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Quantitative proteomic analysis 
of age-related subventricular 
zone proteins associated with 
neurodegenerative disease
Xianli Wang1,*, Chuanming Dong1,2,*, Lixin Sun1,*, Liang Zhu1, Chenxi Sun1, Rongjie Ma1, 
ke Ning1,3, Bing Lu1,  Jinfu Zhang4 & Jun Xu1

Aging is characterized by a progressive decline in the function of adult tissues which can lead to 
neurodegenerative disorders. However, little is known about the correlation between protein changes 
in the subventricular zone (SVZ) and neurodegenerative diseases with age. In the present study, neural 
stem cells (NSCs) were derived from the SVZ on postnatal 7 d, 1 m, and 12 m-old mice. With age, NSCs 
exhibited increased SA-β-gal activity and decreased proliferation and pool size in the SVZ zone, and 
were associated with elevated inflammatory chemokines and cytokines. Furthermore, quantitative 
proteomics and ingenuity pathway analysis were used to evaluate the significant age-related 
alterations in proteins and their functions. Some downregulated proteins such as DPYSL2, TPI1, ALDH, 
and UCHL1 were found to play critical roles in the neurological disease and PSMA1, PSMA3, PSMC2, 
PSMD11, and UCHL1 in protein homeostasis. Taken together, we have provided valuable insight into 
the cellular and molecular processes that underlie aging-associated declines in SVZ neurogenesis for the 
early detection of differences in gene expression and the potential risk of neurological disease, which is 
beneficial in the prevention of the diseases.

Aging is a process characterized by the progressive decline in the physiology and function of adult tissues1,2. 
Studies have shown that the neurogenesis declined rapidly in the human brain with increased age. As a result, the 
elderly individuals exhibit deteriorated cognitive function3 and are largely susceptibility to neurodegenerative 
diseases such as Parkinson’s and Alzheimer’s diseases4. This may be attributed to the degeneration of self-renewal 
and multi-differentiation potential of neural stem cells (NSCs) associated with NSC aging5.

Adult NSCs reside in the subgranular zone (SGZ) of the hippocampal dentate gyrus and the subventricular 
zone (SVZ) of the lateral ventricle6,7. Adult NSCs serve as the nascent fountain critical for brain homeostasis. 
However, the number of NSCs significantly decreases with age, correlating with a functional decline and a grad-
ual loss of olfactory function8,9. When NSCs are inclined towards aging, some aging-related neurodegenerative 
diseases begin to occur10. The pathological process in Parkinson’s disease (PD) involves the degeneration of the 
dopaminergic neurons in the substantia nigra pars compacta, which leads to a decrease in the striatal dopamine 
levels and also causes movement disorder11. SVZ is localized in the proximity of the striatum. The endogenous 
NSCs in the SVZ can migrate into the striatum and differentiate into dopaminergic neurons. With age, the pro-
liferation of endogenous NSCs is decreased, and hence, the number of dopaminergic neurons in the striatum is 
reduced12.

Accumulating evidence showed that the Alzheimer’s disease (AD) influences the SVZ cell proliferation13. A 
recent study indicated a significant nine-fold decrease of Musashi 1-positive progenitor cells in the SVZ of patients 
with Alzheimer’s disease14. The neurogenic capacity of the SVZ is the only source of long-term self-renewable and 
multipotent NSCs in the adult rodent brain, and thus, is crucial for AD. On the other hand, the SGZ contains only 
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independent neuronal and glial progenitors with limited self-renewal capacity. Therefore, it has been proposed 
that SVZ NSCs could migrate into the hippocampus, acting as a source of NPCs for the SGZ15.

Hitherto, a proteomic study correlating the age-dependent NSC alterations and neurodegenerative diseases is 
not reported. Therefore, a proteomic analysis would be beneficial for the early detection of the differences in the 
gene expression and the potential risk of illness, thereby, preventing the neurodegenerative diseases.

A recent study demonstrated that impairment of neurogenesis in the SGZ begins at 9 m in male 3 Tg-AD 
mice16, whereas the SVZ impairment begins as early as 2–3 m17. Moreover, the SVZ NSCs reside within the walls 
of the lateral ventricle. These NSCs from the sequestered parts of the human brain can be endoscopically har-
vested, expanded in vitro, and differentiated into both neuronal and glial progenitors. Thus, the SVZ was selected 
for the present study.

Herein, we utilized the quantitative proteomic analysis to generate protein expression profiles of the SVZ from 
the mice at various ages. A comparison of the protein profiles of these groups revealed a number of differentially 
expressed proteins that are known to play critical roles in the protein homeostasis and neurodegenerative dis-
eases. This information may provide valuable insight into the cellular and molecular processes underlying the 
aging-associated decline in SVZ neurogenesis.

Material and Methods
The animal experiment was approved and conducted according to the regulations set by the Animal Use and Care 
Committee of Tongji University. And all experiments were carried out in accordance with the manufacturer’s 
instructions.

Neurosphere culture.  Primary NSC culture was derived from postnatal day 7(7d), one month (1 m) and 
12 month (12 m) mice. All mice were housed according to Animal care and all experiment procedures approved 
by the Animal Committee of the school (TJmed-010-10) and the protocol was approved by the Institutional 
Animal Care and Use Committee of the Tongji University (Shanghai, China). The SVZ was isolated and enzy-
matically dissociated in Hank’s balanced saline solution buffer (HBSS) (Invitrogen, USA) containing 1 mg/ml 
trypsin (Invitrogen) at 37 °C for 10 minutes followed by 5 min centrifugation at 350 g upon trypsin inhibition 
(Invitrogen). The isolated cells were washed with HBSS and resuspended in DMEM/F12 medium (Invitrogen) 
with 2% B27 (Invitrogen), 20 ng/ml EGF (R&D Systems, USA), 20 ng/ml bFGF (R&D Systems), 2 mM glutamax 
(Invitrogen). Neurospheres formed over 3 days of incubation with 5% CO2 at 37 °C. Subculturing was done every 
3–4 days. Experiments were performed with cultured cells between passages 3 and 7.

Senescence-associated-β-galactosidase assay.  Cellular senescence was determined by SA-β​-gal  
staining18. Staining was performed using SA-β​-gal staining Kit (Genmed Scientifics INC) according to manufac-
turer’s guidelines with DAPI as counterstaining. Positive staining was evaluated after 12–16 hr incubation at 37 °C 
in a CO2-free atmosphere. The blue stained cells from 10 different fields were counted with results presented as a 
percentage of positive cells.

Cell proliferation assays.  After trypsinizing neurospheres, single cell suspensions were prepared in 
DMEM/F12 medium containing EGF and bFGF, and were seeded into 96-well plates (Corning Incorporated, 
USA) at a density of 103 cells per ml. After 7-days, colonies of a diameter >​30 μ​m were scored.

Immunocytochemistry.  Cells grown on coverslips were fixed in 4% paraformaldehyde for 15 min at room 
temperature, permeabilized with 0.3% Triton X-100 in PBS for 10 min, and blocked in 3% normal donkey serum 
in PBS for 2 h at room temperature. Primary antibodies were diluted in 3% normal donkey serum in PBS and 
applied at 4 °C overnight. The primary antibodies used in these experiments were as follow: Nestin (Abcam; 
1:3000), Sox2 (Santa Cruz; 1:500), after rinsing in PBS three times and incubating for 2 h with CF488 and CF543 
(Biotium; 1:1000), coverslips were washed three times, cell nuclei were stained with DAPI. Images were acquired 
on a Leica TCS SP2 confocal fluorescence microscope.

Immunohistochemistry.  Mice were anesthetized and cardiac perfused through the heart with 4% para-
formaldehyde. Brains were dissected out, post-fixed and stored in 30% sucrose. Brains were frozen in Tissue-Tek 
optimal cutting temperature compound (O.C.T.) (VWR, Richmond, IL) and coronally sectioned at a 25 μ​m inter-
val. Tissue sections were blocked with 3% normal donkey serum (NDS, Jackson) in PBS for 30 minutes and then 
incubated with Nestin (Abcam; 1:3000) at 4 °C overnight followed by CF488 (Biotium; 1:1000) for 1 hour. DAPI 
was used as counter staining. Images were acquired and analyzed on a Leica TCS SP2 confocal fluorescence 
microscope.

Quantitative RT-PCR.  For QRT-PCR, total RNA was reverse-transcribed using SuperScript III (Invitrogen). 
All reactions were performed using SYBR®​ Green PCR Core reagents (Applied Biosystems). Primers were designed 
using Primer Express software (Applied Biosystems) and experimentally validated. The sequences for primers used 
are as follows: GAPDH 5′​ GGTGAAGGTCGGTGTGAACG-3′​, 5′​ CTCGCTCCTGGAAGATGGTG-3′​; PSMD 
11 5′GAGCCCAGTCTCTACTCAGCA-3′​, 5′TCTTGAATGTCACGTTTCACGAT-3′​; ALDH2 5′GAAAT 
GTCTCCGCTATTACGCT-3′​, 5′GCGGGAAGTTCCACGGAAT-3′​; TPI1 5′​ GAGAGAGCCGTGCGTTTGTA-3′​,  
5′​ CCCCAACGAAGAACTTCCTGG-3′​. The expression of each gene was defined from the threshold cycle (Ct), 
and relative expression levels were calculated by using the ∆∆​CT method after normalization with reference to 
expression of the housekeeping gene GAPDH. Results are means from three individual experiments.
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Western blot analysis.  Cultured NSCs were washed with ice-cold PBS, lysed with 2 ×​ SDS lysis buffer. 
Protein concentrations were determined by the BCA protein assay kit (Pierce). Proteins were separated on 8% 
SDS-polyacrylamide gels (Bio-rad) and transferred to a PVDF membrane (Millipore). Membranes were blocked 
in 5% non-fat milk powder in TBS-T (0.1% Tween-20 in TBS), and incubated with primary antibodies over-
night at 4 °C. After washed in TBS-T, membranes were incubated with HRP conjugated secondary antibodies 
(Invitrogen) for 1 h at room temperature with signals detected using ECL Super Signal (Pierce, Rockford, IL, 
USA). Quantifications were done using ImageQuant. The primary antibodies used include rabbit anti-PSMD11 
(Abcam) and mouse anti-β​actin (Sigma).

Multiplex quantification of cytokines and chemokine.  Concentrations of cytokine/chemokine in 7d, 
1 m and 12 m were NSCs were quantified using Bio-plex proTM mouse cytokine 23-plex assay kits (Bio-Rad 
#M60009RDPD). This kit detects the following concentrations of 23 analytes simultaneously in a single sam-
ple: Eotaxin (CCL11), G-CSF, GM-CSF, IFN-γ​, KC, MCP-1(MCAF), MIP-1α​, MIP-1β​, RANTES, IL-1α​, IL-1β​,  
IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12 p40, IL-12 p70, IL-13, IL-17A and TNF-α​. Prepared plates were 
run on the Bio-Plex 200 System with the High Throughput Fluidics (HTF) Multiplex Array System (Bio-Rad 
Laboratories, Hercules, CA). Results were normalized to the amount of protein per well, as determined using a 
Bio-Rad DC protein assay.

Protein separation by 1D SDS-PAGE and proteomics analysis.  For proteomics analysis, pro-
teins from 7d, 1 m and 12 m groups were processed as previously described19. Equal amount of proteins from 
untreated- and treated-samples (about 60 μ​g) were separated by 1D SDS-PAGE, respectively. The gel bands of 
interest were excised from the gel, reduced with 25 mM of DTT and alkylated with 55 mM iodoacetamide. In gel 
digestion was then carried out with sequencing grade modified trypsin in 50 mM disodium hydrogen phosphate 
at 37 °C overnight. The peptides were extracted twice with 0.1% trifluoroacetic acid in 50% acetonitrile aqueous 
solution for 30 min. Extracts were then centrifuged in a speedvac to reduce the volume.

Peptides from different samples were labeled with tandem mass tags (TMT) reagents (Thermo, Pierce 
Biotechnology) according to the manufacturer’s instruction. Briefly, the TMT label reagents were dissolved by 
anhydrous acetonitrile and carefully added to each digestion products. The reaction was performed for 1 h at 
room temperature, and hydroxylamine was used to quench the reaction. The TMT-labeled peptides were desalted 
using the stage tips.

For LC-MS/MS analysis, the digestion product was separated by a 65 min gradient elution at a flow rate 
0.250 ml/min with an EASY-nLCIITM integrated nano-HPLC system (Proxeon, Denmark) which was directly 
interfaced with a Thermo Orbitrap Q Executive mass spectrometer. The analytical column was a homemade fused 
silica capillary column (75 mm ID, 150 mm length; Upchurch, Oak Harbor, WA) packed with C-18 resin (300 Å, 
5 mm, Varian, Lexington, MA). Mobile phase A consisted of 0.1% formic acid, and mobile phase B consisted of 
100% acetonitrile and 0.1% formic acid. The Q Exactive mass spectrometer was operated in the data-dependent 
acquisition mode using Xcalibur 2.1.2 software and there was a single full-scan mass spectrum in the orbitrap 
(400–1800 m/z, 60,000 resolution) followed by 10 data-dependent MS/MS scans at 27% normalized collision 
energy (HCD). The MS/MS spectra from each LC-MS/MS run were searched against the selected database using 
an in house Proteome Discoverer searching algorithm.

The MS/MS spectra from each LC-MS/MS run were searched against the selected database (IPI human v3.84) 
using an in-house Proteome Discoverer 1.3 software (Thermo, USA). The search criteria were as follows: full 
tryptic specificity was required; one missed cleavage was allowed; carbamidomethylation (C) and TMT sixplex 
(K and N-terminal) were set as the fixed modifications; the oxidation (M) was set as the variable modification; 
precursor ion mass tolerances were set at 10 ppm for all MS acquired in an orbitrap mass analyzer; and the frag-
ment ion mass tolerance was set at 20 mmu for all MS2 spectra acquired. Relative protein quantification was also 
performed using Proteome Discoverer software (version 1.3) according to manufacturer’s instructions on the six 
reporter ion intensities per peptide. Quantitative precision was expressed as protein ratio variability. Differentially 
expressed proteins were further confirmed by QRT-PCR or western blotting.

Protein pathway analysis.  GO annotation of the identified proteins was done using DAVID (V6.7: http://
david.abcc.ncifcrf.gov). Differentially expressed proteins were analyzed using IPA (Ingenuity Systems: http:// 
www. ingenuity. com). The over-represented biological functions, molecular networks, and canonical pathways 
were generated based on information in the Ingenuity Pathways Knowledge Base.

Statistical analysis.  Data were analyzed by one-way ANOVA and post-hoc comparison tests, with signifi-
cance measured at *P <​ 0.05; **P <​ 0.01.

Results
Establishment and characterization of primary NSC culture from different aged mice.  NSCs 
from the SVZ of postnatal 7 d mice were grown in the presence of basic fibroblast growth factor (bFGF) and 
epidermal growth factor (EGF) to form neurospheres in vitro (Fig. 1A). During subculture, the NSC from SVZ 
of 7 d, 1 m, and 12 m retained their stem cell characteristics and stained positively for Nestin and SOX2 (Fig. 1B).

Changes of NSC pools in the SVZ from different aged mice.  The in vivo age-related alterations of 
NSC pools in the SVZ were examined in the current study. Brains from 7 d, 1 m, and 12 m mice were stained with 
the anti-Nestin antibody (Fig. 2A). The results show that the width of the neurogenic area of SVZ is reduced with 
age (Fig. 2B).

http://david.abcc.ncifcrf.gov
http://david.abcc.ncifcrf.gov
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Neural stem cells show cellular senescence with age.  To determine the proliferative capac-
ity of isolated 7 d, 1 m, 12 m NSCs, neurosphere formation assays were carried out (Fig. 3A). The results 
revealed that the ratio of neurosphere formation decreased with increasing age (Fig. 3B). Next, we performed 
senescence-associated- β​-galactosidase (SA-β​-gal) assay to confirm that the NSCs aged with increasing age of 
the animal (Fig. 3C). The percentage of SA-β​-gal- positive NSCs increased from 6.12% in 7 d to 54.31% in 12 m 
(Fig. 3D).

Changes in secretome profiling of inflammatory cytokines and chemokines.  By using a 
Bio-rad Bio-plex pro mouse cytokine 23-plex assay kit, we characterized the changes in the expression levels 
of some important chemokines and cytokines released from the SVZ NSCs in 7 d, 1 m, and 12 m mice. The 
data revealed that a subset of molecules, such as IL-6, G-CSF, MCP-1, MIP-1a, and RANTES showed a distinct 
increase in expression with age. The secreted IL-6 was 18-fold from 12 m NSCs (275.96 pg/mL) compared with 
7 d cells (15.3 pg/mL). The secreted MIP-1a was 5-fold from 12 m NSCs (2110.15 pg/mL) compared with 7 d 
cells (397.95 pg/mL). The secretion of G-CSF is elevated to nearly 5-fold (from 417.49 pg/mL to 1943.53 pg/mL). 

Figure 1.  Establishment and Characterization of primary NSC culture from 7 d, 1 m, and 12 m mice.  
(A) NSCs from SVZ were cultured in the presence of EGF and bFGF. Scale bar: 100 μ​m. (A1) shows single cell 
after passaging in vitro. (A2) shows neurospheres. (A3) shows a single neurosphere. (A4) shows monolayer of 
NSCs culture on polyornithine/laminin-coated plates. (B) 7 d, 1 m, and 12 m neural stem cells were stained with 
NSC-specific markers Nestin and SOX2. Scale bar: 50 μ​m.
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The secretion of Mcp-1 was 3-fold from 12 m NSCs (6000 pg/mL) compared with 7 d cells (1870.48 pg/mL). The 
secreted RANTES was 2.5-fold from 12 m NSCs (355.15 pg/mL) compared with 7 d cells (140.98 pg/mL). The data 
suggested that these inflammatory cytokines and chemokines may play a vital role in the aging process (Fig. 4).

Proteomic analysis unravels major molecular pathways related to NSC aging.  In order to 
explore the mechanisms underlying the NSC aging-related functional declines, we utilized quantitative proteomic 
analysis to identify the key proteins and pathways derived from neural stem cells from SVZ of 7 d, 1 m, and 12 m 
aged mice. Our analysis predicted 1170 distinct proteins. With a 1.5-fold cutoff, 39 proteins underwent a decline 
in the expression level with age while 8 proteins showed an elevation in the expression level.

Subsequently, we performed bioinformatics analysis on the differentially expressed proteins using the DAVID 
bioinformatics tool. The majority of the differentially expressed proteins were located in the extracellular region 
(32%), the mitochondrion (27%), and the endoplasmic reticulum (17%) (Fig. 5A). Functionally these genes were 
mainly associated with the neurological disease, nucleic acid metabolism, cellular assembly and organization, 
molecular transport, and small molecule biochemistry (Fig. 5B). The main 5 canonical pathways highly influ-
enced were related to glycolysis, fatty acid metabolism, propanoate metabolism, protein ubiquitination pathway, 
and valine, leucine, and isoleucine degradation (Fig. 5C).

Next, we used the Ingenuity Pathway Analysis (IPA) pathway to identify major cellular functional networks 
altered in age-associated NSCs. 24 proteins were involved in the top-hit network, with the highest score of 63. 
Functionally, these proteins were mainly associated with neurological disease, lipid metabolism, and small mol-
ecule biochemistry. Importantly, the downregulated expression patterns of these proteins are highly correlated 
with the loss of proteostasis and neurodegenerative diseases such as Parkinson’s and Alzheimer’s diseases. For 
example, the proteasome subunit alpha type-1 (PSMA1), proteasome subunit alpha type-3 (PSMA3), PSMC2, 
PSMD11, and UCHL1 were decreased with age, which was consistent with the loss of proteostasis and NSC 
senescence. On the other hand, TPI1, ALDH2, DPYSL2, and ApoE were decreased with age, consistent with the 
involvement in the neurodegeneration processes (Fig. 6A).

Furthermore, we validated the proteomic data by a qRT-PCR and Western blot. As shown in Fig. 6C,D, the rel-
ative expression levels of PSMD11, TPI1, and ALDH2 mRNA were decreased, according to qRT-PCR (Fig. 6B–D) 
while that of PSMD11 was decreased as confirmed by Western blot. These results were in complete agreement 
with the quantitative proteomic results (Fig. 6E).

Discussion
In the present study, we have shown that the width of the SVZ and the pool size of NSCs, is reduced from 7 d, 1 m 
to 12 m. We also observed a significant reduction in the level of NSC proliferation with age as demonstrated by 

Figure 2.  NSC pool size in the SVZ from 7 d, 1 m, 12 m mice. (A) Nestin immunofluorescence of the SVZ in 
coronal sections from 7 d, 1 m, and 12 m mice. (B) The thickness of the NSC layer decreases with age. **P <​ 0.01. 
Scale bar: 100 μ​m.
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Figure 3.  NSCs have decreased colony formation capacity and increased SA-β-gal activity with age.  
(A) Colony formation capacity of 7 d, 1 m, and 12 m NSCs. Neurospheres were counted 7 d (D7) after NSCs 
were plated (D0). Scale bar, 100 μ​m. (B) Quantification of the ratio of neurosphere colony formation from 7 d, 
1 m to 12 m/old mice. *P <​ 0.05. (C) Senescence-associated-β​-Galactosidase (SA-β​-Gal) staining of 7 d, 1 m, and 
12 m NSCs, showing positive cells (blue). Scale bar, 100 μ​m. (D) The ratio of SA-β​-Gal positive cells from 7 d, 
1 m to 12 m old mice. **P <​ 0.01.

Figure 4.  Changes in the expression levels of inflammatory cytokines and chemokines from 7 d, 1 m, and 
12 m NSCs. Multiplex quantification of inflammatory chemokines and cytokines from 7 d, 1 m, and 12 m 
NSCs using the Bio-Plex Pro™​ mouse cytokine 23-plex immunoassays. Mean ±​ SEM values are reported. The 
cytokines and chemokines not listed in the table were unchanged or not detectable. **P <​ 0.01 vs. 7 d; #P <​ 0.05, 
##P <​ 0.01 vs. the group indicated.
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neurosphere formation assays. These pieces of evidence suggest that NSCs are directed towards cell senescence 
with age, which is also determined by augmented SA-β​-gal staining.

Furthermore, our results demonstrated that several critical inflammatory cytokines and chemokines such as 
IL-6, G-CSF, MCP-1, and RANTES are significantly increased with age. This prominent aging-associated alter-
ation is “inflammaging”20,21, which is tightly associated with age-related diseases, such as Alzheimer’s disease, 
Parkinson’s disease, atherosclerosis, and heart diseases. In the brain, the aged neurogenic niche is characterized 
by elevated levels of inflammatory cytokines. This increased inflammation contributes to the declining func-
tion of NSCs. One of the most reliable biomarkers of aging is IL-6, which is a potent mediator of inflammatory  
processes22. Herein, we found that the secretion of IL-6 is elevated to 18-fold in 7 d NSCs as compared to 12 m, 
which suggested that IL-6 levels can be used as predictors of inflammaging in NSC. MCP-1 is a vital chemokine; 

Figure 5.  Biological function analysis of the differentially expressed proteins from 7 d, 1 m, and 12 m NSCs. 
(A) The annotations of the cellular component of the differentially expressed proteins obtained by GO analysis 
from the DAVID database. (B) Functional analysis of the significant and differentially expressed proteins with 
neurological disease, nucleic acid metabolism, cellular assembly and organization, molecular transport, and 
small molecule biochemistry. (C) The most significant canonical pathways altered from 7 d, 1 m, and 12 m-old 
NSCs including glycolysis, fatty acid metabolism, propanoate metabolism, protein ubiquitination pathway, 
valine, leucine, and isoleucine.
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Inadera et al. measured the MCP-1 levels, using ELISA, in 405 healthy Japanese subjects of various ages, and 
found that the increase was age-dependent23. Chiao et al. measured the levels of 69 analytes in the plasma of 
adult and senescent C57/BL6 mice by multi-analyte profiling, and the results suggested that MCP-1 may serve as 
a potential plasma marker for cardiac aging23. Felzien et al. found another C-C chemokines, normally expressed 
in T-cell and secreted RANTES, and their level increase in T-cells, midbrain, hippocampus, and cerebellum with 
age24.

In order to understand the underlying mechanisms modulating the age-related changes and protein profiles of 
NSCs in the SVZ, and to predict the neurodegenerative diseases, we utilized quantitative proteomics analysis. We 

Figure 6.  Candidate genes and pathways identified through the 7 d, 1 m, and 12 m NSCs associated with the 
loss of proteostasis and neurodegenerative disease.  (A) The key regulatory networks underlying the aging-
associated NSCs. The proteomic data was imported into the Ingenuity Pathway Analysis (IPA) to predict the 
interacting pathways. Green indicates a decrease in the protein expression and red represents an increase. The 
color intensity represents the alteration in the level of expression change; the solid and dashed lines indicate the 
direct and indirect interactions, respectively, on the pathways. The network with the highest network score of 68 
was associated with neurological disease, lipid metabolism, and small molecule biochemistry. (B,C,D) PSMD11, 
ALDH2, and TPI1 expression was confirmed by qRT-PCR using GAPDH as an internal control. The data are 
presented as mean ±​ SEM from three independent experiments. (E) PSMD11 protein expression was confirmed 
by Western blot with β​-actin as an internal control.
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focused on several proteins that showed significant expression changes, designating them as potential NSC senes-
cence markers. Interestingly, PSMA1, which is a core alpha subunit of the 20 S proteasome25,26, showed a decreased 
expression level with aging. The specific inhibition of the 20 S proteasome led to accelerated cell senescence27–30,  
hence, PSMA1 could be used as a novel senescence-associated marker of NSCs. Another molecule, PSMD11 also 
decreased with NSC aging. As is known, embryonic stem cells can replicate continuously in the absence of senes-
cence, which can be explained by the increased levels of PSMD1131.

Ingenuity Pathway Analysis was used to investigate the potential changes in the molecular functions and 
group proteins into several highly possible networks. Through IPA, our quantitative proteomic results revealed 
changes in some proteins that play critical roles in protein homeostasis. Several proteins, including PSMA1, 
PSMA3, PSMC2, PSMD11, UCHL1 in the network 1 showing significant downregulation have been reported to 
be directly correlated to ubiquitin-proteasome system. Also, protein ubiquitination pathway is one of the top five 
enriched canonical pathways according to our bioinformatics analysis on the differentially expressed proteins 
as predicted by the DAVID Bioinformatics Resource. The ubiquitin-proteasome system is the primary source of 
intracellular protein degradation, involved in more than 80% protein degradation in the cell.

Proteome homeostasis plays a critical role in the health of the cell32, and its loss is a major hallmark of aging1. 
With age, misfolded, or damaged proteins have detrimental consequences on protein homeostasis, leading to 
the development of several age-related pathologies33,34. In the present study, UCHL1 was found to be downregu-
lated with age. It is a core protein in the ubiquitin/proteasome pathway, which is responsible for the degradation 
of intracellular proteins and distinctly misfolded and damaged proteins. It is well-known that the hallmark of 
the Parkinson’s disease is the widespread occurrence of α​-synuclein-positive Lewy bodies and dystrophic Lewy 
neurites throughout the brain. The inhibition of UCHL1 is associated with the production of α​-Syn aggregates, 
which can lead to PD35.

Through IPA analysis, we found 24 proteins involved in the neurological disease, lipid metabolism, and small 
molecule biochemistry that were grouped as the top network (Fig. 6). Among them, several proteins were asso-
ciated with neurodegenerative diseases, and all these were found to be downregulated with age. DPYSL2 plays a 
role in neuronal development, neural differentiation, neurotransmitter release and polarity, as well as in axonal 
growth and guidance, neuronal growth cone collapse, and cell migration. This gene has been further implicated 
in multiple neurological disorders, and hyperphosphorylation of the encoded protein may play a vital role in the 
development of AD as the protein level was decreased in AD patients.

Triosephosphate isomerase 1 (TPI1) is a glycolytic enzyme, essential in the glycolytic pathway. It can cause an 
accumulation of methylglyoxal and subsequent increase in the generation of advanced glycation end products 
(AGEs), and its activities were found to be significantly reduced in AD patients.

Aldehyde dehydrogenase (ALDH) is the second enzyme of the major oxidative pathway of alcohol metab-
olism. It metabolizes acetaldehyde into acetate and protects against oxidative stress. Several pieces of evidence 
suggest that ALDH plays a significant role in the development of AD36,37, and its protein expression and activity 
are substantially decreased in the substantia nigra of patients with PD.

In summary, we found that the pool size and the colony formation capacity of NSCs decreased and cell senes-
cence increased from 7 d, 1 m to 12 m, and the cellular senescence triggers senescence-associated inflammatory 
cytokine secretion. Next, we utilized quantitative proteomic analysis to estimate the regulation of 1170 distinct 
proteins derived from NSCs in the SVZ of 7 d, 1 m, and 12 m-old mice. With a 1.5-fold cutoff, 47 distinct pro-
teins were significantly altered. Our proteomic data revealed that protein ubiquitination pathway lost its normal 
function during the NSC aging process. PSMD11 was preliminarily validated by Western blot in our study and 
emerged a promising marker of aging in NSCs. Several proteins were associated with neurodegenerative diseases, 
DPYSL2 and TPI1 were related to AD, UCHL1 was linked to PD, whereas ALDH was related to AD and PD. 
Our data show that impaired proteostasis is one of the important hallmarks of brain aging, which contributes to 
progressive neurodegenerative diseases. This will provide an insight into the potential pathways and regulatory 
networks involved in NSC aging which will help to identify drug targets for improving human longevity and 
predict neurodegenerative diseases at an early stage.
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