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Abstract !

!

Human Protein Phosphatase 1 Nuclear Targeting Subunit (PNUTS) plays 

critical roles in DNA repair, cell growth and survival. The N-terminal domain of 

PNUTS mediates critical interactions with Tox4 and the phosphatase and tensin 

homolog PTEN, which are essential for the roles of this protein. To characterize this 

N-terminal domain, we have established its recombinant overproduction in E. coli 

utilizing NusA fusion. Upon removal of the tag, the remaining PNUTS sample is 

soluble and highly pure. We have characterized the N-terminal domain using circular 

dichroism and nuclear magnetic resonance and analyzed its sequence using 

bioinformatics. All data agree in suggesting that the PNUTS N-terminal segment 

adopts a compact, globular fold rich in α-helical content, where the folded fraction is 

substantially larger than the previously annotated fold. We conclude that this domain 

adopts an extended form of the Transcription Factor S-II (TFIIS) leucine/tryptophan 

conserved (LW)-motif, where additional helices are integrated into the domain 

architecture. Thermal denaturation yielded a melting temperature of ~49.5
o
C, 

confirming the stability of the fold. These findings pave the way for the molecular 

characterization of functional interactions mediated by the N-terminal region of 

PNUTS. 
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List of Abbreviations 

CD: Circular Dichroism 

EDTA: ethylenediaminetetraacetic acid  

HSQC: Heteronuclear Single Quantum Coherence 

NMR: Nuclear Magnetic Resonance 

PNUTS: Protein Phosphatase 1-binding Nuclear Targeting Protein 

PP1: Protein Phosphatase 1 

SDS-PAGE: Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis  

TCEP: tris-2-carboxyethyl-phosphine 

TFIIS: Transcription Factor IIS 

TFIIS LW-motif: structural motif of the Transcription Factor IIS with conserved leucine and 

tryptophan residues  
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Introduction  

 

Human PNUTS (PP1 Nuclear Targeting Protein) is a Protein Phosphatase 1 (PP1) 

binding protein with critical functions in the response to cellular stresses, including DNA 

damage, and the regulation of RNA-polymerase II -mediated gene expression [1-5]. It forms 

a ternary complex with PP1, Tox4 and WDR82 that targets PP1 to the nucleus [3-10],
 
and 

further interacts with the tumour suppressor phosphatase and tensin homolog PTEN [11]. 

Despite its significance to key transcriptional processes, PNUTS is poorly characterized. At 

the molecular level, PNUTS is a largely unstructured protein that contains two small folded 

domains, located at each of its termini. The N-terminal domain is predicted to be similar to 

the N-terminal transcription factor IIS (TFIIS) LW domain (so-called by the presence of 

invariant leucine and tryptophan residues; [12]) and binds to Tox-4
 
[6] and PTEN [11]. Such 

TFIIS LW domains are small four-helix bundles that are present in transcription factors such 

as MED26 and elongin A [12]. They are part of the larger TFIIS module that engages RNA-

polymerase II [13,14] and Tox-4
 
[6]. The PNUTS C-terminal region contains a zinc finger 

domain implying a possible interaction with nucleic acids [14], although this domain in 

PNUTS is not known to bind either RNA or DNA. The polypeptide region between the 

TFIIS LW and zinc finger domains in PNUTS is highly unstructured and plays a conserved 

role in binding to PP1 [15-17].  

 

We have established the recombinant overproduction of the N-terminal region of 

human PNUTS in soluble form and characterized it biophysically. Our analysis suggests that 

this N-terminal segment contains a larger fold than the currently annotated TFIIS LW-like 

domain. Knowledge of the correct boundaries of this domain provides now better guidance 

for molecular studies of PNUTS protein-protein interactions. 
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Methods 

 

Structure prediction from sequence data 

 

For the initial identification of structural homologs we employed the HHpred online 

server that uses hidden Markov models for comparative analysis of sequences [18-20]. The 

server also incorporates secondary structure prediction using the PSIPRED method [21]. In 

addition, we also used the Network Protein Sequence Analysis secondary structure 

prediction server (https://npsa-prabi.ibcp.fr) implementing the MLRC [22], DSC [23], and 

PHD predictive methods [24]. For identification of the putative fold we utilised the intensive 

search mode of the Phyre2 online server [25]. The latter employs hidden Markov models to 

generate multiple sequence alignments from protein structures deposited at the Protein Data 

Bank (www.rcsb.org) [25]. 

 

Molecular Biology  

 

Plasmid DNA containing His6-NusA-3C-His6-PNUTS (UniProtKB Q96QC0) was 

purchased from the Medical Research Council Dundee Phosphorylation and Ubiquitilation 

unit (product DU37545). His6-NusA-3C-His6-PNUTS
1-158

 was subcloned from the former 

using ligation independent cloning into the pOPINB vector (Oxford Protein Production 

Facility, UK). This vector incorporates an additional N-terminal His6-tag prior to the insert, 

resulting in the His12-NusA-3C-His6-PNUTS protein product. The clone was confirmed by 

sequencing (GATC-biotech).   
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Protein expression and purification  

 

Protein expression was in E. coli strain BL21*(DE3) (Invitrogen) grown at 37
o
C in 

Luria-Bertani medium supplemented with 25µg/ml kanamycin. At an OD600 = 0.6, cultures 

were cooled to 18
o
C, expression induced with 0.5mM isopropyl β-D-1-

thiogalactopyranoside (IPTG), and cells further incubated for 16 hours. Cells were harvested 

by centrifugation and resuspended in 20mM sodium phosphate pH 7.4, 500mM NaCl, 

20mM Imidazole, 3mM β-Mercaptoethanol containing an ethylenediaminetetraacetic acid 

(EDTA)-free protease inhibitor cocktail (Roche) and 1mg/ml bovine deoxyribonuclease 

(Sigma). Cells were lysed using pressure homogenisation. Lysates were clarified by 

centrifugation and filtered using a 20µm filter prior to fast liquid chromatography. Initial 

purification was by metal affinity chromatography in a 5mL His-Trap HiPrep column (GE 

healthcare), with the protein eluted using a linear gradient of imidazole (0-500mM). The 

sample was then buffer exchanged into 20mM Tris pH 7.4, 150mM NaCl, 3mM β-

Mercaptoethanol using a HiPrep 26/10 desalting column and, for tag removal, incubated 

overnight at 4
o
C with PreScision protease

TM 
(which was tagged with glutathione S-

transferase; GE Healthcare). The cleaved His12-NusA fusion tag was removed by ion 

exchange capture in a 5ml HiTrap Q HiPrep column (GE Healthcare), with precision 

protease and His6-PNUTS eluting in the flow through. This flow through eluate was once 

again exchanged into 20mM sodium phosphate pH 7.4, 500mM NaCl, 20mM Imidazole, 

3mM β-Mercaptoethanol and applied to a 5mL His-Trap HiPrep column(GE healthcare), 

which captured His6-PNUTS whilst precision protease did not bind to the column. His6-

PNUTS was then further purified on a 5ml HiTrap S HP column to a purity of >95% as 

revealed by SDS-PAGE.   
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For isotopic labelling, bacterial cultures were grown and induced in 2M9 media with 

1g of 
15

N-ammonium chloride (Sigma) added per 1L medium. 

 

Sample preparation for biophysical analysis 

 

Protein samples were buffer exchanged into the respective buffers using a PD-10 

desalting column (GE Healthcare) and concentrated using a Millipore 3kDa spin 

concentrator at 4400rpm. Protein concentration was determined by A280 using a Nano-drop 

2000 spectrometer (Thermo Scientific). 

 

Nuclear Magnetic Resonance (NMR) spectroscopy  

 

NMR spectroscopy was performed in 20 mM HEPES pH 7.4, 150mM NaCl, 3mM β-

Mercaptoethanol with 5% [v/v] 
2
H2O. Data were collected on an AVANCE II+ 800MHz 

spectrometer (Bruker) equipped with CryoProbe at 298K. For temperature titration, proton 

shifts were calibrated using trimethylsilyl propanoic acid (TSP) as an external standard. 

Figures were made using TopSpin 3.1 (Bruker). 

 

Circular Dichroism (CD) 

 

CD data were collected on a Jasco J-1100 spectrometer equipped with a JASCO 

PTC-348WI temperature control unit. Fresh protein samples were buffer exchanged into 

10mM sodium phosphate pH 7.4, 0.5mM tris-2-carboxyethyl-phosphine (TCEP) and data 

collected at 0.5mg/ml in a 0.2mM path length quartz cuvette at a frame rate of 

100nm/minute. Prior to deconvolution, control buffer spectra were subtracted and the data 
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zeroed using the CD signal at λ=260nm. Data were deconvoluted using the Dichroweb 

server with the CDSSTR method [26,27]. To measure thermal stability, CD spectra were 

collected in the spectral range λ=180-260 nm and in the temperature range 20-90
o
C. 

Temperature was increased at a rate of 1
o
C per minute and the sample equilibrated for five 

minutes at each integral degree before the recording of the corresponding spectrum. Data fit 

was performed using the Boltzman equation in PRISM 7. 

 

 

Results 

  

Prediction of the existence of a helical domain at the N-terminus of PNUTS  

 

Human PNUTS is a 940-residue long protein with an annotated TFIIS LW domain 

close to its N-terminus. Its Interpro entry [28] reveals that different domain databases assign 

different regions to this domain: in Pfam (entry PF08711; [29]) it covers residues Q93-V143 

while Smart (SM00509; [30]) and Prosite (PS51319; [31]) allocate it residues K73-Q147 

approximately. Thus, there is currently no consensus on the start point of the domain. To 

identify the boundaries of the PNUTS TFIIS LW fold, we performed a secondary structure 

prediction from sequence data. The results highlighted two stretches (residues P8-F18 and 

V27-L56) of high helical propensity prior to the annotated motif (Fig 1). In addition, both 

HHpred and Phyre2 servers identified the protein IWS1 from E. cuniculi, of known atomic 

structure [13], as a distant homolog of the PNUTS N-terminal segment. The structure of 

IWS1 is that of an extended TFIIS LW fold with an additional N-terminal helical fraction 

that packs against the core fold forming a helical bundle. All the predicted α-helices in 
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PNUTS are amphipathic and might, therefore, pack against each other forming a compact 

helical bundle as that of IWS1. Thus, we considered possible at this stage that the additional 

N-terminal helices in PNUTS might also contribute to the tertiary fold of its domain. 

Recombinant production of the N-terminal domain of PNUTS  

  

We produced the N-terminal fraction of PNUTS (residues 1-158) as a soluble 

and stable protein product in E. coli in the form of a fusion protein of the type His12-

NusA-3C-His6-PNUTS
1-158

 (Fig 2A). The His12-NusA tag was cleaved with 

PreScission protease 3C and removed by ion exchange chromatography profiting 

from the differential pI values of NusA and PNUTS
1-158 

(PNUTS
1-158

 has pI=9.43 and 

is positively charged at pH 6.5, while NusA has pI=4.62 being negatively charged at 

that pH; pI values were calculated using Prot-param [32]). The remaining His6-

PNUTS
1-158

 sample, containing the non-cleavable N-terminal affinity tag, was 

separated from PreScission protease by nickel affinity chromatography and ion 

exchange chromatography. This protocol produced a PNUTS
1-158

 protein of high 

purity at a yield of ~10mg/L E. coli culture. The sample migrated in SDS-PAGE at a 

molecular mass of 19kDa, consistent with the molecular mass calculated from 

sequence (Fig 2B). The identity of the purified product was verified by mass 

spectrometry. 

 

 

The N-terminal domain of PNUTS folds into a stable α-helical motif 
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To test bioinformatics predictions, we analysed the secondary structure 

composition of PNUTS
1-158

 experimentally using CD. The CD spectrum was 

characteristic of a helix-rich protein (Fig 3A). We analysed the data using CDSSTR 

[27] available through Dichroweb (http://dichroweb.cryst.bbk.ac.uk). The spectral 

deconvolution suggested a protein fold consisting of approx. 56% helical content and 

a negligible 8% β-strand content. The normalized residual mean square difference of 

this estimation was 0.016 indicating a close fit of reconstructed and experimental 

spectra). This estimation of secondary structure content is in good agreement with 

sequence-based predictions (Fig 1) and supports the existence of an extended TFIIS 

LW fold. A shorter version of the domain fold as annotated in Pfam and Smart/Prosite 

would have resulted in strongly reduced helical contents of approx. 29% and 37%, 

respectively.  

 

Next, we sought to evaluate the stability of the PNUTS
1-158

 fold through CD-

monitored thermal denaturation. The plot derived from the change in CD signal at 

λ=208nm in function of temperature follows a regular cooperative sigmoidal profile 

(Fig 3B). The melting temperature derived was Tm=49.5
o
C, indicating that this is a 

stable domain.  

 

 

The N-terminal domain of PNUTS adopts a globular fold  

 

A remaining question was whether the PNUTS
1-158 

fragment forms a compact 

three-dimensional structure, where the new N-terminal helices contribute to a larger 

fold. Alternatively, it might be the case that the additional helical elements simply 
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form flexible tail extension to the TFIIS LW domain. We investigated this question 

through a preliminary NMR study. The 
1
H,

15
N Heteronuclear Single Quantum 

Coherence (HSQC) spectrum of 
15

N-labelled PNUTS
1-158

 showed high dispersion of 

well-defined backbone NH resonances with uniform intensity of the signals (Fig 4). 

These characteristics indicate a globular protein fold, supporting the view that a single 

protein domain spans the whole N-terminal region of PNUTS. In such HSQC spectra, 

highly dynamic (i.e. disordered) protein regions would result in a group of sharp high-

intensity cross-peaks located in a narrow band at 8-8.5 ppm in the 
1
H dimension; 

whereas independently folded helical regions detached from the main protein fold 

would lead to groups of dispersed signals that have distinctly different line-width 

compared to other signals due to their different dynamics. In addition, independently 

folded regions are normally connected by unstructured hinge regions, which are 

commonly identifiable in NMR spectra. Neither of these patterns were observed in the 

PNUTS
1-158

 spectra, leading us to conclude that it adopts an integrated 3D fold. 

Signals from the dynamic hexa-histidine tag were not observed due to the fast 

exchange of the backbone hydrogen with water. 

 

Additional support for a single folded domain comes from the temperature 

dependence of the 
1
H,

15
N-HSQC spectra (Fig 4). Temperature increase resulted in 

uniform changes in the spectra that reflect a uniform thermal denaturation of a stable 

domain. Independent helices would have a different stability than a globular domain, 

manifesting in a selective broadening of a group of resonances upon temperature 

increase, which was not observed. On increasing the temperature from 25
o
C to 35

o
C, 

the resonances remained of equal intensity, with only resonance shift changes 

observed. At 45
o
C, the majority of the resonances showed line broadening and a 
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uniformly reduced intensity due to the increased exchange with solvent  (Fig 4). 

However, the chemical shift changes were linear in this temperature range, suggesting 

that the protein fold was uniformly destabilized. At this temperature the chemical shift 

changes were reversible and the original spectra detected upon reduction of the 

temperature to 25
o
C, implying a reversible transitional state. A further temperature 

increase to 55
o
C led to irreversible protein denaturation with a complete loss of 

signals and visible precipitation of the sample. This suggests that the melting of this 

domain occurs completely within the temperature range 45-55
o
C, in agreement with 

the Tm estimation from CD data. In summary, NMR-based findings support our 

conclusion that PNUTS
1-158

 forms a stable, single domain.  

Discussion  

 

Bioinformatics analysis of human PNUTS
1-158

 suggested that this N-terminal 

segment may contain a larger domain than the currently annotated TFIIS LW motif. 

To test this prediction, we expressed recombinantly and biophysically characterized 

the N-terminal region of PNUTS. Using CD and preliminary NMR data, we showed 

that PNUTS
1-158

 adopts an integrated helical fold, with a stability characterized by a 

Tm of ~49.5
o
C. As the N-terminal segment of PNUTS is thought to be involved in 

multiple protein-protein interactions, the accurate establishment of its domain 

boundaries is of central importance for future functional studies on PNUTS. 
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FIGURE LEGENDS 

 

Figure 1: Structure prediction of the N-terminal domain of human PNUTS  

Consensus secondary structure prediction by PSIPRED [21]. The helical content 

predicted with reasonably high confidence (confidence factor >6) is approx. 49%.  

 

Figure 2: Recombinant production of the N-terminal domain of human PNUTS 

A) SDS-PAGE of cell lysate and soluble protein fractions post-clarification by 

centrifugation; B) SDS-PAGE showing the purified His6-PNUTS
1-158

 protein product 

at the end of the chromatographic process. 

 

Figure 3: CD characterization of PNUTS
1-158

  

A) CD spectrum recorded in 10mM sodium phosphate pH 7.4, 0.5mM TCEP; B) CD-

monitored thermal denaturation curve showing the change of CD signal at λ=208 nm. 

 

Figure 4: Thermal denaturation of PNUTS
1-158

 monitored by NMR  

Superposition of
 1
H

15
N HSQC spectra of PNUTS

1-158
 at various temperatures in 20mM 

HEPES pH 7.5, 150mM NaCl, 3mM β-mercaptoethanol measured at 800MHz. The 

linear change in chemical shifts of cross-peaks upon temperature increase is clearly 

noticeable. 

 

 

 

 

 


