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ABSTRACT (Max 150 words) 

The finding of TDP-43 as a major component of ubiquitinated protein inclusions in 

amyotrophic lateral sclerosis (ALS) has led to the identification of 30 mutations in the 

TARDBP gene, encoding TDP-43. All but one are in exon 6, which encodes the glycine-

rich domain. The aim of this study was to determine the frequency of TARDBP mutations 

in a large cohort of motor neurone disease (MND) patients from Northern England (42 

non-SOD1 FALS, 9 ALS-FTD, 474 SALS, 45 PMA cases). We identified 4 mutations, 2 of 

which were novel, in 2 familial (FALS) and 2 sporadic (SALS) cases, giving a frequency of 

TARDBP mutations in non-SOD1 FALS of 5% and SALS of 0.4%. Analysis of clinical data 

identified patients had typical ALS, with limb or bulbar onset, and showed considerable 

variation in age of onset and rapidity of disease course. However, all cases had an 

absence of clinically overt cognitive dysfunction.  

 

KEYWORDS: MND, ALS, TDP-43, TARDBP, mutation 

 

INTRODUCTION 

Amyotrophic lateral sclerosis (ALS) is one of the most common adult-onset, 

neurodegenerative diseases, characterised by progressive cell death of motor neurones 

(MNs) in the motor cortex, brainstem and spinal cord. Whilst the majority of cases are 

sporadic (SALS), a familial component is present in 5-10% (FALS), and is usually 

associated with an autosomal dominant mode of inheritance. To date, the most common 

cause of FALS is mutation of the SOD1 gene, although this only accounts for 20% of 

FALS cases (1). Although other autosomal dominant loci have been identified (2), so far 

mutations in the two genes senataxin (SETX) and VAMP-associated protein B (VAPB) 

have not been found to be a common cause of ALS in large cohorts (3). In contrast, SOD1 

mutations have been found worldwide both in FALS and in apparent SALS cases (4).  
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Approximately 3 to 10% of patients with ALS also show signs of frontotemporal dementia 

(FTD), whilst detailed neuropsychological evaluation reveals up to 50% of ALS cases have 

evidence of cognitive impairment (5-8). Studies of cases with ALS + dementia + 

Parkinson’s disease have revealed mutations in the MAPT gene, encoding the microtubule 

associated protein tau. In addition, two loci on chromosome 9, 9p12-p21 (9, 10) and 9q21-

q22 (11), have been identified through genetic linkage studies to harbour genes 

responsible for ALS+FTD.  

 

Neuropathological examination of both ALS and FTD cases has shown the presence of 

neuronal cytoplasmic inclusions (NCIs), which stain positive for ubiquitin, but negative for 

tau and -synuclein. Neumann and colleagues demonstrated that a major protein 

component of these inclusions was TAR DNA binding protein (TDP-43) (12). TDP-43, a 

ubiquitously expressed nuclear protein, was originally identified as a protein that binds the 

transactive response (TAR) region of DNA of HIV-1 (13). In addition to acting as both a 

transcriptional repressor and an activator of exon skipping (14), it also reportedly plays a 

role as a scaffold protein for nuclear bodies, through interaction with survival motor neuron 

(SMN) protein (15). A further functional role for TDP-43 in motor neurones may be the 

stabilisation of neurofilament light (NFL) mRNA by direct binding of TDP-43 to the 3’ 

untranslated region (UTR) of NFL (16). 

 

Mackenzie and colleagues, investigating TDP-43 pathology in a cohort of 111 ALS cases, 

demonstrated that TDP-43 pathology was associated with SALS, FALS (without SOD1 

mutation) and ALS + FTD, but not with SOD1-related FALS (17). This was followed by 

several screening studies where mutations and linkage of ALS was not found associated 

with the TARDBP gene, which encodes the TDP-43 protein (18, 19). However, 
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Sreedharan and colleagues identified mutations in exon 6 of TARDBP in two familial and 

two sporadic cases (20). This was supported by further studies identifying mutations in 

exon 6 in both familial and sporadic disease (21-25). The aim of the present study was to 

determine the frequency of TARDBP mutations in our large cohort of MND patients from 

the North of England and to establish the clinical phenotype associated with these 

mutations.  

 

MATERIALS AND METHODS 

The Sheffield MND Blood DNA Bank contains DNA extracted from 37 FALS, 8 ALS-FTD, 

407 SALS and 34 progressive muscular atrophy (PMA) cases. Additional DNA samples 

were isolated from 5 non-SOD1 FALS, 1 ALS-FTD, 67 SALS and 11 PMA cases identified 

in the Sheffield Brain Tissue Bank, providing a cohort of 42 non-SOD1 FALS, 9 ALS-FTD, 

474 SALS and 45 PMA cases. ALS patients had definite or probable ALS as defined by 

the El Escorial criteria. Cases with SOD1 mutations were excluded from the analysis. DNA 

was extracted from blood using the Nucleon BACC Genomic Extraction kit (Tepnel, UK) 

according to the manufacturer’s protocol, whilst DNA was extracted from fresh frozen 

cerebellar samples using the Soft Tissue DNA Extraction Kit (Tepnel, UK). Control DNA 

(n=183) was extracted from blood donated by partners or unrelated carers of MND 

patients. Additional controls were obtained from the Birmingham MND DNA bank (n=316). 

All samples were from UK Caucasians. The South Sheffield Research Ethics Committee 

approved the study and informed consent has been obtained for all cases. 

 

The TARDBP gene comprises of 6 exons of which the first exon is non-coding(24). 

Primers were designed to amplify the 6 exons (Ensembl transcript ID: ENST00000240185) 

as well as the intron/exon boundaries (Table 1). PCR products were treated with ExoSAP-

IT (GE Healthcare) before bi-directional sequencing using BigDye Terminator v3.1 (ABI) 
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according to the manufacturer’s protocol. The resulting reactions were electrophoresed on 

a DNA Analyser 3730 capillary sequencer (ABI). The chromatographs were analysed by 

Sequencher (Gene Codes Corporation, USA) and any potential mutations validated by 

sequencing a second PCR reaction. 

 

To screen for the presence of the exon 6 nucleotide changes in the general population, 

499 neurologically normal age-matched Caucasian controls were bi-directionally 

sequenced as described above. Control DNA samples (n=183) were also bi-directionally 

sequenced to screen for the exon 3 nucleotide change.  

 

To establish the effect of the identified TARDBP mutations, quantitative PCR (QPCR) of 

CDK6 was performed on fibroblasts derived from patients carrying TARDBP mutations. 

RNA was extracted from 3 mutant TARDBP fibroblasts (p.G287S, p.A321V, p.M337V) and 

6 control fibroblast cultures using the RNeasy Mini Kit, according to manufacturer’s 

protocol (Qiagen). Following cDNA synthesis using Superscript II (Invitrogen), QPCR was 

used to determine the expression levels of CDK6 (Assay ID Hs01026372_m1, Applied 

Biosystems) in each of the samples. ACTB (Applied Biosystems) was used as the 

endogenous control. Reactions were run on an MX3000 (Stratagene) and data analysed 

using MX Pro. An unpaired T-test was used to establish if CDK6 expression levels were 

significantly different to controls.  

 

RESULTS 

Mutation screening of the 6 exons of the TARDBP gene, including intron/exon boundaries, 

in 42 FALS, 9 ALS-FTD, 474 SALS and 45 PMA cases identified 4 mutations in exon 6, of 

which 2 were novel. In addition, we identified 2 novel SNPs in the 5’UTR, 3 novel 

synonymous SNPs, 1 previously published synonymous SNP in the coding region and 3 
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intronic substitutions. A further non-synonymous change was found in a patient and a 

control (Table 2). 

 

The 4 TARDBP mutations were found in 2 FALS cases and 2 SALS cases. In the first 

family (FALS1), the index case showed a c.1009A>G substitution leading to p.Met377Val 

(Fig 1a). Screening of family members showed that the sister of the index case, who is 

also affected with ALS, carries the mutation, whilst an unaffected brother was homozygous 

for the wild type allele (Fig 1b). In the second family (FALS2), a c.1043G>T substitution 

was found in the index case, leading to a p.Gly348Val amino acid change (Fig 2a). 

Screening of a brother, who was also affected with the disease, showed he also carried 

the mutation (Fig 2b). The two mutations found in SALS cases were a c.859G>A 

substitution which results in a p.Gly287Ser amino acid alteration (SALS1) and a c.962C>T, 

which leads to a p.Ala321Val substitution (SALS2) (Fig 3). None of these four mutations 

were found in 499 neurologically normal controls.  

 

In addition, in a third SALS case (SALS3) an exon 3 c.269C>T substitution was identified, 

which encodes the amino acid alteration p.Ala90Val. Screening of controls also identified 

this mutation in a male aged 78 years at time of donation. Since it has also been published 

previously in controls, this substitution is likely to represent a non-pathogenic 

polymorphism (18, 20, 21).  Novel synonymous SNPs were identified in 3 SALS cases in 

exon 2 (p.Leu27), exon 3 (p.Ser104) and exon 4 (p.Lys137), along with two SALS cases 

carrying the previously reported p.Ala66 SNP in exon 2 (18, 21, 23, 26-28).  

 

Functional implications of the mutations: 

The five amino acid substitutions were run through several databases to predict the effects 

of the alteration on the structure and function of the protein (Table 3). The two FALS 
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mutations p.M337V and p.G348V and the novel SALS mutation p.A321V are all predicted 

to be pathological according to PMut, and the two FALS mutation are also likely to be 

damaging, according to PolyPhen. In contrast, the G287S substitution found in SALS1 is 

listed as benign by PolyPhen and neutral by PMut, as is the A90V variant, found in both a 

case and control.  

 

In order to establish the functional implications of the TARDBP mutations in-vivo, we 

obtained fibroblast cultures from 3 ALS patients, carrying the p.G287S, p.A321V and 

p.M337V. TDP43 has been shown to repress the expression of cyclin-dependent kinase 6 

(CDK6), via GT repeats in the CDK6 sequence (29). QPCR showed that CDK6 transcript 

levels were increased in the mutant TARDBP fibroblast samples, compared to levels in 

controls (Fig 4), suggesting that the three mutant TDP43 proteins were unable to repress 

CDK6. 

 

Clinical phenotypes: 

These are summarised in Table 4. 

FALS1: (Fig 1) 

The index case (II.1) developed mild dysarthria at the age of 57 years. Subsequently he 

went on to develop a mild distal weakness with loss of dexterity in the left hand and 

painless left foot drop. The signs were of a classical ALS phenotype with mixed upper and 

lower motor signs in the bulbar and limb regions. Disease progression has been slow and 

48 months since the onset of symptoms the individual remains ambulant with assistance, 

manages an oral diet with consistency changes, and is free from respiratory symptoms. 

The ALS functional rating scale (ALSFRS) score at his last visit was 32/40. Forced vital 

capacity (FVC) measurements are unreliable due to his bulbar disease but daytime pCO2 

measurements are normal. 
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A sister (II.2) at 42 years old, developed progressive weakness of the right hand. Within 

three years the individual had similar problems in the left arm and had developed a spastic 

dysarthria and mild dysphagia. Seven years into the illness the lower limbs were affected 

with slow walking only possible over short distances. Nine years after onset of symptoms 

the individual was effectively wheel chair bound and had begun to develop symptoms of 

respiratory insufficiency. Over the next decade the disease slowly progressed and the 

individual died of pneumonia, 17 years after disease onset. 

A brother (II.4) developed ALS at the age of 31 and experienced rapid disease 

progression, dying only 9 months after the onset of symptoms. The daughter of II.4, III.1, 

has a progressive neurodegenerative disorder affecting the pyramidal and cerebellar 

systems. III.1 was born by Ventouse extraction at term after a normal pregnancy and 

initially achieved normal milestones, walking by 11 months. However by the age of 2.5 

years language and intellectual impairment was apparent. Her walking deteriorated over a 

decade until she was largely confined to a wheelchair. In addition, at the age of 12 years 

she developed generalised seizures. The major features on examination were a spastic 

tetraparesis with relatively preserved power, a concomitant convergent strabismus, and 

intellectual impairment. Investigations revealed an atrophic cerebellum on MRI scan, with 

other investigations normal, including nerve conduction studies, electro-myography (EMG), 

lysosomal enzymes, genetic screening of SCA 1-3, SCA 6, SCA7, Frataxin and DRPLA.  

The mother (I.2) of the index case, developed progressive loss of voice and limb 

weakness due to MND at the age of 55 and died of the illness 6 years later. A further 

brother (II.3), who does not carry the p.M337V mutation is healthy at the age of 51, with no 

evidence of ALS.    

 

FALS2:  (Fig 2) 
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The index case (II.1) developed painless left foot drop when 51 years old. Weakness 

progressed to the left leg and right arm before becoming generalised involving respiratory 

muscles. Bulbar function remained relatively intact throughout the disease course. Signs of 

upper motor neurone involvement were subtle and consisted of retained reflexes in the 

context of muscle wasting. Respiratory dysfunction necessitated non-invasive ventilation. 

The individual died from respiratory failure, 36 months from symptom onset. 

The younger brother (II.2) developed progressive weakness of the right upper limb at 57 

years of age. The weakness progressed bilaterally resembling a flail arm phenotype of 

MND, before becoming generalised affecting all limbs and respiratory muscles. Upper 

motor neurone involvement and bulbar dysfunction were again minimal. Thirty-six months 

after symptom onset the individual died from respiratory failure.  

In the preceding generation, the mother (I.2) had died from MND at the age of 65 years. A 

maternal aunt (1.3) and uncle (1.4) were reported to have died from muscular atrophy in 

their 40’s. No further information was available on these cases. 

 

SALS1: This individual presented at the age of 52 years with a 2-year progressive history 

of clumsiness of the left hand and left leg.  At presentation the individual had mixed upper 

and lower signs in the left upper and lower limbs with dysarthria and a weak fasciculating 

tongue. The disease in this individual has run a relatively indolent course and 6 years 

following symptom onset bulbar symptoms remain mild and there is no evidence of 

respiratory insufficiency. Limb weakness has progressed with some help required with 

activities of daily living such as dressing and a wheelchair is necessary for travelling 

outside the home. There is no known family history of neurological disease. 

 

SALS2: This individual developed progressive weakness and loss of dexterity of the left 

hand at the age of 38 years. On examination there were mixed upper and lower motor 
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neurone signs in the left upper limb. EMG demonstrated more widespread denervation 

consistent with a diagnosis of ALS and investigation, including imaging of the neuroaxis, 

has not identified an alternative cause. The individual, two years following the onset of 

symptoms, is experiencing increasing weakness of the left hand and fatigue but no other 

major problems, particularly no dysarthria, dysphagia or leg weakness.  There is no family 

history of neuromuscular disorder. Her mother died at the age of 44 years and father at 62 

years both due to malignancy. Two siblings are healthy at the ages of 37 and 41 years.   

 

It should be noted that the mutations were all found in DNA from the Sheffield MND Blood 

DNA Bank, rather than the Sheffield Brain Tissue Bank. Therefore no neuropathological 

investigation has been possible in these cases. 

 

DISCUSSION 

Screening of a large cohort of MND cases including 42 FALS and 474 SALS has identified 

4 mutations in exon 6 of the TARDBP gene, the p.Gly287Ser and p.Ala321Val in two 

SALS cases and the p.Met337Val and p.Gly348Val in two FALS cases. This suggests a 

frequency for TARDBP mutations in Northern England of 5% for FALS and 0.4% for SALS. 

Three novel synonymous substitutions were also identified in cases of SALS, p.Leu27, 

p.Ser104 and p.Lys137. An additional non-synonymous substitution p.Ala90Val, which has 

previously been found in controls (20, 21), was also found in a SALS case. Although it is 

predicted to have no effect on protein function, in-vitro studies have shown mis-localisation 

of this protein (30).  

 

Broad clinical ALS phenotypes are associated with TARDBP mutations: 

The clinical phenotype encompasses patients with bulbar, limb and respiratory onset 

disease, and with short and long disease durations. All our patients had clinical features in 
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keeping with ALS and no mutations were found in patients with a pure lower MN clinical 

phenotype (PMA). It is noteworthy that despite TDP-43 protein inclusions being originally 

identified in FTD cases, none of the FALS or SALS cases published to date show any 

evidence of overt dementia.  However, two mutations in TARDBP, p.K263E and 

c.2076G>A in the 3’UTR, have recently been found to be associated with individuals 

diagnosed with FTD (31, 32). Further post-mortem studies in cases with TARDBP 

mutations may elucidate differential pathologies in these cases compared to the range of 

TDP-proteinopathies that show TDP-43 inclusions.  

 

The familial p.Met337Val mutation has been identified in three other families with MND 

(20, 23, 28). In FALS1 (Met337Val) a marked intrafamilial variation in disease duration was 

observed, ranging from 9 months to 17 years. The average disease duration was 6.9 years 

compared to 5.5 years in the published detailed pedigree. Age at onset of symptoms is 

consistent with that previously published as is the classical ALS/MND phenotype 

observed. It is unclear whether the atypical phenotype manifesting in individual III.1 from 

this family is as a result of expression of TDP-43 mutation, as genetic testing has not been 

possible. 

 

The familial p.Gly348Val mutation is a novel substitution, though p.Gly348Cys has been 

reported in four SALS cases from France, two cases in a family from Germany and in a 

large multigenerational family from Belgium (21, 22, 26, 27). In FALS2 the phenotype 

observed was predominantly lower motor neurone, with only subtle upper motor neurone 

changes consisting of retained reflexes in the context of wasting. In individual II.2 the 

disease initially resembled the flail arm variant. Bulbar function also remained intact in 

these individuals. In a previously reported mutation affecting this amino acid it was also 

commented that there was a lack of bulbar symptoms (22). A paucity of upper motor 
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neurone signs has been described with other mutations (21). The age at onset and 

duration were comparable with other published pedigrees.  

 

The p.Gly287Ser mutation has been described previously in 2 SALS cases, one from 

France, the other from Italy (21, 28). In our SALS1 case, the age of onset was 52 years, 

beginning in the limb. Whilst the Italian case also had spinal onset, at the age of 70 years, 

the French case presented with bulbar onset at 65 years. In all three cases disease course 

has been relatively indolent with the affected individuals still living 5-7 years after symptom 

onset.  

 

Therefore, taking into account all the published reports of ALS cases with TARDBP 

mutations, there does not appear to be any correlation between the age of onset, site of 

onset and disease duration of the patients with specific TARDBP mutations, taken either 

individually or as a group.  This is a similar scenario to that observed in SOD1-related 

MND, where there is both inter and intra-familial variation with the same mutation. Also in 

line with SOD1, mutations in TARDBP are found in both familial and sporadic forms of the 

disease, with frequencies of TARDBP mutations from 0.6 to 6.5% for FALS and 0 to 5% 

for SALS, depending on the population sampled (20-26, 28, 33). This compares with 

SOD1 mutation frequencies of 12-24% for FALS and 0-7% for SALS (4).  

 

Functional effects: 

All but one of the mutations identified to date reside in exon 6 of the TARDBP gene, which 

encodes for the end of the second RNA recognition motif (up to amino acid 262) and the 

entire glycine-rich domain of the TDP-43 protein (aa 274-413) (Swiss-Prot Q13148 

TARDBP_HUMAN). This C-terminal region of the protein shows high levels of 

conservation (Fig 5) and the 4 mutations all affect highly conserved amino acid residues, 
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which show conservation in mammals as well as chicken and zebrafish.  The glycine-rich 

domain is involved in regulating alternative splicing, as demonstrated with cystic fibrosis 

transmembrane conductance regulator (CFTR) and apolipoprotein A-II (APOA2). This 

domain has also been shown to bind several hnRNP proteins involved in mRNA synthesis 

(14, 34, 35). The C-terminal of TDP-43 has also been implicated as a transcriptional 

repressor. Thus mutations in this region could have several deleterious effects on the 

function of the protein. Sreedharan has demonstrated that expression of the mutant 

p.M337V TDP-43 in the chick embryo results in the failure of normal limb and tail bud 

development (20). In addition, both Kabashi and Rutherford show increased aggregation 

of detergent insoluble mutant TDP-43 (21, 23). 

 

Our bioinformatic analyses suggest that the two FALS and the novel SALS mutation are 

predicted to alter the function of the protein, whilst the p.Gly287Ser mutation, which has 

been found in an additional SALS case, is not predicted to have a major effect on the 

protein. However, QPCR of CDK6, which is repressed by TDP-43, shows an increase in 

expression in fibroblasts carrying the mutant proteins p.G287S, p.A321V and p.M337V. 

Therefore, we propose that these 3 mutants are unable to repress CDK6 as efficiently as 

the control fibroblasts.   

 

In conclusion, mutations in TARDBP are found at a frequency of 5% for non-SOD1 FALS 

and 0.4% for SALS in a large cohort of MND cases from Northern England. As found 

previously, these mutations reside in exon 6 of the gene, potentially interfering with the 

function of the glycine rich domain. Analysis of clinical data suggests variability in the 

disease phenotype, though it is of note that the MND cases show no overt dementia 

symptoms.  
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FIGURE LEGENDS 

 

Fig 1 a) Chromatograph showing the c.1009A>G nucleotide substitution identified in 

FALS1 and other affected members of the family. b) Pedigree of FALS1 family. The index 

case is indicated by a *. WT = wild type, homozygous for M337 

 

Fig 2 a) Chromatograph showing the c.1043G>T nucleotide substitution identified in 

FALS2 and the other affected family member. b) Pedigree of FALS2 family. The index 

case is indicated by a * 

 

Fig 3 Chromatograph showing the a) c.859G>A nucleotide change in SALS1 and b) 

c.962C>T in SALS2 

 

Fig 4 Expression levels of CDK6, relative to ACTB, in mutant TARDBP and control 

fibroblast cultures. * p=0.015. 

 

Fig 5 Alignment of the TDP-43 protein sequence encoded by exon 6 in human. Protein 

sequences used in the alignment are Human (Q13148), Chimpanzee (Pan 

troglodytes:XP_001135199), Orangutan ( Pongo abelii:Q5R5W2), Mouse (Mus 

musculus:Q921F2), Chicken (Gallus gallus:Q5ZLN5), Xenopus (X.tropicalis:Q28F51) and 

zebrafish (Danio rerio: Q802C7). Location of the mutations identified in Sheffield MND 

cases are highlighted in green (p.G287S, p.A321V, p.M377V, p.G348V). The locations of 

the other published mutations in exon 6 are highlighted in blue (p.G290A, p.N267S, 

p.G294A/V, p.G295S/R, p.G298S, p.M311V, p.A315T, p.Q331K, p.S332N, p.G335D, 

p.Q343R, p.N345K, p.N352S, p.R361S, p.P363A, p.Y374X, p.S379P/C, p.A383T/P, 

p.I383V, p.N390S/D and p.S393L) p.G348C has also been reported. 
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Table 1: PCR primers used to amplify the TARDBP gene. Primer sequences, annealing 

temperature and size of product are given. All PCR reactions were carried out using the 

following programme: Initial denaturation of 95oC for 5 mins, followed by 35 cycles of 95oC 

for 30 secs, specific annealing temperature for 30 secs, and 72 oC for 45 secs, followed by 

a final elongation step of 72 oC for 10 mins to complete the programme. 

 
Primer  Sequence Annealing 

Temperature 
Product  
Size 

TARDBP.1F 
TARDBP.1R 

ggc agc ccg agt ccc tgg gga gag g 
ctc ggg ccg ccc caa tgc aga aag 

61oC 277bp 

TARDBP.2F 
TARDBP.2R 

tgg ttt ggg tat tat cat t 
cca cca aaa gag gct aag a 

49 oC 411bp 

TARDBP.3F 
TARDBP.3R 

tag atg tag gag gta gtg ttt tta 
ata cca ataaat aaa tgc ta 

50 oC 330bp 

TARDBP.4F 
TARDBP.4R 

taa gtt taa gcc act gca tcc ag 
ggc caa aga ctt caa caa gac aa 

54 oC 400bp 

TARDBP.5F 
TARDBP.5R 

aag gcg aat gat ttt gtt 
aaa gtg ctg gga ttg taa g 

51 oC 332bp 

TARDBP.6F 
TARDBP.6R 

tat atg aat cag tgg ttt aat ctt 
caa tat act tac cat gag ttt aga 

50 oC 656bp 
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Table 2: TARDBP nucleotide substitutions identified in FALS and SALS cases. All 
mutations reported according to the Human Genome Variation Society guidelines. 
Numbering is taken from the Ensembl transcript ID ENST00000240185. * The ATG 
resides in exon 2, therefore the first nucleotide of exon 2 is called c.-12. 
 
SAMPLE 
 

EXON DNA PROTEIN  COMMENTS 

SALS1 
 

6 
 

c.859G>A p.Gly287Ser 
 

Previously seen in SALS 
(21, 28) 

SALS2 
 

6 c.962C>T p.Ala321Val Novel mutation 

FALS1 
 

6 c.1009A>G p.Met337Val Previously seen in FALS 
(20, 23, 28) 

FALS2 
 

6 c.1043G>T p.Gly348Val Novel mutation 
(p.Gly348Cys previously 
reported) (21, 22, 26, 27) 

SALS3 and 
CONTROL1 

3 c.269C>T p.Ala90Val Previously reported in 
control samples (18, 20, 
21) 

SALS4 1 c.-69C>T 5’UTR Novel polymorphism 
 

SALS5 1 c.-66G>T 5’UTR Novel polymorphism 
 

SALS6 
 

Intron 1 c.-12-54G>A*  Novel polymorphism 

FALS3 
 

2 c.81G>A p.Leu27 Novel polymorphism, 
synonymous change 

SALS7 and 
SALS8 

2 c.198T>C p.Ala66 rs61730366, synonymous 
change (18, 21, 23, 26, 27) 

SALS9 
 

3 c.312C>T p.Ser104 Novel polymorphism 
synonymous change 

SALS10 
 

4 c.411A>G p.Lys137 Novel polymorphism, 
synonymous change 

SALS11 Intron 3 
 

c.403-80G>A  Novel polymorphism 

SALS12 Intron 4 
 

c.543+112C>A  Novel polymorphism 
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Table 3: Summary of bioinformatic analyses to determine the functional effects of the non-
synonymous changes identified in our samples. G348C is also included for comparison.  
 
Mutation 
 

I-Mutant NetPhos PolyPhen PMut 

A90V 
 

Decreased 
stability 

No change Benign 
substitution 

Neutral 
 

G287S 
 

Increased 
stability 

Serine not 
phosphorylated 

Benign 
substitution 

Neutral 

A321V 
 

Decreased 
stability 

No change Benign Pathological 

M337V 
 

Decreased 
stability 

No change Possibly 
damaging 

Pathological 
 

G348V 
 

Increased 
stability 

No change Probably 
damaging 

Pathological 

G348C 
 

Increased 
stability 

No change Probably 
damaging 

Pathological 
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Table 4: Summary of clinical details for the TARDBP-related ALS cases. n/a = not 
applicable, * = index case, a = individual alive at time of writing. WT = wild type, 
homozygous for M337 
 
 MND 

Status 
Mutation Age of 

Onset 
Site of Onset Duration Dementia 

FALS1       
I:2 Affected Not tested 55 Cervical/Bulbar 6 yrs  
II:1* Affected M337V 57 Bulbar >4 yrsa No 
II:2 Affected M337V 42 Cervical 17 yrs No 
II:3 Unaffected WT n/a n/a n/a n/a 
II:4 Affected Not tested 32 Cervical 9 mths  
III:1 Unclear Not tested 2.5 n/a >15 yrsa Intellectual 

impairment 
       
FALS2       
I:2 Affected Not tested Unknown Unknown Died at 

65yrs 
Unknown 

II:1* Affected G348V 57 Lumbar 3 yrs No 
II:2 Affected G348V 52 Cervical 1yr 9 mths No 
       
SALS1 Affected Gly287Ser 52 Cervical/Lumbar >6 yrsa No 
SALS2 Affected Ala321Val 38 Cervical >2 yrsa No 
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Fig 1 
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Fig 2 
 
a)                                                                    
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Fig 3 
 
a)                                                                      b) 
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Fig 4  
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Fig 5 
 
 

Human              IAQSLCGEDLIIKGISVHISNAEPKHN-SNRQLERSGRFGGNPGGFGNQGGFGNSRGGGA 

Chimpanzee         IAQSLCGEDLIIKGISVHISNAEPKHN-SNRQLERSGRFGGNPGGFGNQGGFGNSRGGGA 

Orangutan          IAQSLCGEDLIIKGISVHISNAEPKHN-SNRQLERSGRFGGNPGGFGNQGGFGNSRGGGA 

Mouse              VAQSLCGEDLIIKGISVHISNAEPKHN-SNRQLERSGRFGGNPGGFGNQGGFGNSRGGGA 

G.gallus           VAQSLCGEDLIIKGISVHISNAEPKHN-SNRQLERGGRFGGNPGGFGNQGGFGNSRGGGG 

X.tropicalis       VAQSLCGEDLIIKGVSVHVSTAEPKHN-NNRQLERGGRFPGP--SFGNQG-YPNSRPSSG 

D.renio            VAAALCGEDLIIKGVSVHISNAEPKHNNTRQMMERAGRFGNGFGGQGFAGSRSNMGGGGG 

                    

 

 

Human              GLGNNQGSNMGGG--MNFGAFSINPAMMAAAQAALQSSWGMMGMLASQQNQSGPSGNNQN 

Chimpanzee         GLGNNQGSNMGGG--MNFGAFSINPAMMAAAQAALQSSWGMMGMLASQQNQSGPSGNNQN 

Orangutan          GLGNNQGSNMGGG--MNFGAFSINPAMMAAAQAALQSSWGMMGMLASQQNQSGPSGNNQN 

Mouse              GLGNNQGGNMGGG--MNFGAFSINPAMMAAAQAALQSSWGMMGMLASQQNQSGPSGNNQS 

G.gallus           GLGNNQGSNMGGG--MNFGAFSINPAMMAAAQAALQSSWGMMGMLASQQNQSGPSGNNQP 

X.tropicalis       ALGNNQGGNMGGGGGMNFGAFSINPAMMAAAQAALQSSWGMMGMLASQQNQSGPQGSNQG 

D.renio            GSSSSLG---------NFGNFNLNPAMMAAAQAALQSSWGMMGMLA-QQNQSGTSGTSTS 

                    

 

Human              QGNMQREPNQAFGSGNNSYSGSNSGAAIGWGSASNAGSG-SGFNGGFGSSMDSKSSGWGM 

Chimpanzee         QGNMQREPNQAFGSGNNSYSGSNSGAAIGWGSASNAGSG-SGFNGGFGSSMDSKSSGWGM 

Orangutan          QGNMQREPNQAFGSGNNSYSGSNSGAAIGWGSASNAGSG-SGFNGGFGSSMDSKSSGWGM 

Mouse              QGSMQREPNQAFGSGNNSYSGSNSGAPLGWGSASNAGSG-SGFNGGFGSSMDSKSSGWGM 

G.gallus           QGNMQREQNQGFSSGNNSYGGSNSGAAIGWGSASNAGSS-SGFNGGFGSSMDSKSSGWGM 

X.tropicalis       QGNQQRDQPQSFGSNNSYGSNSG---AIGWGSP-NAGSG-SGFNGGFSSSMESKSSGWGM 

D.renio            GTSSSRDQAQTYSSANSNYGSSS--AALGWGTGSNSGAASAGFNSSFGSSMESKSSGWGM 
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