

This is a repository copy of Seed predators can increase nectar volumes in an alpine daisy: but do the insects benefit?.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/108502/

Version: Accepted Version

Article:

Mu, J, Chen, Y, Yang, Y et al. (3 more authors) (2016) Seed predators can increase nectar volumes in an alpine daisy: but do the insects benefit? Plant Ecology, 217 (10). pp. 1195-1205. ISSN 1385-0237

https://doi.org/10.1007/s11258-016-0646-1

© Springer Science+Business Media Dordrecht 2016. This is an author produced version of a paper published in Plant Ecology. Uploaded in accordance with the publisher's self-archiving policy. The final publication is available at Springer via https://doi.org/10.1007/s11258-016-0646-1.

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1	Running head:	Pre-dispersal	seed predators	alter plant	nectar production

3	Seed predators can increase nectar volumes in an alpine daisy: but
4	do the insects benefit?
5	Junpeng Mu ^{1*} , Yan Chen ¹ , Yulian Yang ¹ , Ronghua Fu ² , Hui Wang ¹ , Stephen G.
6	Compton ^{3, 4}
7	
8	¹ Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang
9	Normal University, Mianyang 621000, China
10	² Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of
11	Education), China West Normal University, Nanchong 637002, China
12	³ School of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
13	⁴ Department of Zoology and Entomology, Rhodes University, Grahamstown 6140,
14	South Africa
15	
16 17	* Email: <u>gbmujp@163.com</u>
18	

19 Abstract

Pollinators and pre-dispersal seed predators can interact via the plants they share. We 20 21 examined how pre-dispersal seed predators modify nectar quality and quantity and thereby influence pollinator behavior. Working in a Tibetan alpine meadow, we 22 hypothesized that increasing levels of pre-dispersal seed predation by larvae of 23 tephritid flies would reduce nectar quantity and quality in *Saussurea nigrescens* 24 (Asteraceae), and that this would make the flowers less attractive to honeybees, the 25 most frequent floral visitors. Our field experiments showed that floret nectar volumes 26 27 responded differently to high and low densities of fly larvae, with significant increases when there was one larva present, but decreases when two or more larvae 28 were present in a capitulum. Experimental manipulations of fly larvae yielded the 29 30 same result. The increases in nectar volume generated by a single larva are likely to be beneficial for these insects in locations where pollinators preferentially visit those 31 S. nigrescens that produce more nectar. At our study sites, honeybees were the main 32 33 pollinators and visitation rates were unaffected by the changes in nectar volumes, but they are introduced to the area, and native pollinators may be more selective. 34

35

36 **Key words** *Apis mellifera* · Asteraceae · Insect-plant

37 interactions • nectar • *Saussurea*, *Tephritis* • Tibetan Plateau

38

40 Introduction

Pollinators and flowering plants have contributed significantly to our understanding of 41 42 the evolution of mutualisms involving both generalist and specialist pollination systems (Kjellberg et al. 2001; Lunau 2004; Mitchell et al. 2009; Bronstein 2015). 43 Co-evolution is most readily apparent in relation to the accessibility of rewards, with 44 pollinators exerting selective pressures on floral traits such as spur length (Nilsson 45 1988) and plants selecting for pollinator tongue length (Whittall and Hodges 2007; 46 Miller-Struttmann et al. 2015). The quantity of accessible rewards thereby influences 47 48 which pollinators are attracted, and of which species, and can also influence how long individual pollinators remain on each flower (Kalinganire 2001). 49 50 51 Plants and pollinators rarely if ever interact in isolation from other organisms, many of which are likely to have antagonistic rather than mutualistic relationships with the 52 plants (Galen 1999). They include antagonists that can directly or indirectly influence 53 54 various traits through consumption of plant parts, such as decrease flower size (Barber et al. 2012), modify nectar odour (Press and Phoenix 2005), reduce the quality of 55 56 floral displays (McCall and Irwin 2006), and reduce nectar production (McDade and Kinsman 1980), all of which may influence pollinator behavior (Rodríguez-57 Rodríguez et al. 2015). 58 59 Seed predatory insects often have a strong influence on plant reproductive success and 60

61 can generate significant selection pressures on their host plants (Kolb and Eriksson

62	2007). Their impact on their hosts varies in relation to plant reproductive traits such as
63	flowering phenology, flower number and seed size and these attributes are also
64	significant for the insects' own reproductive success, thereby facilitating co-
65	adaptation and co-evolution (Thompson 2005). Pre-dispersal seed predators require
66	seeds to feed their larvae, but often oviposit early in floral development, before ovules
67	have been pollinated. Their reproductive success is therefore influenced by the quality
68	and quantity of subsequent pollination events (Strauss and Irwin 2004). The adults of
69	some seed predators such as fig wasps and yucca moths ensure that seeds are
70	available for their larvae by routinely pollinating the flowers themselves (Pellmyr and
71	Huth 1994), but for the majority of species this is achieved by the selection of
72	oviposition sites in flowers or inflorescences that have a high probability of being
73	pollinated. Many pre-dispersal seed predators have a limited range of host plants, and
74	often just a single host species (Collin and Shykoff 2010). Within each plant species,
75	the likelihood and quality of pollination can depend on a wide range of environmental
76	and biological variables, but phenotypic characteristics of individual plants are also
77	significant. For insect-pollinated species, the size and quality of floral displays and the
78	quality of rewards they offer influence the extent of seed set (Thomson 1988;
79	Vaughton and Ramsey 1998). Consequently, the flowers that are most rewarding for
80	oviposition by seed predators are likely to be those that are also most favourable to
81	the plant's pollinators (Cariveau et al. 2004).
82	

83 Seeds are nitrogen-rich and often contain high concentrations of energetically-

84	expensive defensive compounds (Janzen et al. 1977; Birch et al. 1986). Damage
85	generated by seed predators during oviposition or early larval feeding, together with
86	adaptive responses by the plants to the presence of the insects, can result in flowers
87	containing seed predators receiving less investment, with resources being switched to
88	undamaged flowers or retained elsewhere (Kudoh and Whigham 1998; Westerbergh
89	and Westerbergh 2001; Cariveau et al. 2004). Consequently, flowers containing seed
90	predators may be less attractive to pollinators and set fewer seeds (Cariveau et al.
91	2004).

Floral nectar is the most widely-provided reward for insect visitors to flowers (Scaven 93 and Rafferty 2013) and plants with more and higher quality nectar can attract more 94 pollinators (Mitchell 2004; Larsson and Franzen 2007; Wallis de Vries et al. 2012). 95 Nectar is composed mainly of sugars derived from photosynthesis and forms part of a 96 plant's overall carbohydrate content. Carbohydrates are stored in both reproductive 97 and vegetative organs (Pacini and Nepi 2007) and linkage has been recorded between 98 carbohydrate storage and nectar production, with more nectar produced at times of 99 day when overall carbohydrate content is higher (Mu et al. 2015). Herbivory often 100 reduces the quantity of reserves stored within plants (Machado et al. 2013), which 101 suggests it may also reduce nectar production, and indirectly influence pollinator 102 behavior to the further detriment of the plant. 103

104

105 Here, we describe the interplay between a pre-dispersal seed predator, the quantity and

106	quality of nectar in flowers of its host plant, the carbohydrates stored throughout the
107	plant and the willingness of bees to visit its flowers. We hypothesized that
108	(1) Pre-dispersal seed predators reduce the quantity and quality of nectar
109	in the flowers where they were feeding,
110	(2) Increasing numbers of seed predators have a progressively greater
111	impact on nectar production,
112	(3) Seed predators reduce the proportion of the plant's carbohydrates
113	stored in the flowers, relative to other parts of the plant, and
114	(4) Any changes in nectar rewards as a result of the seed predators
115	reduce flower visitation by the pollinators of the plant.
116	
117	Methods
117 118	Methods Natural History
118	Natural History
118 119	Natural History Saussurea nigrescens (Asteraceae section Compositae, ECCAS 1999) is a
118 119 120	Natural History <i>Saussurea nigrescens</i> (Asteraceae section Compositae, ECCAS 1999) is a widespread high-altitude perennial distributed 2000-4300m on the Tibetan Plateau. Its
118 119 120 121	Natural History Saussurea nigrescens (Asteraceae section Compositae, ECCAS 1999) is a widespread high-altitude perennial distributed 2000-4300m on the Tibetan Plateau. Its growing season is short, with plants reviving in mid-May and senescing by mid-
 118 119 120 121 122 	Natural History Saussurea nigrescens (Asteraceae section Compositae, ECCAS 1999) is a widespread high-altitude perennial distributed 2000-4300m on the Tibetan Plateau. Its growing season is short, with plants reviving in mid-May and senescing by mid- September. Mature plants vary in height about 15-45cm. Flowering occurs from July
 118 119 120 121 122 123 	Natural History Saussurea nigrescens (Asteraceae section Compositae, ECCAS 1999) is a widespread high-altitude perennial distributed 2000-4300m on the Tibetan Plateau. Its growing season is short, with plants reviving in mid-May and senescing by mid- September. Mature plants vary in height about 15-45cm. Flowering occurs from July to August and seeds mature and disperse in late-September. Each plant produces 2-5
 118 119 120 121 122 123 124 	Natural History Saussurea nigrescens (Asteraceae section Compositae, ECCAS 1999) is a widespread high-altitude perennial distributed 2000-4300m on the Tibetan Plateau. Its growing season is short, with plants reviving in mid-May and senescing by mid- September. Mature plants vary in height about 15-45cm. Flowering occurs from July to August and seeds mature and disperse in late-September. Each plant produces 2-5 dull-purple capitula, each of which contains 20-55 florets. The florets have an annular

128 al. (2014, 2015).

129	Saussurea nigrescens is the most economically important nectar-producing plant in
130	parts of the Tibetan plateau and contributes approximately 80% of the annual honey
131	harvest in Hongyuan County, China (Mu et al. 2014). The plant is allogamous and
132	requires cross-pollination, which is usually by honeybees (Mu et al. 2014).
133	
134	The only recorded pre-dispersal seed predators of S. nigrescens are larvae of several
135	tephritid flies belonging to the genera Campiglossa, Tephritis and Urophora (Xi et al.
136	2016). Tephritid females oviposit into the flower buds of the host plant in the middle
137	of July. Their larvae develop within the capitula, where they consume developing
138	seeds and damage the receptacles (Xi et al. 2016). Between one and three larvae share
139	a capitulum. No obvious gall formation takes place. The tephritid larvae do not feed
140	on floral nectar, nor do they directly damage the nectaries. They pupate inside the
141	capitula, where they remain until the adults emerge the following spring.
142	
143	Study sites
144	The study was conducted from 2014 to 2015 at the Hongyuan Alpine Meadow
145	Ecosystem Research Station of the Chinese Academy of Sciences, located in
146	Hongyuan County, Sichuan Province, China (32°48′-32°52′N, 102°01′-102°33′E).
147	This area of the eastern Qinghai-Tibetan Plateau is at an altitude of about 3500m.
148	With short and cool spring, summer and autumn seasons and a long cold winter. Liu et
149	al. (2012) and Mu et al. (2015) provided details of the local climate, soil conditions

150	and vegetation. The meadows are sometimes used for cattle grazing during the winter,
151	but are otherwise undisturbed. Tephritis femoralis Chen is the common tephritid seed
152	predator of S. nigrescens locally.
153	
154	In late July 2014 we selected three sites (sites 1-3) located about 5 km apart that had
155	similar soil moisture and physical and chemical properties (Mu et al. 2014). Their
156	plant communities were also similar. Saussurea nigrescens was the most abundant
157	species at the sites, contributing 33-46% of total plant cover during its flowering
158	period. Elymus nutans Griseb, Anemone rivularis BuchHam. ex DC. and Potentilla
159	anserina L. were also common. The three sites were at roughly similar distances from
160	the nearest apiaries and similar numbers of bees and adult tephritid flies were
161	recorded visiting the flowers of S. nigrescens (Mu et al. 2014). Saussurea nigrescens
162	was the major source of nectar for bees at all three study sites (Mu et al. 2014). Native
163	pollinators of S. nigrescens include an Asian honeybee (Apis cerana) and the
164	bumblebees Bombus filchnerae, B. humilis, and B. supremus (Macior et al. 2001). The
165	introduced Apis mellifera has been tended by beekeepers in the area since 1981 (Sun
166	et al. 2013).
167	

168 Field records of tephritid numbers and nectar variables

In July 2014 we tagged 50 healthy *S. nigrescens* with undamaged leaves at each of the three sites. After the tephritids had an opportunity to oviposit, but before the flowers had opened, we enclosed all the capitula on each plant within fine mesh

172	netting to exclude further insect visitors (Real and Rathcke 1991). This plant produces
173	its maximum nectar volumes when the anthers are white and emerging from the
174	capitula (Mu et al. 2014). When they reached this stage, we selected five florets at
175	random from each of the capitula and on sunny days at 10:00-15:00Hrs we measured
176	their nectar volumes and concentrations. Nectar volumes were measured using 1 μ l or
177	5 µl micropipettes (Hirschmann Laborgeräte, Germany). Nectar concentrations were
178	measured concurrently with a hand-held refractometer (Eclipse, Stanley Company,
179	England Bellingham, UK) following the methods of Johnson et al. (2006). The
180	numbers of tephritid larvae inside each capitulum were then counted using a binocular
181	microscope. A total of 472 capitula were selected to monitor nectar volume and
182	concentration.
183	
183 184	Plant responses to experimental manipulations
	Plant responses to experimental manipulations In July 2015 we selected 120 vigorous and undamaged <i>S. nigrescens</i> growing at
184	
184 185	In July 2015 we selected 120 vigorous and undamaged <i>S. nigrescens</i> growing at
184 185 186	In July 2015 we selected 120 vigorous and undamaged <i>S. nigrescens</i> growing at site 2 and enclosed groups of six plants within cylindrical steel netting enclosures
184 185 186 187	In July 2015 we selected 120 vigorous and undamaged <i>S. nigrescens</i> growing at site 2 and enclosed groups of six plants within cylindrical steel netting enclosures (100cm diameter \times 100cm high, mesh size 0.1 mm \times 0.1 mm). When flower buds
184 185 186 187 188	In July 2015 we selected 120 vigorous and undamaged <i>S. nigrescens</i> growing at site 2 and enclosed groups of six plants within cylindrical steel netting enclosures (100cm diameter \times 100cm high, mesh size 0.1 mm \times 0.1 mm). When flower buds were at the stage suitable for tephritid oviposition, all but one randomly chosen
184 185 186 187 188 189	In July 2015 we selected 120 vigorous and undamaged <i>S. nigrescens</i> growing at site 2 and enclosed groups of six plants within cylindrical steel netting enclosures (100cm diameter \times 100cm high, mesh size 0.1 mm \times 0.1 mm). When flower buds were at the stage suitable for tephritid oviposition, all but one randomly chosen capitulum on each plant were removed. One, two or three <i>Tephritis femoralis</i>
184 185 186 187 188 189 190	In July 2015 we selected 120 vigorous and undamaged <i>S. nigrescens</i> growing at site 2 and enclosed groups of six plants within cylindrical steel netting enclosures (100cm diameter \times 100cm high, mesh size 0.1 mm \times 0.1 mm). When flower buds were at the stage suitable for tephritid oviposition, all but one randomly chosen capitulum on each plant were removed. One, two or three <i>Tephritis femoralis</i> (Tephritidae) larvae (about 2mm in length) were then inserted into the remaining

194	production, when floret nectar volumes and concentrations were recorded as before. A
195	total of 120 capitula were selected to monitor nectar volume and concentration.

197	After nectar production had been monitored, each plant was removed and the lengths
198	and fresh weights of capitula, leaves, stems and roots were weighed in the field using
199	a 0.001g capacity balance. The plant components were then stored immediately in a
200	portable icebox cooled with dry ice and their soluble sugar and starch contents were
201	measured later following the procedures of Hansen et al. (1975) and Yoshida et al.
202	(1976). The relative amounts of carbohydrates (soluble sugars and starch, mg/g) in the
203	capitula, leaves, stems and roots were expressed as a percentage of the total
204	carbohydrates in each plant. Carbohydrate contents were calculated as in Rivera-Solís
205	et al. (2012). A total of 120 capitula were selected to monitor the carbohydrate
200	
206	contents.
206	contents.
	Honeybee responses to experimental manipulations
207	
207 208	Honeybee responses to experimental manipulations
207 208 209	Honeybee responses to experimental manipulations Twelve $2 \times 2m \times 1m$ high exclosures covered in the steel netting described above
207 208 209 210	Honeybee responses to experimental manipulations Twelve $2 \times 2m \times 1m$ high exclosures covered in the steel netting described above were erected at site 2 to enclose groups of <i>S. nigrescens</i> with recently-developed
207 208 209 210 211	Honeybee responses to experimental manipulations Twelve $2 \times 2m \times 1m$ high exclosures covered in the steel netting described above were erected at site 2 to enclose groups of <i>S. nigrescens</i> with recently-developed flower buds. Once they reached the stage suitable for tephritid oviposition 30
207 208 209 210 211 212	Honeybee responses to experimental manipulations Twelve 2 × 2m × 1m high exclosures covered in the steel netting described above were erected at site 2 to enclose groups of <i>S. nigrescens</i> with recently-developed flower buds. Once they reached the stage suitable for tephritid oviposition 30 vigorous, undamaged plants in each plot had all but one of their capitula removed and

216	screens. Six operatives then simultaneously recorded honeybee visits to individual
217	capitula in pairs of adjacent plots every hour (each plot was observed for 30 minutes
218	per hour) at 9:00 -17:00 on three sunny days in July 2015. Observers were located
219	about 3m from each plot, which allowed for clear observation of pollinator behavior.
220	Honeybee visitation rates to each capitulum per hour were calculated following the
221	protocol of Arroyo et al. (1985). We then harvested the plants and measured fresh
222	weights as before. The plant parts were then dried to constant mass and re-weighed to
223	the nearest 0.001g.
224	
225	Statistical analyses
226	All statistical analyses were performed in R (R Development Core Team 2013,
227	URL http://www.R-project.org). Plant traits were first tested for normality using the
228	Shapiro-Wilk test and for homogeneity of variance using Levene's test. Floret nectar
229	volume was log10-transformed and the proportion of flowering plants per subplot were
230	arcsine-transformed to achieve normality. Correlation analyses were used to
231	determine the relationship between floret nectar volume and capitula carbohydrate
232	contents. Pollinator visitation rates were assessed using one-way ANOVA followed by
233	Tukey's test.
234	
235	We used general linear-mixed models (GLMMs) to assess the effects of pre-dispersal
236	seed predator numbers and capitula mass on variation in floret nectar volume and
237	concentration, capitulum carbohydrates and total carbohydrates storage as percentages

238	of dry and wet weights. To account for interaction effects between pre-dispersal seed
239	predator and capitulum size, we used a model with fly numbers and capitulum mass
240	as fixed factors, and site and above-ground vegetative mass as random factors. For the
241	mixed models, we used the <i>lme</i> function in the <i>lme4</i> package in R (Bates et al. 2011).
242	
243	Results
244	Saussurea nigrescens colonized naturally by tephritid larvae produced different
245	volumes of nectar depending on how many larvae were present, but there was no
246	simple relationship between numbers of these seed predators and nectar volume (Fig.
247	1, Table 1, Appendix A). Capitula containing a single tephritid larva produced more
248	nectar than controls, whereas capitula containing two or three larvae produced
249	significantly less nectar. The presence of one larva increase nectar volumes by an
250	average of 15.1% , but two or three larvae led to decreases of 76.9% and 83.1%
251	respectively (Fig. 1). In contrast to nectar volume, the tephritids had no effect on
252	nectar concentration (Appendix A). Very similar results were obtained when tephritid
253	numbers were manipulated experimentally (Fig. 1, Table 1). With one larva added,
254	nectar increased by 17.0% relative to controls, and when two or three larvae were
255	added nectar volumes fell by 77.8% and 79.4% respectively. Nectar concentrations
256	were again unchanged (Appendix A).
257	The starch and soluble sugar contents of S. nigrescens capitula showed the same
258	response to tephritid larvae as nectar volume, with elevated carbohydrates compared
259	with controls in capitula containing one larva and significantly lower concentrations

260	of carbohydrates when two or three larvae were present (Fig.2). Across treatments
261	there was a significant positive correlation between capitulum carbohydrate
262	concentrations and average nectar volume, with indications that the same pattern was
263	also present within capitula that contained one larva (Fig. 3). The changes in
264	capitulum carbohydrate concentrations in response to the tephritids reflected changes
265	in the relative distributions of carbohydrates within the plants (Fig. 4). A single larva
266	was associated with an increase in the percentage of the plant's total carbohydrates
267	stored within the capitula, relative to controls, but two or three larvae were associated
268	with declines in the capitula carbohydrates (Fig. 4; $t = -2.44$, $P < 0.05$). Corresponding
269	changes were present in the proportion of carbohydrates stored in the stems, with
270	declines when one larva was present, and increases when there were more larvae (Fig.
271	4, $t = 1.99$, $P < 0.05$). There were no treatment effects on the proportion of the plants'
272	carbohydrates in the leaves and roots (Fig. 4, $t = -0.56$, $P = 0.58$ and $t = 0.86$, $P=0.39$,
273	respectively).
274	
275	Despite the changes in nectar volumes associated with the tephritid larvae, they had
276	no significant impact on the visitation rates of honeybees to the capitula (F =0.903,
277	<i>P</i> =0.388, Appendix B).
278	
279	Discussion
200	

280 We hypothesized that pre-dispersal seed predators would reduce floret nectar

281 production and nectar concentrations in proportion to their densities, and that this

282	would lead to a decline in pollinator visitation rates. These hypotheses were not
283	supported by the data from both field records and experimental manipulations. Floret
284	nectar volumes did decline in capitula that contained two or three tephritid larvae, but
285	volumes increased significantly in capitula with one larva. Furthermore, nectar
286	concentrations were consistently independent of seed predator numbers, as were
287	visitation rates by honeybees. Although carbohydrate storage in the capitula was
288	influenced by the presence of the tephritid larvae, it was a non-linear response that
289	mirrored nectar production, with capitula containing a single larva having a higher
290	proportion of the plant's carbohydrates than controls with no seed predators.

Rates of nectar production and secretion are related to the quantities of soluble 292 293 sugars and starch available and thereby to carbohydrate reserves and rates of photosynthesis (Búrquez and Corbet 1991; Pacini et al. 2003). Physical conditions 294 such as elevated night-time temperatures, and damage to leaves and flowers can all 295 reduce nectar production (Wäckers et al. 2001; Mu et al. 2015). In our study system 296 the positive relationship between local carbohydrate storage and floret nectar volume 297 was particularly clear, because they increased and decreased together in response to 298 varying densities of tephritid larvae. Relative to un-occupied capitula, carbohydrate 299 storage increased by 19.4% and floret nectar volumes increase by 17.0% in capitula 300 with one larva, but were reduced by 30.3% and 32.6% respectively when more larvae 301 were present. Carbohydrate storage elsewhere on the plants reflected these changes. 302

303

304	The non-linear carbohydrate storage and nectar volume responses by the plants
305	to the presence of insects feeding in their capitula can be interpreted in terms of
306	adaptive responses by the plants in the face of varying levels of damage, but also as
307	reflecting manipulations by the insects. The increase in capitula carbohydrate storage
308	and nectar volumes when a single larva is present could be a plant compensation
309	effect (Rivera-Solís et al. 2012). Plants attacked by herbivores often allocate more
310	resources to their reproductive organs (reviewed by Trumble et al. 1993), but
311	increased allocation to reproduction, including elevation of nectar quality, is most
312	evident when vegetative structures are damaged (Inouye 1982; Lanza 1988; Smith et
313	al. 1990).

An alternative explanation for the increase in nectar volumes produced by 315 capitula occupied by a single tephritid larva is that the insects are actively inducing 316 this effect, and that increased nectar volumes favour their own reproductive success, 317 rather than that of their host plants. The tephritid larvae feed on developing seeds, and 318 depend on capitula being visited by pollinators after their eggs have been laid. Any 319 increase in the likelihood of those capitula being adequately pollinated, such as might 320 be the case by increasing nectar volumes, would therefore be to the advantage of the 321 insect. Many of the species of tephritids with larvae that develop in the capitula of 322 Asteraceae are gall formers (Varley 1947; Straw 1989). This includes congeners of the 323 Tephritis species from S. nigrescens (Goeden et al. 1988). Gall forming insects 324 routinely generate nutrient sinks that draw in resources from elsewhere on their host 325

326	plants (Price et al. 1987). Although T. femoralis does not generate clearly-defined
327	galls in the capitula of S. nigrescens, its larvae may be capable of initiating some of
328	the plant physiological effects associated with galling, including stimulation of local
329	carbohydrate storage. This may have direct beneficial effects in terms of food quality
330	for developing larvae, and indirect benefits via larger nectar volumes leading to
331	increased numbers of seed in the capitula it occupies.

Quite different carbohydrate storage and nectar volume responses were recorded 333 334 in capitula where more than one tephritid larva was present. The declines seen in capitula containing multiple larvae are likely to reflect the damage they cause to the 335 receptacles, through which nutrients and metabolites are transported (Teuber et al. 336 337 1983; Rivera-Solís et al. 2012). Damage to the receptacles was more frequent and much more extensive when two or more larvae were sharing a capitulum, with more 338 than 90% of the receptacles damaged in capitula with two or three larvae, compared 339 with only around 10% of the receptacles when only a single larva was present (J Mu 340 unpublished data). The increased feeding on the receptacles in capitula with several 341 larvae may be the result of antagonistic behavior among the fly larvae and a shortage 342 of seeds remaining to be eaten (Averill and Prokopy 1987). 343

344

Seed predators are expected to preferentially oviposit on flowers that are more attractive to pollinators, because these flowers are most likely to set seed (Strauss and Irwin 2004). Competition is often intense among seed predators sharing what are

usually finite and spatially-limited resources. Only 15% of the *S. nigrescens* capitula
at our study site that contained tephritid larvae had more than one larva present (X XI
unpublished data), suggesting that females typically lay a single egg on each plant.
This oviposition pattern not only reduces the likelihood of competition, but also
means that most of the larvae are developing in capitula that are producing more
nectar than adjacent capitula that lack the insects.

354

Contrary to expectations that the insects would gain from developing in capitula 355 356 with higher nectar volumes, capitula with one larva present did not attract more honeybees than unoccupied capitula. This result was contrary to much of the 357 literature, which suggests that floral nectar volumes have a positive relationship with 358 359 pollinator visitation (Schemske and Bradshaw 1999; Pyke 1982, 2016). Different bee species may respond differently to aspects of nectar rewards, such as nectar volume 360 and concentration. For example, honeybees have been shown to prefer flowers that 361 have high sugar concentrations (Scheiner et al. 1999, 2001; Vaudo et al. 2015), 362 whereas bumblebees are sensitive to nectar volume (Harder and Real 1987). In this 363 study, we found no changes in nectar concentration (sugar content) resulting from the 364 pre-dispersal seed predators, and this may have led to the similar honeybee visitation 365 rates. We did not examine visitation rates by native bees such as bumblebees and they 366 may be more responsive to nectar volumes than honeybees. Our future investigations 367 will examine whether pre-dispersal seed predators have different effects on the 368 behavior of honeybees and native bees. 369

371 Acknowled	gements
---------------	---------

372	We thank Xingiang	Xi. Xinwei Wu	. Jie Xiong, Hongli	Chen. Yongping	Li. Xu Luo.
572	vie thank mighting	<i>z</i> z z z z z z z z z z	, old relong, riongn	onon, rongping	LI, 110 Luo,

- 373 Xue Wei, Rui Cao, Hanxiang Chen and Kai He for their field and laboratory
- assistance. This study was funded by National Science Foundation of China
- 375 (31270513, 31270387), Innovative Research Team by Sichuan Provincial Department
- of Education (13TD0015) and Project of Introduced Excellent Talents by Mianyang
- 377 Normal University (QD2012A07).
- 378

379 **References**

- Arroyo MTK, Armesto JJ, Primack RB (1985) Community studies in pollination
 ecology in the high temperate Andes of central Chile. II. Effect of temperature on
- visitation rates and pollination possibilities. Plant Syst. Evol. 149: 187-203.
- Averill AL, Prokopy RJ (1987) Intraspecific competition in the tephritid fruit fly
 Rhagoletis pomonella. Ecology 68: 878-886.
- Barber NA, Adler LS, Theis N, Hazzard RV, Kiers ET (2012) Herbivory reduces plant
 interactions with above- and belowground antagonists and mutualists. Ecology 93:
 1560-1570.
- Bates D, Maechler M, Bolker B (2011) Lme 4: Linear mixed-effects models using S4
 classes. R package version 0.999375-38
- Birch ANE, Fellows LE, Evans SV, Doherty K (1986). Para-aminophenylalanine in
- 391 Vigna: possible taxonomic and ecological significance as a seed defence against

bruchids. Phytochemistry 25: 2745-2749.

- Bronstein JL. (Ed.) (2015) *Mutualism*. Oxford University Press, Oxford 297 pp.
- Búrquez A, Corbet SA (1991) Do flowers reabsorb nectar? Funct Ecol 5: 369-379.
- 395 Cariveau, D. et al. 2004. Direct and indirect effects of pollinators and seed predators to
- selection on plant and floral traits. Oikos 104: 15-26.
- Collin CL and Shykoff JA (2010) Flowering phenology and female fitness: impact of
 a pre-dispersal seed predator on a sexually polymorphic species. Plant Ecol 206:
- **399** 1-13.
- 400 ECCAS (Editor Committee of the Chinese Academy of Sciences for Flora of China)
 401 (1999) Flora of China. Beijing: Science Press (in Chinese) 78: 38.
- Galen C (1999) Why do flowers vary? The functional ecology of variation in flower
 size and form within natural plant population. Bioscience 49: 631-640.
- Goeden RD (1988) Gall formation by the capitulum-infesting fruit fly, *Tephritis stigmatica* (Diptera: Tephritidae). P Entomol Soc Wash 90: 37-43.
- 406 Hansen J and Møller IB (1975) Percolation of starch and soluble carbohydrates from
- 407 plant tissue for quantitative determination with anthrone. Anal Biochem 68: 87-408 94.
- Harder LD, Real LA (1987) Why are bumble bees risk averse? Ecology 68: 1104-1108.
- 410 Janzen DH, Juster HB, Bell EA (1977) Toxicity of secondary compounds to the seed-
- 411 eating larvae of the bruchid beetle *Callosobruchus macutatus*. Phytochemistry
 412 16: 223-227.
- 413 Johnson SD, Hargreaves AL, Brown M (2006) Dark, bitter-tasting nectar functions as

414	filter of flower visitors in a bird-pollinated plant. Ecology 87: 2706-2716.
415	Kalinganire A, Harwood CE, Slee MU, Simons A J (2001) Pollination and fruit-set of
416	Grevillea robusta in western Kenya. Austral Ecol 26: 637-648.
417	Kjellberg F, Jousselin E, Bronstein JL, Patel AJ, Yokoyama J, Rasplus JY (2001)
418	Pollination mode in fig wasps: The predictive power of correlated traits. P Roy
419	Soc B Bio 268: 1113-1121.
420	Kolb A, Ehrlén J, Eriksson O (2007) Ecological and evolutionary consequences of
421	spatial and temporal variation in pre-dispersal seed predation. Perspect Plant Ecol
422	9: 79-100.
423	Kudoh H and Whigham DF (1998) The effect of petal size manipulation on
424	pollinator/seed-predator mediated female reproductive success of Hibiscus
425	moscheutos. Oecologia 117: 70 -79.
426	Lanza J (1988) Ant preferences for <i>Passiflora</i> nectar mimics that contain amino acids.
427	Biotropica 20: 341-344.
428	Larsson M and Franzen M (2007) Critical resource levels of pollen for the declining
429	bee Andrena hattorfiana (Hymenoptera, Andrenidae). Biol Conserv 134: 405-414.
430	Liu YZ, Mu JP, Li GY, Sun SC (2012) Global warming may reduce plant reproductive
431	effort for temperate multi-flowered species. New Phytol 195: 427-436.
432	Lunau K (2004) Adaptive radiation and coevolution — pollination biology case studies.
433	Org Divers Evol 4: 207-224.
434	Machado RAR, Ferrieri AP, Robert CA, Glauser G, Kallenbach M, Baldwin IT, Erb M
435	(2013) Leaf-herbivore attack reduces carbon reserves and regrowth from the roots
	20

via jasmonate and auxin signaling. New Phytol 200: 1234-1246.

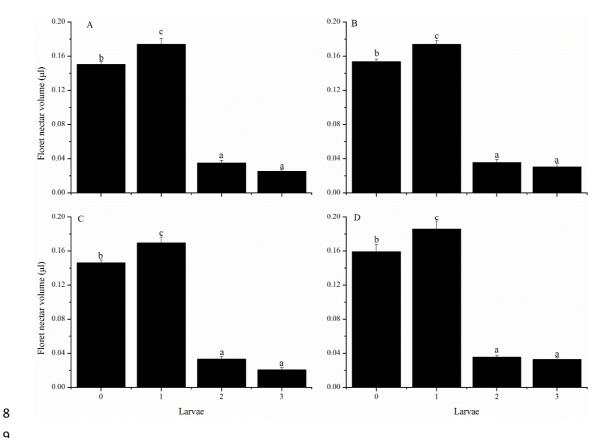
- Macior LW, Tang Y, Zhang JC (2001) Reproductive biology of Pedicularis 437 (Scrophulariaceae) in the Sichuan Himalaya. Plant Spec Biol 16: 83-89. 438
- McCall AC and Irwin RE (2006) Florivory: The intersection of pollination and 439 herbivory. Ecol Lett 9: 1351-1365. 440
- McDade LA and Kinsman S (1980) The impact of floral parasitism in two Neotropical 441 hummingbird-pollinated plant species. Evolution 34: 944-958. 442
- Miller-Struttmann NE, Geib JC, Frankin JD, Kevan PG, Holdo RM et al (2015) 443
- 444 Functional mismatch in a bumble bee pollination mutualism under climate change. Science 349: 1541-1544. 445
- Mitchell RJ, Karron JD, Holmquist KJ, Bell JM (2004) The influence of Mimulus 446 447 ringens floral display size on pollinator visitation patterns. Funct Ecol 18: 116-124. 448
- Mitchell RJ, Irwin RE, Flanagan RJ, and Karron JD (2009) Ecology and evolution of 449 plant-pollinator interactions. Ann Bot-London 103: 1355-1364.
- 450
- Mu JP, Peng YH, Xi XQ, Wu XW, Griffin JN, Niklas KJ, Su SC (2014) Domesticated 451
- honeybees evolutionarily reduce flower nectar volume in a Tibetan Asteraceae. 452
- Ecology 95: 3161-3172. 453
- Mu JP, Peng YH, Xi XQ, Wu XW, Griffin JN, Niklas KJ, Sun SC (2015) Artificial 454
- asymmetric warming dramatically reduces nectar production in a Tibetan lotus. 455 Ann Bot-London 116: 899-906. 456
- Nilsson LA (1988) The evolution of flowers with deep corolla tubes. Nature 334: 147-457

149.

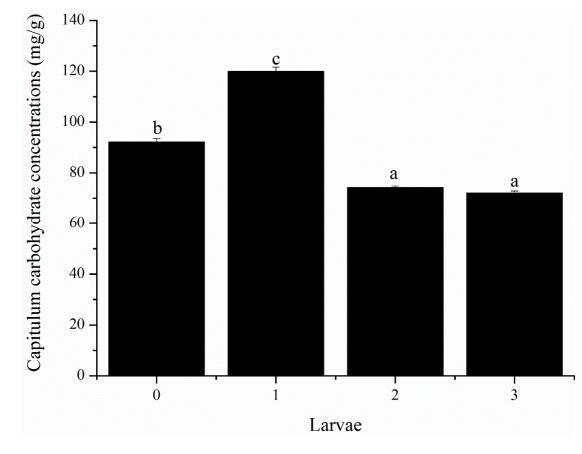
- 459 Pacini E and Nepi M (2007) Nectar production and presentation. In Nectaries and
 460 Nectar. Nicolson SW, Nepi M, Pacini E (eds). Dordecht, the Netherlands: Springer,
 461 pp.167-214.
- 462 Pacini E, Nepi M, and Vesprini JL (2003) Nectar biodiversity: a short review. Plant
 463 Syst Evol 238: 7 -21.
- Pellmyr O and Huth CJ (1994) Evolutionary stability of mutualism between yuccas and
 yucca moths. Nature 372: 257-260.
- 466 Press CA and Phoenix GK (2005) Impacts of parasitic plants on natural communities.
- 467 New Phytol 166: 737-751.
- 468 Price PW, Fernandes GW, Waring GL (1987) Adaptive Nature of Insect Galls Environ
 469 Entomol 16: 15-24.
- 470 Pyke GH. 1982. Foraging in bumblebees: rule of departure from an inflorescence. Can
- 471 J Zool 60: 417-428.
- 472 Pyke GH. 2016. Floral nectar: pollinator attraction or manipulation. Trends Ecol Evol
 473 31: 339-341.
- 474 Real LA and Rathcke BJ (1991) Individual variation in nectar production and its effects
 475 on fitness in *Kalmia latifolia*. Ecology 72: 149-155.
- 476 Rivera-Solís G, Abdala-Roberts L, Cervera JC, Parra-Tabla V, Ruiz-Ruiz J, Betancur-
- 477 Ancona D (2012) Mechanisms and traits associated with compensation for
 478 defoliation in *Ruellia nudiflora*. Plant Ecol 213: 303-314.
- 479 Rodríguez- Rodríguez MC, Jordano P, and Valido A (2015) Hotspots of damage by

antagonists shape the spatial structure of plant-pollinator interactions. Ecology 96:

481 2181-2191.


- 482 Scaven V and Rafferty NE (2013) Physiological effects of climate warming on
 483 flowering plants and insect pollinator and potential consequences for their
 484 interaction. Curr Zool 59: 418-426.
- 485 Scheiner R, Erber J, Page RE (1999) Tactile learning and the individual evaluation of
 486 the reward in honeybees (*Apis mellifera* L.). J Comp Physiol A 185: 1-10.
- Scheiner R, Page RE, Erber J (2001) Responsiveness to sucrose affects tactile and
 olfactory learning in preforaging honeybees of two genetic strains. Behav Brain
 Res 120: 67-73.
- 490 Schemske DW, Bradshaw HD (1999) Pollinator preference and the evolution of floral
 491 traits in monkeyflowers (Mimulus). P Natl Acad Sci USA 96: 11910-11915.
- 492 Smith LL, Lanza J, Smith GC (1990) Amino acid concentrations in extrafloral nectar
- 493 of *Impatients sultani* increase after stimulated herbivory. Ecology 71: 107-115.
- 494 Strauss SY and Irwin RE (2004) Ecological and evolutionary consequences of
 495 multispecies plant–animal interactions. Annu Rev Ecol Evol S 35: 435-466.
- 496 Straw NA (1989) Taxonomy, attack strategies and host relations in flowerhead
 497 Tephritidae: a review. Ecol Entomol 14: 455-462.
- 498 Sun SG, Huang SQ, Guo YH (2013) Pollinator shift to managed honeybees enhances
- reproductive output in a bumblebee-pollinated plant. Plant Syst Evol 299: 139-150.
- 500 Thompson JN (2005) The Geographic Mosaic of Coevolution. University of Chicago
- 501 Press, Chicago.

502	Thomson JD (1988) Effects of variation in inflorescence size and floral rewards on the
503	visitation rates of traplining pollinators of Aralia hispida. Evol Ecol 2: 65-76.
504	Teuber LR, Barnes DK, Rincker CM (1983) Effectiveness of selection for nectar
505	volume, receptacle diameter, and seed yield characteristics in Alfalfa. Crop Sci 23:
506	283-289.


- Trumble JT (1993) Plant compensation for arthropod herbivory. Annu Rev Entomol 38:
 93-119.
- Vaudo AD, Tooker JF, Grozinger CM, Patch HM (2015) Bee nutrition and floral
 resource restoration. Curr Opin Insect Sci 10: 133-141.
- 511 Varley GC (1947) The natural control of population balance in the Knapweed Gall-Fly
 512 (*Urophora jaceana*). J Anim Ecol 16: 139-187.
- 513 Vaughton G and Ramsey M (1998) Floral display, pollinator visitation and reproductive
- success in the dioecious perennial herb *Wurmbea dioica* (Liliaceae). Oecologia
 115: 93-101.
- 516 Wäckers FL, Zuber D, Wunderlin R, Keller F (2001) The effect of herbivory on
- temporal and spatial dynamics of foliar nectar production in cotton and caster. Ann
 Bot-London 87: 365-370.
- Wallis de Vries MF, van Swaay CAM, Plate CL (2012) Changes in nectar supply: a
 possible cause of widespread butterfly decline. Curr Zool 58: 384-391.
- 521 Westerbergh A and Westerbergh J (2001) Interactions between seed predators /
- pollinators and their host plants: a first step towards mutualism. Oikos 95: 324-
- 523 334.

- 524 Whittall JB and Hodges SA (2007) Pollinator shifts drive increasingly long nectar spurs
- 525 in columbine flowers. Nature 447: 706-709.
- 526 Xi XQ, Wu XW, Nylin S, and Sun SC (2016) Body size response to warming: time of
- 527 the season matters in tephritid fly. Oikos 125: 386-394.
- 528 Yoshida S, Forno D, Cock J, Gomez KA (1976) Laboratory manual for
- 529 *physiological studies of rice*. Los Baños, Laguna, Philippines. pp46.

- Figure 1. Variation in Saussurea nigrescens nectar volumes in relation to the numbers of tephritid larvae in their capitula (Means ± SEs per floret). Figures 1A-1C plants growing at sites 1-3 with natural variation in larval numbers, Figure 1D experimentally introduced tephritid larvae (site 2 only). Different letters above columns indicate differences within sites at *P*<0.05 (one-way analysis of variance).

- 10 Figure 2. Capitulum carbohydrate concentrations of *S. nigrescens* that had contained
- 11 varying numbers of tephritid larvae (Means ± 1 SE). Different letters above columns

12 indicate differences at P < 0.05 (one-way analysis of variance).

- Figure 3. The relationship between *Saussurea nigrescens* capitulum carbohydrate
 concentrations and mean floret nectar volume in capitula where different numbers of
 tephritid larvae had been introduced. N = 30 florets for each larval density.

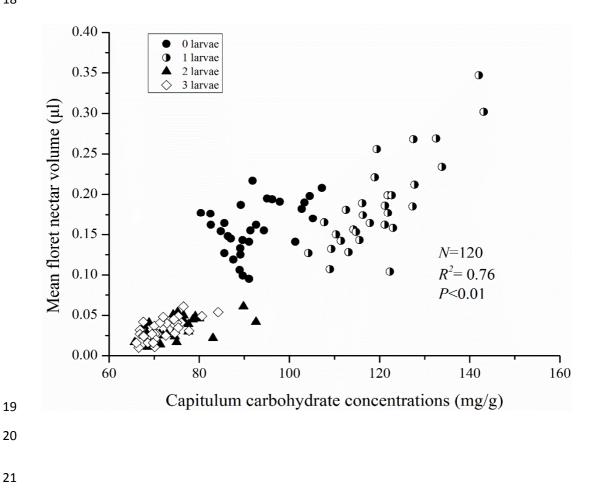
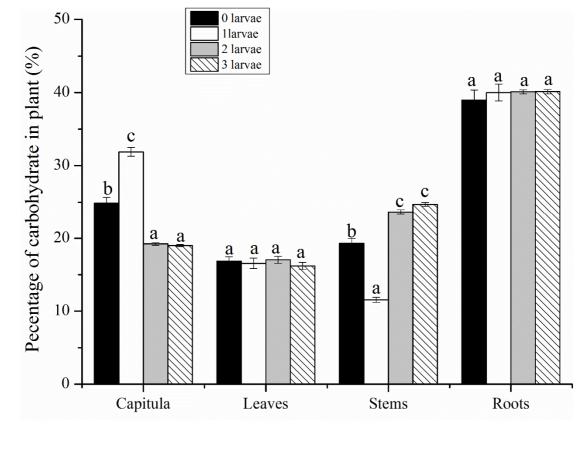



Figure 4. Percentage of total carbohydrates (soluble sugars and starch, mg/g) in capitula, leaves, stems and roots of *S. nigrescens* (means ± 1 SE). Different letters above columns indicate differences between parts of the plants at *P*<0.05 (one-way analysis of variance).

29

Table 1. Summary of linear mixed effect models comparing the effects of pre-dispersal seed predators and capitulum size on floret nectar volume, nectar concentration, and capitulum carbohydrate concentrations. AIC = Akaike Information Criterion and BIC = Bayesian Information Criterion. The numbers after Floret nectar volume and Nectar concentration are AIC and BIC, respectively.

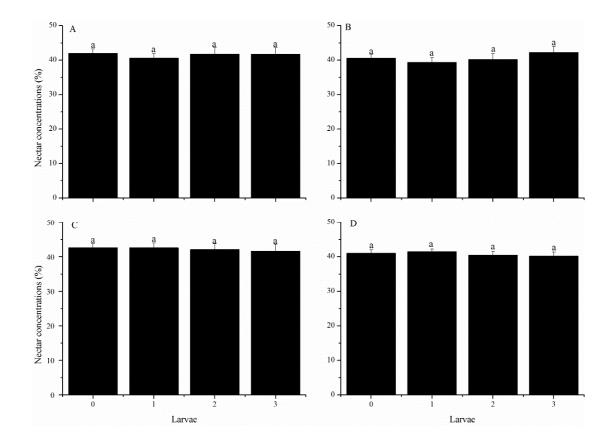
Variables /AIC/ BIC	Fixed effects			
Variables /AIC/ BIC	value	SE	<i>t</i> -value	<i>p</i> -value
Field conditions				
Floret nectar volume /-1539.99/-1515.10				
Intercept	0.159	0.009	18.119	<0.001
Pre-dispersal seed predators (P)	-0.028	0.011	-2.441	0.015
Capitulum mass (C)	-0.050	0.054	0.929	0.353
PxC	-0.097	0.069	-1.403	0.161
Nectar concentration/3449.41/3474.30				
Intercept	39.977	2.000	19.984	<0.001
Pre-dispersal seed predators(P)	-1.568	2.388	-0.657	0.512
Capitula mass (C)	10.411	12.789	0.814	0.416
P×C	8.517	14.612	0.583	0.560
Experimental manipulations				
Floret nectar volume /-338.37/-321.85				
Intercept	0.159	0.018	8.983	<0.001
Pre-dispersal seed predators (P)	-0.046	0.010	-4.587	<0.001
Capitula mass (C)	0.158	0.106	1.495	0.138
PxC	-0.046	0.061	-0.759	0.449
Nectar concentration/747.25/763.77				
Intercept	41.630	1.909	21.802	<0.001
Pre-dispersal seed predators (P)	-0.055	1.083	-0.051	0.959
Capitulum mass (C)	-2.152	11.400	-0.189	0.851
PxC	-1.901	6.548	-0.290	0.772
Capitulum carbohydrate concentrations /1016.50/1033.02				
Intercept	187.545	46.583	4.026	<0.001
Pre-dispersal seed predators (P)	-8.602	3.921	-2.194	0.030
Capitulum mass (C)	16.649	30.306	0.549	0.584
P×C	-1.391	2.544	-0.545	0.587

Appendix list

Appendix A

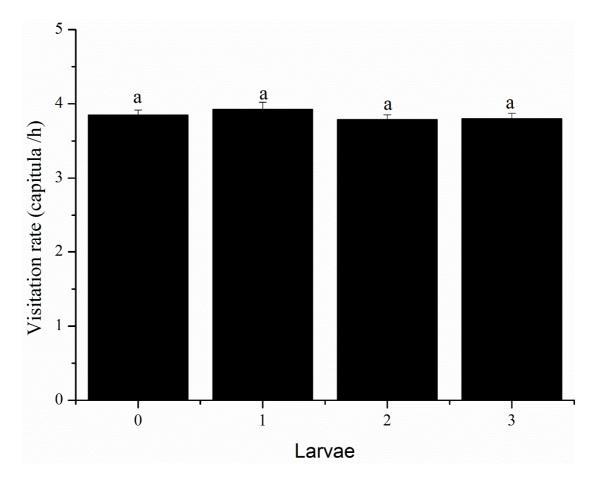
S. nigrescens nectar concentrations at sites 1 (A), 2 (B), and 3 (C) under natural

condition and after experimental introductions (D).


Appendix B

Apis mellifera visitation rates per capitulum of Saussurea nigrescens in relation to

tephritid larval numbers.


Appendix A

S. nigrescens nectar concentrations with natural variation in numbers of tephritid larvae at sites 1-3 (A-C) and in the larval-addition experiment at site 2 (D). Similar letters above columns indicate no differences within sites at P<0.05 (one-way analysis of variance).

Appendix B

Apis mellifera visits to capitula of *Saussurea nigrescens* that contained different numbers of tephritid larvae (means \pm 1 SE). Capitulum visitation rates were compared by one-way ANOVAs followed by Tukey's tests. Similar letters above columns indicate no difference in visitation rates at *P*<0.05 (one-way analysis of variance).

