͳͲି଼ܶଷ ˄6b˅ 

  

Figure 8. Reduction factors of yield strength and the corresponding fitting formula 

Figure 9. Reduction factors of ultimate strength and the corresponding fitting formula 

6Conclusions 

Anexperimental study was conducted onthe mechanical propertiesof Q235-E4303 and 



 

 

Q345-E501butt weld subjected to high temperatures ranging from 400°Cto 800°C. The following 

conclusions were obtained from the experimental data. 

1) The yield and ultimate strengths of the butt weld specimens were affected by the grade of 

the material and temperature.  

2) When the temperature wasbelow 600 °C, the yield strength of Q235 and Q345wasconstant. 

Yield strength began to decrease when the temperature exceeded600°C, and the strength reduction 

of the Q345-E5016 specimen wasgreater than that of Q235-E4303. 

3)The ultimate strengths of both the Q345 and Q235 butt weld specimens began to decrease 

when the temperature exceeded400°C. 

4) Design equations were developed for the yield and ultimate strengths of Q235 and Q345 

butt weld subjected to high temperatures on the basis of the experimental results. This will be very 

useful for the post-fire safety assessment, repair and consolidation of steel structures. 
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