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The emergence of action sequences from spatial
attention: insight from mammal-like robots.

Ben Mitchinson!, Martin J Pearson?, Anthony G Pipe?, and Tony J Prescott!

1 ATLAS Research Group, The University Of Sheffield, UK
2 Bristol Robotics Laboratory, Bristol, UK.

Abstract. Animals display patterns of behaviour that are integrated
over space and time. One plausible candidate for the decomposition of
control is that behavioural sub-systems compete to command effectors.
An alternative hypothesis, inspired by research on primate visual at-
tention, is that actions are directed at a sequence of foveation targets
selected using a topographic ‘salience map’. In small terrestrial mam-
mals, many behaviours are underpinned by foveation, since important
effectors (teeth, tongue) are co-located with foveal sensors (microvibris-
sae, lips, nose), suggesting a central role for foveal selection in generat-
ing integrated behaviour. Here, we investigate control architectures for
a biomimetic robot equipped with a rodent-like vibrissal tactile sensing
system, explicitly comparing a salience map model for action guidance
with an earlier model implementing behaviour selection. Both architec-
tures generate life-like action sequences, but in the salience map version
higher-level behavioural ‘bouts’ are an emergent consequence of following
a shifting focus of attention.

Keywords: brain-based robotics, action selection, tactile sensing, be-
havioural integration, saliency map

1 Introduction

The problem of behavioural integration, or behavioural coherence, is central to
the task of building life-like systems [?,?]. Living, behaving systems such as ani-
mals display patterns of behaviour that are integrated over space and time such
that the organism controls its effector systems in a co-ordinated way and gen-
erates sequences of actions that serve to maintain its homeostatic equilibrium,
satisfy its drives, or meet its goals. How animals achieve behavioural integration
is, in general, an unsolved problem in anything other than some of the simplest
invertebrates. What is clear from the perspective of behaviour is that the problem
is under-constrained since similar sequences of overt behaviour can be generated
by quite different underlying control architectures [?]. This implies that to un-
derstand the solution to the integration problem in any given organism is going
to require investigation of mechanism in addition to observations of behaviour.
In this regard, physical models—such as robots—can prove useful as a means
of embodying hypotheses concerning alternative control architectures whose be-
havioural consequences can then be measured observationally [1]. Research with
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Fig. 1. (Left) A laboratory rat, showing the prominent macrovibrissae arrayed around
the snout. (Right) Shrewbot, the robot used in the reported experiments, pictured
alongside the cardboard cylinder that is also described. Visible are: eighteen large
macrovibrissae surrounding the small microvibrissae (six fitted, here); the head on
which they are mounted at the end of a 3 d.o.f. neck; the Robotino mobile platform.

robots has repeatedly demonstrated forms of emergent behaviour—the appear-
ance of integrated behavioural sequences that are not explicitly programmed—
demonstrating the value of this embodied testing for suggesting and testing
candidate mechanisms.

The biological literature provides for a range of different hypotheses concern-
ing the mechanisms that can give rise to behavioural integration; here, we high-
light two, and explore and discuss their behaviour in a robot. The neuroethology
literature suggests a decomposition of control into behavioural sub-systems that
then compete to control the animal (see [2] for a review). This approach has been
enthusiastically adopted by researchers in behaviour-based robotics as a means
of generating integrated patterns of behaviour in autonomous robots that can
be robust to sensory noise, or even to damage to the controller. An alternative
hypothesis emerges from the literature on spatial attention, particularly regard-
ing visual attention in primates, including humans [?]. This approach suggests
that actions, such as eye movements and reaches towards targets, are gener-
ated by first computing a ‘salience map’ that integrates information about the
relevance (salience) to the animal of particular locations in space into a single
topographic representation. Some maximisation algorithm is then used to select
the most salient position in space towards which action is then directed. It is
usual in this literature to distinguish between the computation of the salience
map, the selection of the target within the map, and orienting actions that move
the animal, or its effector systems, towards the target. In the mammalian brain
these different functions may be supported by distinct (though overlapping) neu-
ral mechanisms [?,?]. Of course, the approaches of behavioural competition and
salience map competition are not mutually exclusive and it is possible to imagine
various hierarchical schemes, whereby, for instance, a behaviour is selected first
and then a point in space to which the behaviour will be directed. Alternatively,
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the target location might be selected and then the action to be directed at it.
Finally, parallel, interacting sub-systems may simultaneously converge on both
a target and suitable action [?].

In our own research we have been investigating alternative architectures for
controlling mammal-like robots equipped with active vibrissal sensing systems
modelled on those of small rodent-like terrestrial mammals such as mice, rats,
shrews and opossums. Our goal is to generate a physical model of the exploratory
and orienting behaviour of these animals as measured in our laboratory using
high-speed video recordings. At the same time, we seek to implement and test
hypotheses about how the mammalian brain generates this behaviour. Although
small mammals can grasp and manipulate objects with their forelimbs, a key
effector system for foraging and object investigation is the snout, which carries
multiple sensory systems and an important effector, the mouth. In the current
study we investigate the hypothesis that a salience map model can be used
to generate action sequences for a biomimetic robot snout mounted on a mo-
bile robot platform, and compare this with an earlier control model based on
behaviour selection. Both control systems generate life-like sequences which al-
ternate between exploration and orienting behaviour, but in the salience map
version these higher-level behavioural ‘bouts’ are an emergent consequence of
actions determined by following a shifting focus of spatial attention (determined
by a salience map) rather than being explicit control primitives. In the mam-
malian brain sensimotor loops involving the cortex, superior colliculus, and basal
ganglia may interact to implement a control system similar to this hypothesised
salience map model.

We have developed a lineage of rodent-like biomimetic robots—that is, robots
which share the essential body plan of rodents, an orientable head mounted on a
mobile base, and that use an array of motile whiskers (modelled on the macrovib-
rissae of whisking animals [3,4]) as their primary sense [5]. These robots are
biomimetic both in their morphology and in the computational and algorithmic
aspects of their control architecture. Below, we describe the two models of be-
havioural integration in the context of the more general control architecture used
by our robots. We go on to describe two experiments using the robot ‘Shrew-
bot’ (Figure 1); Shrewbot is equipped, in addition to its macrovibrissae, with
an array of small, immotile, whiskers at the tip of the snout (modelled on the
microvibrissae [3]).

2 Models

Figure 2 summarises the multi-level loop architecture used in our biomimetic
robots, which mirrors the structure of the neural substrate [6]. We cannot rep-
resent the whole brain in our control architecture from the outset, and there is
no general agreement on the function of many neural centres, or even whether
description in such terms is possible. Since the robot must ‘function’ in some
sense if we are to experiment with it, our break down of the control system into
modules is by function, but the particular break down chosen is driven by the
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Fig. 2. (Left) Multi-level loop architecture common to the discussed models. (Right)
Detail of the component labeled ‘Selection Mechanism’ in the left-hand panel, for Be-
havSel (above) and AttenSel (below).
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anatomy. This places us in a strong position to hypothesise relationships be-
tween structure and function in the neural system, and these hypotheses are a
major outcome of our robot work [1]. Here, we focus on the component ‘Selection
Mechanism’ which is responsible for the majority of movements of the robot’s
body (neck and wheels). Below this system, low-level reflex loops effect rapid
responses to current conditions (for instance, whisker protraction is inhibited by
contact with the environment [7]). Above this system, we are beginning to add
more cognitive components that modulate selection, either by gleaning detailed
information about what has been contacted from the sensory signals (in the
component labelled ‘Abstraction’ [8]), or by retaining a memory of the robot’s
past spatial experience (in the component labelled ‘Allo-centric memory’ [9]).
The details of the wider system, beyond the selection mechanism, are covered
elsewhere [5].

We identify a ‘tactile fovea’ [3], a short distance in front of the microvibrissae;
the selection mechanism drives movements of this fovea, its output being the
instantaneous foveal velocity. Our focus is on the key component of behaviour in
rodent-like mammals, highlighted above, of bringing the fovea to a target. For
instance, when faced with a task of discriminating between multiple objects, rat
behaviour can be described as foveation to each discriminandum in sequence [3].
Beyond that it supports this foveation, the movement of the remaining nodes of
the animal/robot is unconstrained, so these nodes (neck joints, body) are slaved
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to the fovea in our models—that is, our robots are ‘led by the nose’. This is, of
course, a simplification of biological behaviour, though we have been surprised by
how life-like (and practical) the resulting behaviour is. Our robots do not have
manipulators, so that foveation is the only behaviour that they express: the
remainder of this section compares two approaches we have taken to generating
the foveal velocity vector.

The first model [10, 11, 7] of selection is an abstraction of the biology into in-
dividual behaviours—that is, it is biomimetic at the ethological level. It consists
of a list of pre-defined behaviours which are arbitrated by a model of Basal Gan-
glia (BG), after a previous model of robot foraging [12], see Figure 2. The BG
chooses one behaviour to take control of the motor plant (i.e. provide the foveal
velocity) at any one time. The individual behaviours themselves are responsible
for ‘bidding’ for this privilege, with an intensity that reflects the degree to which
they are appropriate given the immediate conditions. Note that this model has
minimal memory—its response, modulation from higher systems aside, is a func-
tion only of its recent inputs (and endogenous noise). Thus, this model fits neatly
into the paradigm of ‘behaviour-based robotics’; we denote it as BehavSel.

Whilst, in principle, a list of any number of behaviours could be included, in
practice we have only ever implemented four (EXPLORE, ORIENT, BACKOFF,
GoT0). This was based on need—we found that we were able to simulate rat
behaviour to a sufficiently good approximation for our experiments with only
these (in fact, the heuristic behaviour coTo was included as an experimental
convenience, rather than to correspond to any particular animal behaviour, and
is not described here). Each behaviour in BehavSel is a ‘fixed action pattern’
in the sense that, once initiated, it will usually complete [12]. A higher prior-
ity behaviour can interrupt an ongoing, lower priority, behaviour. For instance,
detection of an obstacle causes EXPLORE to be interrupted by oRIENT. Fur-
thermore, some of the behaviours are parametrised such that immediate sensory
information can change their details (owing to this, the term ‘modal action pat-
tern’ may be preferred by some ethologists [12]). For instance, ORIENT directs
the fovea to a recently-detected item in the environment.

In an early form of this model, the selection mechanism was the only source
of foveal control. Since arbitration takes time [12], and processing resources on
the robot are limited, this system did not prove sufficiently fast to protect the
robot from damage when it foveated inaccurately. For this reason, we added a
low-level reflex such that strong contact on the microvibrissae leads the neck
to immediately and rapidly concertina, retracting the snout and protecting it
from damage in the period of a few tens of milliseconds before the selection
mechanism is able to respond to the same signals. This approach has been very
satisfactory, both because we no longer damage microvibrissae and because it
does not interfere at all in our investigations of the broader behaviour of the
system (that is, we can investigate selection without thinking about the influence
of this reflex).

The long-term behaviour of BehavSel can be summarised, as follows. With-
out stimulus, EXPLORE has the highest salience, and the robot proceeds for-
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ward sweeping its fovea from side to side. On contacting a stimulus, the salience
of ORIENT is raised, and the robot foveates the point of contact. Meanwhile,
the salience of BACKOFF is raised somewhat, so that when the ORIENT action
completes, BACKOFF is chosen and the robot moves away from the contacted
obstacle, before falling back into EXPLORE. With this arrangement, the robot
can be safely left to freely explore a simple environment, so long as the geometry
of the environment is fairly smooth (the robot has no reversing cameras).

One question raised by the BehavSel model, from a biomimetic standpoint is:
where are the EXPLORE and BACKOFF behaviours implemented in the brain?
Behaviours, after all, are things we observe from outside the animal, and not
necessarily things that are explicit in any algorithm. In the field of bio-inspired
robotics, being unable to answer this question is not problematic. In biomimetic
robotics, however, communicability between biological data (with the exception
of ethological data) and the design of and results from models suffers if they do
not share the same encoding and algorithms. As discussed, all of the behaviours
in BehavSel are expressed through foveation. (Visual) foveation in primates
is well studied and is mediated by the Superior Colliculus (SC) [13]. In rats,
stimulation of SC can evoke not only eye movements [14], but also orienting-like
movements of the snout, circling, and even locomotion, amongst other behaviours
[15]. Inspired by these facts, we have developed a second model of foveal velocity
vector generation that mirrors the features of SC—that is, a topographic saliency
map driven by sensory input and modulated by information from mid- and
upper-brain, with a simple motor output transform that drives foveation to the
most salient region of local space. Selection, then, is between foveation targets
in local space, rather than between behaviours (see Figure 2). In the case of
our robots, salience is excited by whisker contact and endogenous noise and
suppressed by a top-down ‘inhibition-of-return’ (IOR) signal from an allo-centric
memory component which lowers the salience of regions that have recently been
foveated (after a related model of IOR in the primate visual system [16]). This
model is denoted AttenSel.

The long-term behaviour of AttenSel can be summarised, as follows. Initially,
salience is driven only by endogenous noise, and the robot foveates stochastically.
The noise is spatially-biased, such that foveations in a forward direction are more
likely, and the robot tends to proceed forward. On contacting a stimulus, the
salience in the corresponding region of the map is raised, and the robot foveates
the point of contact. That location then becomes less salient, owing to the IOR
signal. The foveation targets selected following this, then, drive the robot away
from that location. Some time after, the robot has returned to the stochastic
foveation pattern observed initially. That is, the observed behaviour of the robot
using AttenSel is quite similar to that observed using BehavSel—or, to put it
another way, quite similar behaviours emerge from the latter model to those that
are explicitly designed into the former model.
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Fig. 3. Results of Experiment 1. (Upper panels) Projected onto the horizontal plane,
the time course of the fovea location (black line), the moments of re-selection (black
dots), and the ranges of EXPLORE (no markers), ORIENT (circles), and BACK-
OFF (triangles) behaviours. The obstacle boundary is also marked. (Lower panels)
Ethograms of the switching between behaviours against time (E, O, B, for EXPLORE,
ORIENT, BACKOFF).
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3 Results

In Experiment 1, we placed Shrewbot nearby and facing a cardboard obstacle
(150mm diameter), with each of the two models in control, in turn. In each
case, the robot proceeds forwards, exploring, until it contacts the obstacle with
its macrovibrissae. It then orients to the obstacle. Finally, it backs away and
moves off exploring in another direction. The results of each experiment are
shown in Figure 3. In the case of BehavSel, the ethogram is recovered from
recorded signals; in the case of AttenSel, the ethogram was generated by an
observer, charged with reviewing the video post hoc and judging which of the
three behaviours explicit in BehavSel was being exhibited over time.

y (m)

v

XY,
S

05 1 1.5

Fig. 4. Results of Experiment 2, for BehavSel (left) and AttenSel (right). Arena
boundary and cardboard tube at the centre are marked as grey circles. The foveal
location over time, projected onto the horizontal plane, is shown as a grey trace. Con-
tact locations over the course of the whole experiment are marked as black dots. Some
odometry drift is apparent (groups of dots not aligned with obstructions), as is some
noise in the contact signal (isolated dots far away from obstructions).

In Experiment 2, we placed Shrewbot inside a circular arena (1500mm radius,
bounded by 500mm high smooth vertical walls) at the centre of which was the
cardboard tube from Experiment 1. The robot was then allowed to behave freely
for ten minutes. The mobile platform suffers from significant odometry drift—to
mitigate this for the sake of this illustration, we halted the robot every thirty
seconds and re-measured its position and orientation using an overhead camera.
To avoid calibration problems that arise if the whiskers are in contact with
something when the robot is restarted, the robot was occasionally moved away
from a wall before being restarted, which is why the foveal location traces are
discontinous in the figure. The general result of this experiment is that both
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models perform a high-level behaviour that might be described as ‘exploration’
of the arena. The differences in the details of the exploratory behaviour expressed
by the two models, visible in the figure, are not relevant to the discussion, here.

4 Discussion

The BehavSel and AttenSel models can be characterised by what is repre-
sented explicitly (or, what is ‘encoded’) and what is represented implicitly (or,
that which ‘emerges’). In BehavSel, behaviours are represented explicitly (and
selected between) whilst ‘spatial attention’, as measured by the location that
is foveated, emerges from the interaction of those behaviours with the physical
environment. Conversely, in AttenSel, locations of spatial attention are repre-
sented explicitly (and selected between) whilst behaviours, as measured by a
human observer, emerge from interaction with the environment. Modelling at
multiple levels of abstraction is undoubtedly useful; indeed, parts of the wider
control system outlined above but not described are represented using a va-
riety of encodings. Here, we discuss the two approaches to modelling that we
have explored in the context of biological research, robotic performance, and the
controller design process.

Biological research The correspondence in representation between AttenSel
(and AttenSel-like models) and the biology mean that inferences we draw about
the relationship between structure and function in the robot control system can
be transposed directly to the biological control system. Conversely, hypotheses
about structure and function that arise from biological research can be tested
very directly in the robot. The wider structure of both models is biomimetic
at a high level (see Figure 2), but the AttenSel component also reflects the
biology at a low level. This choice favours communicability between the model
and the biological data. SC is one of the most clearly understood (and well
studied) regions of the sub-cortical mammalian brain, and its most prominent
feature, common to most accounts in most species, is its domination by encodings
of sensory and motor space [13], though it is directly involved in mediating
behaviour—or, at least, ‘behavioural primitives’ [15]. The AttenSel model of
selection reflects the encoding and algorithm of SC and is directly comparable
to the biological system. More generally, communicability is affected by the signal
encoding used in any model. Cortex aside (and de-corticate animals can express
rich behaviour [17]), the neuroscience literature is filled with descriptions of
spatially and temporally encoded signals, not of behaviour generators.

Since behaviours are not specified in advance in the AttenSel model, the im-
plicit behavioural space is large and continuous. In contrast, the BehavSel model
behavioural space—parameterisation aside—is populated by a limited number
of singular points. As a result, no time window of observation of the AttenSel
model can be said to have precisely isolated ‘behaviour X’. The human observer
can and will pick out particular behaviours, certainly—we describe behaviour
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using behavioural terms—and we have chosen to describe the behaviour of At-
tenSel in the language of BehavSel in Experiment 1, above. But, the behaviour
of the model at any one time is chosen from that continuous implicit behavioural
space. Another way of stating this is that the things we might describe as dis-
crete behaviours—ORIENT, EXPLORE, BACKOFF—bleed into one another, so
that the specific behaviour of the robot in any time window is an overlapping
integration of these. A certain class of animal behavioural experiments can be
summarised, methodologically, as long periods of watching the animals freely
behave punctuated by brief recording opportunities where clean examples of be-
haviours of interest, defined in advance, are expressed [18, 19]. This methodology
reflects the fact that stereotyped descriptions of the behaviour of the animal are
approximations, at best. In this sense, AttenSel is a more complete model of
foveation behaviour than BehavSel.

Robot performance The AttenSel model retains a desirable aspect of the
behavioural-based robotics paradigm. That is, the immediate information about
current conditions remains largely in the outside world, rather than being in-
ternalised, and the long-term behaviour represents overlapping contributions
from—implicitly represented—simple behaviours. However, its encoding per-
mits, very naturally, interaction between behaviours and the modulation of be-
haviour by systems that deal, explicitly, in something other than behaviour. For
instance, a BACKOFF-like behaviour emerges from the interaction between en-
dogenous noise in the saliency map and the spatial memory that the area right
in front of the robot has previously been visited. A higher-level planning system
that was explicitly concerned with reaching a particular location (recalling the
GoTO behaviour mentioned above) could evoke locomotion from the model by
modulating the salience map appropriately. This communicability between com-
ponents of the system is analogous to that between the model and the biological
data—the concern of all of the listed influences is space.

The continuum of possible behaviours in the AttenSel model represents be-
havioural flexibility. Speaking in terms more suited to the BehavSel model sub-
strate, the use of a little bit of BACKOFF in a particular ORIENT behaviour,
which in a particular situation might be advantageous, would be the result of
an automatic mixing of different influences on the robots attention. To achieve
the same thing in the BehavSel model, the model would require a specifica-
tion in advance of how behaviours should mix under different conditions, an
exponentially-increasing specification as the list of behaviours increases. In At-
tenSel, a specification is required, conversely, for how different influences on
attention should mix—whilst this is not a trivial specification to derive either,
it may be easier to derive than that for BehavSel, owing to the common encod-
ing used by those influences. Thus, and in analogy to the richness of behaviour
observed in animals, the AttenSel model might favour flexibility to the partic-
ular conditions faced by the robot in the environment, a key requirement for
autonomous systems.
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The design process One significant disadvantage of an AttenSel-like control
model is that it may be difficult to get the robot to do ‘the right thing’. Be-
haviours cannot be directly designed; rather, they emerge from the interaction
between the environment and signal encodings and transforms that are speci-
fied by the designer. Thus, we cannot ‘program the robot to do X’; rather, we
can program how the robot generates and processes encodings, in a condition-
dependent way. The design loop is closed by critiquing behaviour and modifying
the way the robot computes those encodings, accordingly. Being divorced from
behaviour in this way might not suit the goals of industrial robotics, for exam-
ple, where ‘the right thing’ is tightly specified in advance. However, one of the
major challenges of contemporary robotics is persuading robots to behave sen-
sibly under conditions that are unknown a priori, where ‘the right thing’ may
be, accordingly, unknown. One approach to this challenge is to use learning,
applicable—in general—regardless of the choice of encoding, in the hope of side-
stepping the design process to some degree. But, designing learning algorithms
that are able to derive appropriate behaviour from scratch is difficult even when
the task is very constrained (see [20] for several practical examples). When the
task is much more general, this problem is only exacerbated by the sizes of the
sensory and motor spaces that must be related—learning generally doesn’t ‘scale
well’ [20]. As Brooks notes: ‘Most animals have significant behavioral expertise
build in without having to explicitly learn it all from scratch.’ [21]. The AttenSel
model is an example of borrowing some of that expertise to help us to choose
the structure of a complex control system. In this report, we have shown that a
design process, informed by biological data, is sufficient on its own to produce
behaviour as sensible as that which we designed ourselves, explicitly, in an earlier
model.

Acknowledgments. The authors would like to thanks Jason Welsby (Bristol
Robotics Laboratory) for his work towards the construction of Shrewbot as well
as his help in performing the experiments.
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