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Abstract
Many conventional high explosives do not contain sufficient internal oxygen to fully combust the gaseous products 

which result from detonation of the explosive material. Because of this, under-oxygenated explosives continue 

to burn after detonation. This process, called afterburn, is known to influence the late-time pressure and energy 

released by the explosive, which has particular significance for confined explosives. Recent experimental work 

at the University of Sheffield, along with a small number of previous studies, has shown that some afterburn 

occurs at timescales commensurate with the development of the shock wave. This article presents the results 

from a series of tests measuring the reflected pressure acting on a rigid target following the detonation of small 

explosive charges. High-speed video is used to capture the emerging structure of the detonation products and 

air shock, while the spatial and temporal distributions of the reflected pressure are recorded using an array of 17 

Hopkinson pressure bars set flush with an effectively rigid target. Tests are conducted in inert atmospheres and 

oxygen-rich atmospheres in order to assess the contribution of rapid afterburn on the development of the shock 

front and interaction with a rigid target situated close to the explosive charge. The results show that early-stage 

afterburn has a significant influence on the reflected shock parameters in the near-field.
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Introduction

While the mechanisms of load transfer from high explosive (HE) blast to targets in the far-field and 

the magnitudes of the resulting loading are well understood, near-field HE blast has received far 

less attention. As a result, we are still somewhat in the dark over how the loading is generated and 
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what the load parameters are at scaled distances Z <<1m/kg1/3. The level of uncertainty is high-

lighted by recent work by Shin et al. (2015), where predictions of the peak reflected pressure from 

numerical modelling and the well-established semi-empirical model of Kingery and Bulmash 

(1984) which compare very well for Z > 1 m/kg1/3 differ by >400% at Z = 0.1 m/kg1/3 (Figure 1).

The uncertainty over which modelling approaches are correct is due to a lack of definitive 

experimental data, which itself is due, in part, to the difficulty in developing accurate and robust 

experimental approaches to measuring loading with magnitudes in the tens, hundreds or thousands 

of megapascals, and with transients occurring at microsecond timescales. Experimental work on 

this problem can be traced back to the First World War, with the development by Bertram Hopkinson 

of the pressure bar that was to bear his name. Rather than the better-known use of the Hopkinson 

pressure bar (HPB) for dynamic characterisation of the mechanical properties of the materials, 

Hopkinson originally developed the HPB to study the loading from the impacts of bullets and small 

contact detonations on the loaded end of the bar (Hopkinson, 1914).

The modern version of the HPB, instrumented with perimeter-mounted strain gauges, is, in 

many respects, an excellent item of experimental equipment for measuring near-field blast loading. 

It is robust (able to record several hundred megapascals and survive aggressive loading environ-

ments), relatively sensitive (with care, it can differentiate pressure changes of ~100 kPa) and while 

it is well known that signals disperse as they travel from the loading face to the strain gauge record-

ing station, the HPB still has a usable bandwidth in the range high tens to low hundreds kilohertz 

(Tyas and Ozdemir, 2014). It is therefore a little surprising that more use has not been made of the 

HPB to investigate near-field blast loading. Lee et al. (1995) used the HPB to study loading from 

near-field underwater detonations, while Esparza (1986, 1990) and Edwards et al. (1992) had ear-

lier used HPBs to measure blast loading in free-air at scaled distances Z < 0.1 m/kg1/3.

The current authors have developed an experimental facility similar to that of Esparza (Rigby 

et al., 2015b), but with the inclusion of high-speed video (HSV) to synchronise loading features 

Figure 1. Predictions of near-field peak normally reflected pressure (after Shin et al. (2015)).



454 International Journal of Protective Structures 7(3)

picked up by the HPBs with physical features of the expanding detonation product cloud (DPC). 

This has been used to successfully record loading from small spherical Pentaerythritol tetrani-

trate (PETN) charges in the range Z = 0.16–0.76 m/kg1/3 (Tyas et al., 2015). This facility is termed 

the ‘characterisation of blast loading (CoBL)’ apparatus and the details are given in the follow-

ing section.

While the foregoing work sheds some light on near-field blast loading issues, there is still much 

relatively unexplored on the experimental front. One important feature is the role of ‘afterburn’ in 

the development of near-field blast loading. It is well-known that many HE materials are fuel-rich, 

that is, the HE does not contain sufficient oxygen to fully oxidise the ‘fuel’ elements (mainly 

hydrogen and carbon) during the detonation process. The resulting DPC therefore typically con-

tains some fraction of partially oxidised fuel which, on mixing with atmospheric oxygen at high 

temperature, results in energy release from a secondary reaction, or afterburn. Afterburn can release 

significant quantities of energy over and above that liberated by the initial detonation, and it is well 

established that this can contribute significantly to long-term ‘quasi-static pressure’ loading in 

confined explosions. It is generally considered, however, that afterburn is a relatively late-time 

phenomenon and does not significantly affect early-stage shock development and loading.

Neuwald et al. (1999) conducted experimental testing of sub-gram-sized charges of PETN in a 

small calorimeter which was filled with either air or nitrogen. They used a conventional piezoresis-

tive pressure gauge to record the reflected pressure in the face of the calorimeter, at scaled dis-

tances of Z ~ 1.5 m/kg1/3. They found significant reductions in the initial reflected shock loading in 

the inert atmosphere, with example results shown here in Figure 2.

Balakrishnan et al. (2010) conducted numerical modelling of the contribution of early-stage 

afterburn to the near-field blast characteristics of shock from the detonation of TNT. They noted the 

Figure 2. Experimentally recorded normally reflected shock loading of PETN spherical charges detonated 
in air and nitrogen.
Source: Neuwald et al. (1999).
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importance of modelling Rayleigh–Taylor (Rayleigh, 1882; Taylor, 1950) and Richtmyer–Meshkov 

(Meshkov, 1969; Richtmyer, 1960) instabilities at the interface between the expanding DPC and the 

shocked surrounding air, since the instabilities encouraged turbulent mixing of the DPC and external 

oxygen and thus promoted afterburn. At Z ~ 0.8 m/kg1/3, they reported an increase in incident specific 

impulse of ~60% in their three-dimensional (3D) models which included this turbulent mixing, 

compared to one-dimensional (1D) models with no mixing at the cloud–air interface. They also 

noted the effect of the second shock reaching the surface of the expanding DPC in accentuating 

instabilities, mixing and afterburn.

This raises the issue of whether the mixing of the partially combusted DPC with the surrounding 

shocked air should be even more pronounced on reflection of the shock from a target surface back 

into the DPC in the near-field. There are two reasons to assume that this will be the case. First, the 

intensity of the reflected shock wave should act as a major driver of turbulent mixing. Second, the 

shocked air between the DPC and the target is very dense, and hence has a high spatial concentra-

tion of oxygen.

This article presents initial findings from a larger programme of experimental work conducted 

at the University of Sheffield to investigate this issue.

CoBL apparatus

The experimental methodology used in this work has been reported in detail in Rigby et al. (2015b) 

and Tyas et al. (2015), but brief details are presented here for the reader’s convenience. The CoBL test-

ing apparatus comprises a massive and stiff reaction frame, consisting of two steel fibre-and-bar-rein-

forced concrete portal frames spaced 1 m apart, each frame constructed from two 500mm square 

cross-section columns with a 750-mm-deep, 500-mm-wide concrete beam spanning between the two 

columns. A 50-mm-thick steel ‘acceptor’ plate was cast into the underside of each of the beams to 

allow a 1400-mm diameter, 100-mm-thick mild steel target plate to span underneath. The entire reac-

tion frame has a mass of around 11 tonnes. The 10-mm diameter, 3.25-m-long EN24(T) steel HPBs 

were inserted through tight tolerance holes at 25 mm centres on two axes centred on the centre of the 

target plate. The HPBs were suspended from a receiver frame placed atop the main reaction frame such 

that their ends sat flush with the target face. An array of 21 HPBs was used in this study; one set at the 

centre of the plate and four set equidistant around circumferences at 25, 50, 75 and 100 mm radial 

offset from the plate centre. A schematic diagram of the CoBL apparatus can be seen in Figure 3.

The explosive charge was suspended directly under the centre of the target plate on a ‘drumskin’ 

comprising a glass-fibre weave fabric (density 25 g/m2) held taut in a steel ring, suspended, in early 

tests, from the target plate on adjustable screws to allow fine adjustment of the stand-off. In later 

tests, the drumskin was set on adjustable struts mounted in the base of the test arena.

For tests in a nitrogen atmosphere, an adjustment to the CoBL apparatus was carried out. In the 

revised form, a 1.5-m × 1.5 m × 1.5 m steel box was hung from the target plate with the HPBs passed 

through holes in the roof of the box which became the reflecting surface. The box could be purged 

of oxygen by slowly trickling nitrogen gas into it. The O2 content was recorded by tapping off air 

from the box and passing it through an oxygen sensor. It should be noted that in these initial tests 

the O2 was not completely purged due to lack of perfect sealing; there was typically ~1%–3% O2 

present in the sampled atmosphere immediately prior to detonation. Video footage was obtained 

using a FASTCAM SA-Z high-speed digital video camera, operating at 160,000 frames per second 

(fps), with resolution of 384 × 216 pixels. An infra-red filter was used in all the tests and the tests 

were self-illuminated by the flash from the detonation. A sealed polycarbonate window was pre-

sent in the inert atmosphere box to facilitate the video footage in those tests.
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All detonations were initiated by a DynoNobel Non-electrical EX detonator, with an NEQ of 

0.8 g TNTeq. The detonator was placed with its tip at the centre of the spherical charge in a pre-

formed hole and aligned coaxially with the normal to the target plate, with the detonator emerging 

from the charge on the opposite pole to the target face.

The stress pulses in the HPBs were measured using Kyowa KSP-2-120-E4 semi-conductor 

strain gauges, linked in such a way as to eliminate bending effects in the output strain. The strain 

gauge stations were mounted on the protected side of the target plate, 250 mm from the loaded 

faces of the HPBs and the output from the HPBs was recorded using Tie-Pie HS4 Handyscope 

USB digital oscilloscopes operating at 14-bit resolution and 320 ns sample rate.

Far-field blast tests – set-up and results

Prior to conducting the near-field tests, a series of small-scale open air arena tests were conducted 

to assess the consistency of far-field blast waves from small PETN charges. These tests were all 

conducted using a 0.250-kg hemispherical explosive charge, placed on small steel anvils on top of 

a reinforced concrete ground slab. The normally reflected pressure was recorded at gauge station 

G1 in Figure 4, using a Kyowa KSP piezoresistive pressure gauge mounted at the foot of, and flush 

with, a large reflecting wall surface, comprising a 300-mm-thick reinforced concrete bunker wall, 

faced with solid concrete blocks. The wall was of sufficient dimensions to render edge conditions 

irrelevant in the duration of the blast loading.

Six tests were conducted; two each with the explosive charge at a distance of 2, 4 and 6 m from 

the bunker wall. It is estimated from the results that the TNT equivalence of the PETN is 1.50, 

meaning that these distances correspond to Z = 2.77, 5.55 and 8.32 m/kg1/3, respectively. The results 

from the six tests are given in Figure 5 for pressure versus time and Figure 6 for scaled impulse 

versus time, that is, the temporal integral of the pressure signals divided by the cube-root of the 

TNT equivalent charge mass.

Figure 3. Schematic diagram of CoBL apparatus.
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These figures also include predictions from an in-house MATLAB-based fast-running predic-

tion code, blast.m, which uses the Kingery and Bulmash (1984) data for the positive phase and the 

Figure 5. Normally reflected pressure versus time from free-air arena tests.

Figure 4. Set-up for far-field arena tests of hemispherical PETN charges (after Rigby et al. (2015a)).
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cubic negative phase waveform proposed by Granström (1956) and recently validated by Rigby 

et al. (2014). The blast.m predictions are for 0.375 kg TNT hemispherical bursts (i.e. using a TNT 

equivalence factor of 1.5). The reflected pressure, specific impulse, arrival time and positive phase 

duration of the experimentally measured traces were quite consistent at the two larger scaled dis-

tances and correlated well with the blast.m predictions, until very late into the negative phase. At 

Z = 2.77 m/kg1/3, one experimental trace matched the blast.m prediction very well until close to the 

end of the negative phase, while the other test data generally tracked the same trend, but a with a 

peak reflected specific impulse ~7% lower than that predicted by blast.m and 9% lower than the 

other test at this distance.

Near-field tests: results and discussion

A total of eight near-field tests were conducted as shown in Table 1. All tests were conducted with 

the temperature in the range 6°C–13°C and atmospheric pressure in the range 1000–1010 mb. The 

scaled distance of 0.760 m/kg1/3 was chosen as this is the range at which the shock begins to 

detach from the expanding DPC. Hence, at this scaled distance, the DPC had time to develop 

while still being close enough to the air shock front to be influenced by shock reflection from a 

target surface.

Figure 6. Scaled normally reflected specific impulse versus time from free-air arena tests.

Table 1. Near-field test programme details.

Test no. Charge size (g TNTeq) Atmosphere O2 content Stand-off (mm) Scaled dist. (m/kg1/3)

1 170 Air 20.8% (assumed) 421 0.760

2 170 Air 20.8% (assumed) 421 0.760

3 170 Air 20.8% (assumed) 421 0.760

4 170 Air 20.8% (assumed) 421 0.760

5 170 Air 20.8% (assumed) 421 0.760

6 170 Nitrogen 2.8% (measured) 421 0.760

7 170 Nitrogen 2.1% (measured) 421 0.760

8 170 Nitrogen 0.8% (measured) 421 0.760
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Figures 7 and 8 show stills from HSV footage of test 5 (in air) and test 7 (in nitrogen). These 

two tests were conducted on the same day, with identical camera placement, lenses, filters and 

exposure settings. The most obvious feature of these images is the dramatic reduction in incandes-

cence of the DPC as it expands in the oxygen-poor atmosphere. It is clear that in the normal air 

atmosphere, oxidation and energy release is ongoing at the DPC–air interface, greatly adding to the 

luminosity of the DPC surface.

Figure 7. Still images from high-speed video footage of tests in air and nitrogen atmospheres 6.25–125 ms 
after detonation.
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However, stronger afterburn in air appears to have little effect on the rate of expansion of the 

DPC. Figure 9 shows that there is no measurable difference in the rate of radial expansion of the 

front of the DPC, as measured from HSV footage from these two tests.

Closer examination of images from Figure 8 shows that as the shock front impinges on the tar-

get surface and reflects back into the DPC (from ~175 µs onwards), there is a marked increase in 

luminosity of the DPC close to the target in air, with a still-noticeable but far less significant 

increase in the 2.1% O2 atmosphere. This suggests that the afterburn is being stimulated by the 

turbulence generated by the shock reflection into the DPC.

Examples of data from the HPBs are shown in Figure 10, which shows, for tests 5 and 7, the 

central HPB and the averages of the four bars at each of the 25-mm-increment circumferences. As 

Figure 8. Still images from high-speed video footage of tests in air and nitrogen atmospheres 150–250 ms 
after detonation.
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with the data in Figure 9, it is clear that the loading generally arrives at each radial offset at approxi-

mately the same time in both air and nitrogen. The exceptions to this are the results at 75 and 

100 mm offset in test 7, conducted in nitrogen, where there were strong pre-cursor loading pulses in 

bars at 75 and 100 mm, both on the same Cartesian axis (co-axial with the view of the HSV). The 

pre-cursor loads on the 75 and 100 mm offset bars occurred approximately 30 and 15 µs, respec-

tively, before the loading on the other bars at the same offsets. It is believed that these pre-cursors 

are due to the ‘jet’ of detonation products seen emerging from the main DPC and striking the target 

plate at 100–150 µs in Figure 7 and Figure 8. The nature of the jet itself is at present unclear. These 

jets are features regularly seen on HSV footage of these trials (e.g. just above the right horizontal in 

at 50–75 µs in the test 5 footage in Figure 7), although generally the jets do not strike the instru-

mented area of the target plate. It is possible that they are due to the inert fragments of detonator 

casing, with the detonator being relatively large compared to the charge in these tests. However, and 

interestingly, multiple similar features are present on an early-stage image from the 1985 Minor 

Scale detonation (Figure 11), in which the length scale of the charge was about 300 times greater 

than this work, but presumably the detonator was of a similar scale. Alternatively, the jets may be 

due to partially reacted material spalled from the surface of the charge by the impingement of the 

detonation wave, or possibly formed in a mechanism similar to shaped charge jets by the collapse of 

local irregularities due to Rayleigh–Taylor and Richtmyer–Meshkov instabilities on the surface of 

the expanding DPC.

Setting aside the issue of the jet and its associated effect on the loading, the traces on Figure 10 

generally show the loading in the nitrogen atmosphere falling below that on the air atmosphere in 

the early stages of the decay following shock arrival. This appears to support the hypothesis that 

turbulent mixing due to shock reflection into the DPC is enhancing afterburn and adding to the 

loading in air.

Figure 9. Expansion of detonation product cloud versus time – air and nitrogen atmospheres.
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Finally, Figure 12 shows the integrated impulses from all tests conducted in this series, generated 

by temporally integrating the pressure–time traces up to 350 µs after detonation (by which time the 

loading pulse had ended) and then spatially integrating over the annular areas between each bar 

radial offset. In Figure 12, the data for test 7 refer to the impulses calculated by including the pre-

cursor loading pulses, while 7* refers to an estimate of the impulse with the pre-cursor loading 

removed, to give a better like-for-like comparison. The results are summarised in Table 2. There is 

a consistent reduction of loading in the nitrogen tests, with the highest value recorded in nitrogen 

(including the pre-cursor loading pulses) being some 6.5% lower than the lowest value in air, and 

the average of the values recorded in nitrogen being 15%–20% lower than the average in air.

Figure 10. Examples of average pressure versus time at 0, 25, 50, 75 and 100 mm radial offset on target 
plate from air and nitrogen tests.
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Figure 11. Detonation product cloud from 1985 Minor Scale detonation (~4500 tonnes TNTeq ANFO 
charge).
Source: http://upload.wikimedia.org/wikipedia/commons/9/9f/Minor_Scale_test_explosion.jpg (accessed 19 July 2016).

Figure 12. Total impulse recorded in air and nitrogen tests.

http://upload.wikimedia.org/wikipedia/commons/9/9f/Minor_Scale_test_explosion.jpg


464 International Journal of Protective Structures 7(3)

Conclusion

Small-scale near-field tests have been conducted, of spherical PETN charges at scaled distance of 

0.76 m/kg1/3 from an instrumented target plate in both air- and oxygen-deficient atmospheres. Data 

from 17 HPBs set in a 100-mm-radius region around the normal between the target plate and the 

charge centre show a clear reduction in load of around 15%–20% in the tests conducted in nitrogen. 

HSV footage shows that the expanding DPC remains luminous for much longer durations in air 

than in nitrogen, indicating that afterburn reactions are ongoing at the cloud–air interface. However, 

if additional energy is being released by this mechanism, it does not appear to influence the rate of 

expansion of the detonation product cloud. It is tentatively hypothesised that the additional loading 

in air is due to a rapid afterburn due to enhanced mixing of the detonation product cloud caused by 

the reflection of the air shock from the target surface.
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