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Active haptic shape recognition by intrinsic motivation with a robot hand

Uriel Martinez-Hernandez1, Manuel A. Lopez2 and Tony J. Prescott1

Abstract— In this paper, we present an intrinsic motivation
approach applied to haptics in robotics for tactile object
exploration and recognition. Here, touch is used as the sensation
process for contact detection, whilst proprioceptive informa-
tion is used for the perception process. First, a probabilistic
method is employed to reduce uncertainty present in tactile
measurements. Second, the object exploration process is actively
controlled by intelligently moving the robot hand towards
interesting locations. The active behaviour performed with the
robotic hand is achieved by an intrinsic motivation approach,
which permitted to improve the accuracy for object recognition
over the results obtained by a fixed sequence of exploration
movements. The proposed method was validated in a simulated
environment with a Monte Carlo method, whilst for the
real environment a three-fingered robotic hand and various
object shapes were employed. The results demonstrate that
our method is robust and suitable for haptic perception in
autonomous robotics.

I. INTRODUCTION

To feel and understand the state the surrounding environ-

ment is crucial for the development of intelligent autonomous

robots. Haptics in robotics, composed by information from

touch and limbs positions, offers a way for interaction

and understanding of the changing environment by directly

feeling, exploring and extracting interesting object properties.

The use of haptics also enables robots with capabilities for

object manipulation and safe interaction.

Haptic object shape recognition is investigated in this work

using touch and proprioceptive information from a three-

fingered robotic hand. Various objects are explored using an

active behaviour performed by the robotic hand controlled

by an intrinsic motivation method. This approach permits to

reduce uncertainty for the recognition process by exploring

interesting locations from an object, similar to the intelligent

exploratory procedures employed by humans [1], [2].

A probabilistic approach based on a Bayesian method is

used for accumulation of evidence and inference during an

exploration process. The high perception accuracy achieved

by this approach has been observed with an object shape

extraction process using a biomimetic fingertip sensor [3],

[4] and simultaneous object localisation and identification

process [5], [6]. The improvement in perception accuracy

with the proposed probabilistic approach is based on the ac-

cumulation of evidence from better locations for perception.
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Fig. 1. Haptic object exploration and recognition by the three-fingered
robotic hand. Active behaviour is used for object exploration, which is
controlled by an intrinsic motivation approach.

The active exploration behaviour is obtained with a pro-

posed intrinsic motivation method that intelligently moves

the robotic hand towards interesting object locations. Studies

from psychologists show that Intrinsic motivation is essential

for cognitive development [7], [8], offering a robust approach

for exploration and manipulation in robotics [9], [10]. Active

exploration, based on intrinsic motivation, also corresponds

to investigations on tactile sensing which have shown that

sensing is an active rather than a passive process [11], [12].

Previous works have investigated on haptic object recog-

nition using touch and proprioception with a traditional

Self-Organising Map (SOM) approach [13] and a mixture

of multiple SOMs for combination of information [14]. A

comparison of different methods for haptic object recognition

using proprioceptive information from a robotic hand e.g.

Principal Component Analysis (PCA), SOM and Image

moments, was undertaken to observed their performances

in perception accuracy [15]. Even though these methods

were able to perform object recognition, they are based on

passive exploration using only one or a fixed sequence of

tactile contacts, without exploiting the possibility to direct

the robotic exploration to better locations for perception.

A sensorimotor architecture was developed to implement

our methods and control the robot exploration movements for

an object recognition process. Our proposed methods were

validated in simulated and real environments with an object

shape exploration and recognition process. For the simulated

environment we used datasets collected from the exploration

of 6 different test objects. For the real environment, we

used a robotic platform composed by a three-fingered robotic

hand and a positioning robotic table for haptic exploration.

For both environments, the exploration was performed using

passive and active behaviours in order to compare their



performances in speed and accuracy. The results demonstrate

that our method for haptic shape exploration and recognition

is highly accurate, which also provides a suitable and robust

method for haptic exploration in autonomous robotics.

II. METHODS

A. Robotic platform

The robotic platform used in this work is composed of a

three-fingered robotic hand and a positioning robotic table

shown in Figure 2.

The three-fingered robotic hand from Barrett Technology

has 4-DoF; 1-DoF in each finger that permits its opening and

closing, and 1-DoF for spreading the fingers around the palm

of the hand (see Figure 2a). This robotic hand is integrated

with tactile and force sensors. Each finger is composed by

22 taxels (tactile elements), whilst the palm contains 24

taxels of 12 bit resolution each. The strain sensors, for

detection of force, are located in each finger, which permit

to safely stop the finger movement once a force threshold

is exceeded. Also, it is possible to obtain proprioceptive

information (joint angles) from the fingers of robotic hand

in real-time. Touch and proprioceptive provide important

information, employed for robot exploration and perception

with the proposed methods presented in next sections.

The positioning robotic table with 4-DoF permits to

achieve precise movements in x-,y-and-z axes, and rotations

on theta (see Figure 2b). The three-fingered robotic hand is

mounted on the positioning robotic table to allow a larger set

of exploration movements: 1) opening and closing of fingers;

2) spreading the fingers around the palm; 3) rotation of the

wrist (theta); and 4) displacements of the robotic hand. The

configuration of this robotic platform permits the exploration

of a large variety of objects by the synchronisation and

control of the fingers and table movements.

A controller for the robotic platform was developed and

embedded in a microcontroller Arduino. Data collection and

exploration movements performed by the robotic platform

are controlled in real-time by tactile feedback. Synchronisa-

tion of the software and hardware modules that compose the

robotic platform was precisely achieved by the use of the

YARP (Yet Another Robot Platform) middleware developed

for robot control [16].

(a) (b)
Fig. 2. Robotic platform used for data collection and validation of the
proposed haptic object recognition method. (a) Three-fingered robot hand
with 4-DoF from Barrett Technology. (b) Positioning robotic table that
provides mobility to the robotic hand.

B. Data collection

Our work is focused on object shape exploration and

recognition with robotic hands using haptics. For this pur-

pose, we collected information from tactile sensors, position

and orientation of the robotic fingers in real-time mode for

each exploration performed on the set of test objects.

Figure 3 shows the sequence of movements performed by

the robotic hand around two test objects. Each test object was

mounted on an fixed exploration base located at a predefined

position. First, each finger moves independently towards the

unknown object. They stop as soon as a contact is detected by

exceeding a tactile pressure and force thresholds. The fingers

keep in contact with the object for 1 sec, giving enough

time for collecting 50 samples of proprioceptive information

from the complete hand. Second, the fingers are opened to

a predefined home position, and then the wrist is rotated to

collect data from the test object with a new orientation of the

robotic hand. The wrist performs 30 rotations of 12 degrees

step each, covering a total of 360 degrees, thereby exploring

the complete object. Figure 3 shows only four orientations

of the robotic hand during the object exploration due to

space limits. This process was repeated 5 times per object,

obtaining 1 dataset for training and 4 datasets for testing.

The data collected is stored in a 50×5 matrix per contact.

The first three columns contain the positions of contacts

detected by each finger, the fourth column contains the value

of the spread motor, and the fifth column contains the angle

orientation of the hand for each contact detected.

C. Probabilistic estimator

Robotics has made used of Bayesian methods to develop

a variety of applications and estimate an state given the ob-

servations. Here, we use a Bayesian approach to estimate the

most likely object been explored by using haptic information

from a robotic hand.

This probabilistic approach uses the Bayes’ rule with a

sequential analysis method, estimating the posterior proba-

bilities recursively updated from the prior probabilities and

Sequence of exploration movements for data collection

Fig. 3. Sequence of movements performed by the robotic hand around the
test objects for data collection. For each contact, proprioceptive information
from the position and orientation of robotic hand was recorded. A total of
30 contacts were performed for each object and repeated five times, thus
having one dataset for training and four datasets for testing. For visualisation
purposes, here we only show a sequence of four contacts.



likelihoods obtained from a measurement model. Then, the

robotic hand makes a decision once the belief threshold about

the object being explored is exceeded. This method has been

tested for object shape extraction [3], [4] and simultaneous

object localisation and identification [5], [6] using the fin-

gertip sensors from the iCub humanoid robot [17], [18].

Prior: an initial uniform prior probability is assumed for

all the test objects to be explored. The initial prior probability

for an object exploration process is define as follows:

P (cn) = P (cn|z0) =
1

N
(1)

where cn ∈ C is the perceptual class to be estimated, z0 is

the observation at time t = 0 and N is the number of objects

used for the exploration and recognition task.

Measurement model and Likelihood estimation: each

contact performed by the robotic hand during the object

exploration task provides proprioceptive information from

M motors: position and spread of the three fingers, and

orientation of the hand. This information is used to construct

the measurement model with a nonparametric estimation

based on histograms. The histograms are used to evaluate

a contact zt performed by the robotic hand at time t, and

estimating the likelihood of a perceptual class cn ∈ C. The

measurement model is obtained as follows:

P (s|cn,m) =
h(s,m)∑
s
h(s,m)

(2)

where h(s,m) is the number of observed values s in the

histogram for motor m. The observed values are normalised

by
∑

s
h(s,m) to have properly probabilities that sum to 1.

Evaluating Equation (2) over all the motors, we obtained the

likelihood of the contact zt as follows:

logP (zt|cn) =

Mmotors∑

m=1

Ssamples∑

s=1

logP (s|cn,m)

MmotorsSsamples

(3)

where P (zt|cn) is the likelihood of a perceptual class cn
given the measurement zt from M motors at time t.

Bayesian update: the posterior probabilities P (cn|zt) are

updated by the recursive implementation of the Bayes’ rule

over the N perceptual classes cn. The likelihood P (zt|cn) at

time t and the prior P (cn|zt−1) obtained from the posterior

at time t− 1 are combined as follows:

P (cn|zt) =
P (zt|cn)P (cn|zt−1)

P (zt|zt−1)
(4)

Properly normalised values are obtained with the marginal

probabilities conditioned from previous contact as follows:

P (zt|zt−1) =
N∑

n=1

P (zt|cn)P (cn|zt−1) (5)

Stop decision for object recognition: the accumulation

of evidence with the Bayesian update process stops once

a belief threshold is exceeded, making a decision about the

object being explored. The green dashed-line box in Figure 4
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Fig. 4. Flow diagram for intrinsically motivated active object exploration.
Proprioceptive and tactile data are collected from each contact. The robot is
actively moved to interesting locations to improve perception based on the
intrinsic motivations approach. Finally, a decision about the object being
explored is made once the belief threshold is exceeded.

shows the application of the Bayesian estimator and the stop

decision process. The object perceptual class is obtained

using the maximum a posteriori (MAP) estimate as follows:

if any P (cn|zt) > θthreshold then

cdecision = argmax
cn

P (cn|zt)
(6)

where the object estimated at time t is represented by

cdecision. The red dashed-line box in Figure 4 shows the

decision-making step for object recognition. The belief

threshold θthreshold permits to adjust the confidence level for

the decision making process. We defined the belief threshold

to the set of values {0.0, 0.05, . . . , 0.999} to observe their

effects on the accuracy of the object recognition process.

D. Intrinsic motivation for active exploration

A computational method based on intrinsic motivation to

develop an active exploration behaviour is proposed. Intrinsic

motivation, which is primordial to humans for engaging

them to explore and manipulate their environment, has been

studied by psychologists for cognitive development [7], [8].

In this work we use a predictive novelty motivation model,

where interesting locations for exploration are those for

which prediction errors are higher [9]. This approach is

defined as follows:

I(SM(t)) = EI(t− 1) · EI(t) (7)

where the interesting location I for the sensorimotor state

SM is obtained by the prediction error EI(t) at time t

multiplied by the prediction error EI(t− 1) at time t− 1.

We define the prediction error EI(t) as the distance

between the MAP from the Bayesian approach and the belief

threshold value for making a decision:



black triangle red cylinder blue ball

yellow ball blue box white box

Fig. 5. Test objects used for the experiments in both simulated and
real environments. The validation in simulated environment was performed
using real data collected from these objects. For the validation in the real
environment, the objects were placed and explored one at a time on a table.

EI(t) = argmax
cn

P (cn|zt)− θthreshold (8)

The active exploration performed by the robotic hand then

is intelligently controlled by Equation 7, selecting the action

for the highest SM state:

a = argmax
SM

I(SM(t)) (9)

where a is the action selected by the robotic hand. The cyan

dashed-line box in Figure 4 shows the intrinsic motivation

method and the action selection for the next exploration step.

The exploration process presented in this section, composed

by a Bayesian and intrinsic motivation method, is repeated

until the belief threshold for making a decision about the

object being explored is exceeded.

III. RESULTS

In this section we present the results from object explo-

ration and recognition with passive and active modalities in

simulated and real environments. Figure 5 shows the objects

used for validation of the proposed methods.

A. Object exploration in simulated environment

We developed an object exploration and recognition task

in a simulated environment using the data collected from

Section II-B. One dataset was used for training and four

datasets for testing. The objects were randomly drawn from

the testing datasets with 10,000 iterations for each belief

threshold in the set of values {0.0, 0.05, . . . 0.999}.

Passive object exploration: First, the simulated robot

moved the hand and fingers around the object to obtain an

initial belief of the object being explored. Next, the hand

and fingers were randomly moved, accumulating evidence

from each contact and making a decision once the current

belief threshold was exceeded. The perception accuracy and

reaction time were evaluated for each belief threshold.

Figure 6a shows the results in perception accuracy for

the object exploration process with passive perception (red

curve). It is observed that the robotic hand achieved the

minimum perception error of 60% for a belief threshold of

0.75. Similarly, the reaction time which refers to the number
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Fig. 6. Results from passive (red line) and active (green line) object
recognition in simulated environment. The experiment was performed for the
set of belief threshold of {0.0, 0.05, . . . , 0.999} with 10,000 iterations each.
Results show an improvement in perception accuracy with active perception,
whilst reaction time is not highly affected.

of contacts required for making a decision with passive

perception (red curve) is shown in Figure 6b. The number

of contacts increased for large belief thresholds, where a

maximum of ∼2 contacts were required to make a decision

for a belief threshold of ∼0.999. The results for perception

accuracy and reaction time shown in Figure 6a and Figure 6b

were obtained by averaging all perceptual classes over all

trials for each belief threshold.

The confusion matrices (top) shown in Figure 7 permit to

observe the performance of the classification accuracy with

passive perception for each object and for different belief

thresholds. These results show an slightly improvement of

the classification accuracy with 68.28%, 71.77% and 76.18%

for the belief thresholds of 0.0, 0.5 and 0.999. These errors

still can be reduced if the robotic hand intelligently moves

to interesting locations to reduce uncertainty.

Active object exploration: For the object recognition pro-

cess with active perception, the robotic hand performed an

exploration around the object to have an initial belief of

the object being explored, similar to passive perception.

Next, the robotic hand was actively moved, based on the

proposed intrinsic motivation approach, towards interesting

places around the object to improve perception. The active

exploration process was repeated until the belief threshold

was exceeded to make a decision. Similar to passive percep-

tion, the objects to be recognised were randomly drawn from

the testing datasets with 10,000 iterations for each belief

threshold in the set of values {0.0, 0.05, . . . , 0.999}.

The perception accuracy results from active exploration

are represented by the green curve in Figure 6a. It is clearly

observed the improvement in accuracy by actively moving

the robotic hand towards interesting locations for exploration,

achieving an error of 0% for the belief thresholds of 0.65 to

0.999. This result validates our method for active exploration.

The reaction time required for making a decision is shown

in Figure 6b. We observe that the reaction time for active

and passive perception increases for large belief thresholds,

where ∼2 contacts are required to make a decision with a

belief threshold of ∼0.999. The results were averaged over

all trials for each belief threshold.

The classification accuracy for each object is presented

by the confusion matrices (bottom) in Figure 7 for different

belief thresholds. It is observed the gradual improvement
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Fig. 7. Confusion matrices from object recognition with passive (top) and
active (bottom) exploration. The test objects used for the experiment are:
1) black triangle, 2) red cylinder, 3) blue ball, 4) yellow ball, 5) blue box
and 6) white box. Validation results with passive perception (top matrices)
show a small improvement in object recognition for large belief thresholds.
Validation results with active perception (bottom matrices) show higher
perception accuracy over passive perception.

of accuracy, achieving a 95.49%, 96.41% and 100.0% for

the belief thresholds of 0.0, 0.5 and 0.999 respectively. The

accuracy obtained by actively exploring an object is clearly

superior to the passive exploration process.

B. Object exploration in real environment

To validate our methods in a real environment, we imple-

mented the object exploration and recognition task with the

robotic platform described in Section II-A. For this validation

we used the test objects shown in Figure 5.

Passive object exploration: For the passive object explo-

ration and recognition, the test objects were placed on a table

one at a time. The robotic hand performed an exploration

around the object through a fixed set of movements, building

an initial belief of the object being explored. Next, the robotic

hand started the random action selection of exploration

movements, accumulating evidence to reduce uncertainty

from the object being explored. The exploration process was

repeated until the belief threshold was exceeded, making a

decision about the current object.

Perception accuracy results are shown in Figure 9a for

different belief thresholds. We observe that the error achieved

for the object recognition process is improved with 26.66%,

16.66% and 10.0% for the belief threshold of 0.0, 0.5 and

0.999 respectively. The reaction time results required for

making a decision are presented in Figure 9b. This result

shows that for achieving the smallest error of 10% with

passive perception, it was required ∼15 contacts, whilst for

the largest error of 26.66% it was required ∼3 contacts by

the robotic hand. These results still can be improved by the

use of our proposed method for exploration.

The classification accuracy for each object based on pas-

sive perception is presented by the confusion matrices (top)

in Figure 8. The exploration task achieved the perception
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Fig. 8. Confusion matrices from object recognition with passive (top) and
active (bottom) exploration in real environment. The test objects used for
the experiment are: 1) black triangle, 2) red cylinder, 3) blue ball, 4) yellow
ball, 5) blue box and 6) white box. Validation results with passive perception
(top matrices) show a small improvement in the object recognition for large
belief thresholds, achieving an accuracy of 90% for the belief threshold
of 0.999. Active perception (bottom matrices) shows a higher perception
accuracy of 100% for the belief threshold of 0.999.

accuracies of 73.33%, 83.33% and 90.0% for the belief

threshold of 0.0, 0.5 and 0.999 respectively.

Active object exploration: For the validation of the active

exploration in a real environment, the test objects were

placed on a table and explored by the robotic hand through a

fixed set of movements. This step permitted to construct an

initial belief of the object being explored. On the contrary to

passive perception, here the robotic hand selected the next

action movements towards interesting locations of the object

to improve perception. A decision about the object being

explored was made once the evidence accumulated exceeded

the belief threshold.

Figure 9a shows the perception accuracy results for the

active exploration. We observe that the errors achieved for

the object recognition process is improved with 13.33%,

10.0% and 0.0% for the belief thresholds of 0.0, 0.5 and

0.999 respectively. The reaction times required for making a

decision are presented in Figure 9b. It is clearly observed that

to achieve the best error of 0.0% it was required 16 contacts,

whilst the error of 13.33% was obtained with 1 contact.
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Fig. 9. (a) Perception accuracy and (b) reaction time results from passive
and active object recognition in a real environment. The experiment was
performed with the belief thresholds of 0.0, 0.5 0.999. Passive perception
was able to achieve the smallest error of 10% with 15 contacts for the
belief threshold of 0.999. In contrast, active perception was able to achieve
an error of 0% with 16 contacts for the belief threshold of 0.999.



The classification accuracy for each object based on active

perception is presented by the confusion matrices (bottom)

in Figure 8. The exploration task achieved the perception

accuracies of 86.66%, 90.0% and 100.0% for the belief

thresholds of 0.0, 0.5 and 0.999 respectively. These results

are improved over the accuracies obtained by passive per-

ception. On the one hand, these results in simulated and real

environments demonstrate the benefits of active over passive

perception. On the other hand, they also validate the accuracy

of our proposed method for active object exploration based

on intrinsic motivation for autonomous robotic systems.

IV. CONCLUSION

In this work we presented a method for object recog-

nition using active exploration with a robotic hand under

the presence of uncertainty. Our active exploration method,

composed by a probabilistic and an intrinsic motivation

approach, was able to achieve accurate results.

We used a set of test objects for training and testing our

methods for intrinsically motivated active object exploration

with a robotic hand. Tactile sensors were used for contact

detection, whilst proprioceptive information composed by the

position of the fingers and orientation of a robotic hand was

used for object recognition. The robotic hand performed 30

contacts around each test object, which was repeated five

times, to have one training dataset and four testing datasets.

A Bayesian method for uncertainty reduction through the

interaction with an object was presented. This approach,

together with a sequential analysis method, permitted the

robotic hand to autonomously decides, based on exceeding

a belief threshold, when to finish the exploration and make

a decision about the object being explored.

The active exploration behaviour was obtained with an

intrinsic motivation approach by moving the robotic hand

towards the more interesting locations for exploration. Inter-

esting locations were represented as the locations with large

variances, obtained from the distance between the posterior

probability obtained from the Bayesian approach and the

belief threshold. The use of the Bayesian and the intrinsic

motivation approach permitted to obtain an active exploration

behaviour, accumulating evidence and reducing uncertainty

by exploring the most interesting locations of the object.

Our method was validated in simulated and real environ-

ments comparing its performance using passive and active

exploration. In the simulated environment, the robotic hand

achieved the perception error of 0% for the belief thresholds

of 0.65 to 0.99. This result contrasts with the error of

60% achieved for the belief threshold of 0.75 with passive

exploration modality (Figure 6a). We did not observed large

difference for the reaction time with both exploration modal-

ities, where ∼2 contacts were required to make a decision

for the smallest perception errors (Figure 6b).

The validation in a real environment also shows the high

accuracy achieved by the robotic hand using our proposed

method. For active perception, the smallest error of 0% was

achieved by the robotic hand with a belief threshold of 0.999

(Figure 9a). For passive perception, the smallest error of

10% was achieved for the belief threshold of 0.999. Similar

to the validation in the simulated environment, the reaction

time required to make a decision for the best accuracies did

not present large difference, with 15 and 16 contacts for

passive and active perception respectively. The validations

from simulated and real environments show the benefits of

our proposed method for object exploration.

Overall, we have observed how active movements per-

formed by the robotic hand to explore interesting locations

based on intrinsic motivation, improve the perception ac-

curacy and decision making for an autonomous exploration

task. For future work, we plan to extend our methods com-

bining them with vision and implementing them with more

complex robots to autonomously explore their environment.
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