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Embodied hyperacuity from Bayesian perception:

Shape and position discrimination with an iCub fingertip sensor

Nathan F. Lepora, Uriel Martinez-Hernandez, Hector Barron-Gonzalez, Mat Evans, Giorgio Metta, Tony J. Prescott

Abstract— Recent advances in modeling animal perception
has motivated an approach of Bayesian perception applied to
biomimetic robots. This study presents an initial application
of Bayesian perception on an iCub fingertip sensor mounted
on a dedicated positioning robot. We systematically probed the
test system with five cylindrical stimuli offset by a range of
positions relative to the fingertip. Testing the real-time speed
and accuracy of shape and position discrimination, we achieved
sub-millimeter accuracy with just a few taps. This result is
apparently the first explicit demonstration of perceptual hyper-
acuity in robot touch, in that object positions are perceived more
accurately than the taxel spacing. We also found substantial
performance gains when the fingertip can reposition itself to
avoid poor perceptual locations, which indicates that improved
robot perception could mimic active perception in animals.

I. INTRODUCTION

A casual observer can tell that the perceptual abilities of

the most advanced robots lag far behind those of animals,

which is a major bottleneck for enabling robots to interact

fully with their environments. Meanwhile, in neuroscience,

two lines of investigation are converging on an understanding

of animal perception as statistically optimal sensory process-

ing. First, perception is considered as Bayesian inference

from noisy and ambiguous sensations [1], [2]. Second, the

decisions resulting from this inference are considered optimal

in terms of minimizing the costs of making mistakes plus the

costs of waiting to gather more sensory data for improved

accuracy [3], [4]. These inferential and reactive aspects of

perception have been embodied in robots with biomimetic

whisker sensors, using Bayesian sequential analysis to accu-

mulate evidence for competing perceptual hypotheses until

reaching a decision threshold on the beliefs [5], [6].

This study presents an initial implementation of this

biologically-inspired framework for perception in a robot

using a biomimetic touch sensor based on the human finger-

tip [7] that was built for the iCub humanoid robot [8]. In do-

ing so, we show that the approach applied previously to touch

with whisker sensors applies also to the new problem domain

of fingertip sensing, with potential applications in grasping

and manipulation. To provide a standard set-up for systematic

testing, the fingertip was mounted on a dedicated positioning

robot (Fig. 1A) to test shape and position classification of

range of cylindrical test objects (Fig. 1B). We emphasize
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Fig. 1. (A) The iCub fingertip sensor is mounted as an end-effector to an
xy-table robot, which can move the finger accurately in a horizontal plane.
(B) Close-up of the tactile stimuli (threaded steel rods with diameters from
4 mm to 12 mm; five were used, spaced every 2 mm in diameter).

that these are important percepts for the manipulation of

objects; for example, shape discrimination is necessary to

determine the grasp configuration for picking up an object,

while position discrimination is necessary to appropriately

position a manipulator onto an object.

There has recently been a surge in hardware development

for robot touch sensing [9] accompanied by advances in tac-

tile classification methods influenced by Bayesian methods

from machine learning and probabilistic robotics [10], [11],

[12], [13], [14], [15]. The approach to Bayesian perception in

this study and related work [5], [6] differs by emphasizing the

reactive aspects of decision making, rather than concentrating

on the inference problem. In practise, this difference stems

from the use of a threshold crossing rule on the beliefs

for real-time decision making, rather than using a preset,

fixed amount of data. In our opinion, utilizating the reactive

aspects of perception is a necessary step to achieve robot

perception comparable with that of animals.

Using Bayesian perception, we find that the fingertip

sensor can achieve positional hyperacuity, in that the object

position relative to the finger can be localized to within 25%

of the physical taxel spacing (<1 mm mean error; 4 mm

spacing). To the best of our knowledge, this result is the

first explicit demonstration of hyperacuity in robot touch.

We also find that the perceptual accuracy can be further

improved by having the robot react to the sensory data during

decision making. In particular, long reaction times indicate

poor locations for perceiving the stimulus, which can be used

to reactively reposition the robot for better perception.



Fig. 2. (A) Fingertip pressure data recorded as the finger taps against a test rod (diameter 4 mm) at a constant frequency of 1 tap/sec. The range of finger
positions spanned 16 mm over 320 s, giving 320 taps spaced every 0.05 mm. Tickmarks are shown every 1 mm displacement, or 20 taps. Data from the
different taxels are represented in distinct colors depending on the taxel position shown on the diagram. (B-E) Examples of pressure data for individual
taps taken from panel (A) at 3 mm, 7 mm, 12 mm and 15 mm finger displacement (tap number 60, 140, 240 and 300).

II. METHODS

A. Robot experiments with an iCub fingertip sensor

The iCub is a humanoid robot about the size of a 3 year

old infant [8]. To enable the robot to grasp and manipu-

late objects, touch sensors were initially integrated into its

hands [7] and then later a tactile skin onto its forearms and

body [16]. The iCub fingertips are 14.5 mm long and 13 mm

wide with a rounded shape that resembles a human fingertip.

They consist of an inner support wrapped with a flexible

printed circuit board (PCB) containing twelve conductive

patches for the touch sensor ‘taxels’. The PCB is covered

first with a ∼2 mm layer of non-conductive soft silicone foam

and then with a thin layer of conductive silicone rubber. The

PCB and silicone layers together comprise a capacitive touch

sensor that detects pressure via the capacitance change due

to compressing the foam between the conductive layers.

The present experiments test the capabilities of the iCub

fingertip sensor mounted on an xy-positioning robot. This

robot can move the sensor over a horizontal plane in a

highly controlled and repeatable manner onto various test

stimuli to 50µm accuracy (and was developed originally for

testing tactile sensors based on rodent whiskers [17]). The

fingertip was mounted at an angle appropriate for contacting

axially symmetric shapes such as cylinders aligned along the

z-axis perpendicular to the plane of movement (Fig. 1A).

Five threaded steel rods with diameters 4 mm, 6 mm, 8 mm,

10 mm and 12 mm were used as test objects (Fig. 1B). They

were mounted with their axes vertically upwards but their

centers offset in the y-direction (by 4 mm, 3 mm, 2 mm, 1 mm

and 0 mm) to align their closest point to the fingertip.

The touch data were collected while having the fingertip

repeatedly tap in the y-direction onto and off each test

object with rate 1 tap/sec, while moving at constant speed of

0.05 mm/sec in the x-direction across the closest face of the

object. The fingertip was angled so the rod axis lay across the

fingertip (vertically across the taxels in Fig. 2), and moved

so that the rod initially contacted the fingertip at its base

and finally contacted only the tip. In each case, an x-range

of 16 mm was considered. This gave 320 taps per object at

increments of 0.05 mm. Each tap of the fingertip against the

object resulted in a 1 sec time series of pressure readings for

all 12 taxels covering the fingertip (Figs 2B-E). This data was

sampled at 50 Hz, giving 50 samples per taxel per tap. One

training and one test set was collected for each of the five

rods and these data used for off-line Monte Carlo validation

of the Bayesian perception.

B. Bayesian sequential analysis for perception

Here we adopt a statistical method for tactile perception

based on Bayesian sequential analysis, which is closely

related to a leading model of perceptual decision making

in neuroscience [3], [4], [5]. The approach has two aspects:

an inference part based on Bayesian filtering and a decision-

making part that reacts to the inference. In this section, we

describe the method of Bayesian sequential analysis, and in

the following section describe how it is applied to our data.

The inference part of this Bayesian model of tactile per-

ception uses Bayes’ rule to update the posterior probabilities

P (cn|zt), or ‘beliefs’, for N perceptual classes cn after

receiving new measurement data zt. This is achieved by

using Bayes’ rule recursively as a Bayesian filter, with the

prior given by the posterior on the previous time-step, which

is combined with the present likelihood P (zt|cn) to give

P (cn|zt) =
P (zt|cn)P (cn|zt−1)

P (zt|zt−1)
. (1)

For the measurement model of the likelihoods, we assume the

probability distributions P (z|cn) are identically distributed

and independent of time t and measurement history (hence



Fig. 3. Validation approach. After each tap to collect data, the perception
algorithm first uses the measurement model to estimate the likelihoods of
shape and position and then updates the posteriors using Bayes’ rule. If at
least one posterior passes a threshold, a decision can be made. Otherwise,
another tap is made, unless a deadline has been reached, in which case the
finger randomly moves to another position to retry the procedure.

we drop z1:t−1 from the posteriors); the construction from

the training data is described below. The marginal probabil-

ities are conditioned on the preceding measurement and are

found from summing over all N classes

P (zt|zt−1) =

N
∑

n=1

P (zt|cn)P (cn|zt−1) (2)

to give properly normalized posteriors
∑N

l=1
P (cn|zt) = 1.

Taking a sequence of measurements z1, · · · , zt gives a se-

quence of posteriors P (cn|z1), · · · , P (cn|zt) for each class,

which are calculated by iterating over the relations (1,2)

starting from uniform priors P (cn) = P (cn|z0) = 1/N .

The decision-making part of Bayesian sequential analysis

uses a threshold-crossing decision rule on the belief, which

allows the perception to be reactive to the quality of the

test data and can enforce optimal balance of speed versus

accuracy in the decision making [3], [4], [5], [18]. At least

one posterior must cross a preset probability threshold to

trigger the decision, after which the maximal a posteriori

(MAP) estimate is taken for the perceptual class:

if any P (cn|zt) > θ then c = argmax
cn∈C

P (cn|zt). (3)

This decision rule implements free-response perception, in

that the decision occurs at a time determined by the decision-

maker. Previous robot work has demonstrated superior per-

formance compared to fixed reaction time methods [5], [6].

In this study, we also consider a modification of standard

sequential analysis in which null decisions are allowed if a

preset ‘boredom’ deadline D is reached before crossing the

probability threshold:

if t = D then c = ∅. (4)

In a previous study with robot whisker sensors, we inter-

preted a null decision as referring to forced versus unforced

choices [6]. Here we make a different interpretation: if a

null decision is reported, then it signals that the present

location gives a poor perception of the object and the robot

should move its sensor elsewhere (Fig. 3). This is important,

because past null decisions should then be included in the

reaction times (rather than considering only reaction times

for decisions that were made, as done previously [6]).

C. Bayesian perception applied to robot touch

The above Bayesian sequential analysis approach for robot

perception was then applied to the fingertip data.

The perceptual classes denoted the cylinder being con-

tacted and the position of the fingertip relative to the cylinder.

To provide sufficient training data for each position class, we

separated the data into 16 groups of 20 taps, each spanning

1 mm (delineated by the tick marks on Fig. 2A). Using all

taps in a position class aided the robustness of the classifier,

by training across the range of positions. This gave 16

position classes and 5 shape classes, or 80 classes in total.

The training data was then used to construct a measure-

ment model of the likelihoods based on a ‘bag of mea-

surements’ histogram approach. The histogram of pressure

readings s of the training data for percept class cn defines a

sample distribution

Pk(s|cn) =
hk(s)

∑

s hk(s)
, (5)

where hk(s) is the number of measurement values s in the

histogram occurring for taxel k. Altogether, 1000 samples

s were used for each taxel of each class, corresponding to

20 taps of 50 samples each. We extracted 12 histograms

(one for each taxel) for each of the 80 training classes. Note

that the pressure values must be binned to construct the

histogram, which was implemented by uniformly partitioning

each pressure range over 100 bins (see also [5], [19]).

The measurement model then gives the likelihoods for a

test tap (denoted zt in the Bayesian update rule) from the

geometric mean over the sample distributions (5) evaluated

over all samples sj in the test tap

P (zt|cn) =
JK

√

∏J

j=1

∏K

k=1
Pk(sj |cn) (6)

where J = 50 and K = 12 are the time samples per tap and

the number of taxels respectively. This model assumes a bag

of measurements in which all samples are treated as indepen-

dent and identically distributed for each taxel. The geometric

mean prevents the product (6) from producing vanishingly

small likelihoods by ensuring that the probabilities remain

almost invariant for large sample numbers [5].

The test data was then used to construct sequences of taps

to assess the speed and accuracy of the robot perception. A

Monte Carlo procedure was employed to emulate real-time

performance. Each test instance corresponded a tap sequence

of known shape and position class constructed by drawing

taps in a random order with replacement from the appropriate

class of test data. Then the perception algorithm processed

this test sequence until making a decision, after which the

shape and position errors and reaction time (in taps) were

reported. By performing many test instances (typically 2500



Fig. 4. Decision errors plotted against probability threshold. Panel A shows
the mean absolute error for estimating rod diameter and panel B shows the
mean absolute error for finger position. We distinguish fixed perception
with no deadline (black lines) from when moves were allowed after a null
decision upon reaching a deadline (colored lines).

Fig. 5. Decision errors plotted against reaction times. Plots are as in Fig. 4,
apart from plotting the mean absolute errors against mean reaction time (by
relating belief threshold to reaction time via Fig. 7B). We interpret these
results as the mean real-time performance of accuracy versus reaction time.

per belief threshold) with randomly chosen test classes, the

distributions of shape and position errors and reaction times

could then be characterized. In general, the error distributions

were near Gaussian centered on zero while the reaction time

distributions were skewed as in Fig. 7. Suitable statistics to

summarize the real-time performance are the mean absolute

errors and the mean reaction times, which are displayed in

the following results1.

III. RESULTS

A. Initial observations

Fingertip pressure data was collected for five steel rods

(diameters 4 mm, 6 mm, 8 mm, 10 mm and 12 mm) by pass-

ing the fingertip slowly over each rod tapping at a constant

rate of once per second (see methods; configuration shown

in Fig. 1). For the example data shown in Fig. 2A (4 mm

diameter rod), at the start of the movement only the bottom

taxels at the fingertip base are in contact (Fig. 2B), then

the lower-center taxels contact and the bottom taxels detach

(Fig. 2C), then the upper-center taxels contact and the lower-

1Note that the mean absolute error (rather than standard deviation) was
chosen for ease of interpretation; note also that the standard deviation is
close to the mean on the half-Gaussian of absolute errors.

Fig. 6. Proportion of move requests plotted against probability threshold.
Move requests are made after a null decision, in which the number of
taps reaches a deadline without a decision being made (all posteriors
below threshold). The proportion represents the number of validation trials
resulting in a null decision relative to the total number of trials.

Fig. 7. Reaction times for Bayesian perception. Panel (A) shows example
reaction time histograms with probability thresholds 0.9 (grey) and 0.999

(white). Panel (B) plots the mean reaction time against probability threshold
for fixed perception with no deadline (black curve) and when moves were
allowed after a null decision upon reaching a deadline (colored lines).

center taxels detach (Fig. 2D) and finally only the top-most

taxels at the tip of the finger contact (Fig. 2E).

Notice that the pattern of taxel pressures depends on both

the curvature of the surface being contacted and the position

of the fingertip over the object, permitting the simultaneous

perception of object shape and location. Another key obser-

vation is that each taxel has a receptive field size of about

5 mm (100 taps on Fig. 2a), with small pressure readings

at the edges of this field that increase to peak in the center.

The centers of the taxels are spaced about every 4 mm, so the

receptive fields for different taxels overlap to permit tactile

coverage across the entire fingertip. Position classes were

considered here at 1 mm intervals along the 16 mm range

(tickmarks on Fig. 2A), at about 25% of the taxel spacing.

B. Bayesian tactile perception from a fixed position class

The first validation study considered tactile perception in

which the test data was drawn from a single test shape

and position class. Real-time performance was assessed by

repeatedly drawing random sequences of test data to give

accurate statistics on the mean absolute shape and position

errors and mean reaction times (Methods, Sec. II-C), with

the test shapes and positions also randomly varied. We used

a Bayesian method of free-response perception in which the

decision was reported after a variable number of taps set



Fig. 8. Error and reaction times dependence on test class. Light/dark regions show position and shape classes with small/large mean errors (panels
A,B) and fast/slow reaction times (panel C). Ranges encompass diameter errors between 0-4 mm (panel A), position errors between 0-2 mm (panel B) and
reaction times from 0-20 taps (panel C). Results are displayed for a belief threshold of 0.9.

by when at least one of the posterior probabilities reached

a preset belief threshold. The posteriors were updated using

Bayes’ rule recurrently as a Bayesian filter with the priors

given by the posteriors on the previous tap.

Average decision errors for perceived shape and position

were examined over belief thresholds ranging from 0.05 to

0.99999 (Fig. 4; black curves). Statistically robust estimates

of the mean errors were found by averaging the absolute

classification errors over many test instances. These mean

errors decreased steadily with belief threshold, reaching a

minimum of about 2.2 mm for shape and 0.6 mm for position

for thresholds above 0.9 (Fig. 4; black curves)

In accordance with the perception being freely responsive,

the number of taps to reach a decision had a reaction

time distribution (Fig. 7A). Increasing the belief threshold

increased the mean reaction time (Fig. 7B; black curve) and

decreased the decision errors. Treating this threshold as an

implicit parameter gave a direct plot of decision error against

mean reaction time (Fig. 5; black curves), in which for each

threshold the mean decision accuracy from Fig. 4 was plotted

against the mean reaction time from Fig. 7B. The resulting

error plots decreased with longer reaction times, reaching

their minimum values after about 5–10 taps.

The mean decision errors and reaction times were non-

uniform across finger position and rod diameter, showing

significant variance with test class (Fig. 8). In particular,

neighboring position classes varied substantially in their

classification properties, indicating a lack of overall structure

in the variation of these errors. That being said, there was

maybe a slight tendency for finger placements between 2–

7 mm to yield better position accuracy than elsewhere.

In summary, for the above Bayesian perception, the deci-

sions of rod diameter reached an average error of about one

shape class after a few taps (e.g. the 8 mm rod was commonly

mistaken for a 6 mm or 10 mm rod but not for the 4 mm

or 12 mm rod). Meanwhile, the decisions on position were

less than the 1 mm width of a perceptual class, indicating

that about half found the correct position and the other half

were commonly about 1 mm out. These position errors were

≤25% of the 4 mm spacing between taxels. In consequence,

the position discrimination performs at sub-taxel resolution,

and thus constitutes an embodiment of hyperacuity in a

biomimetic robot with brain-based perception.

C. Bayesian perception with random move after deadline

The second validation study considered tactile perception

against a ‘boredom’ deadline, after which a null decision is

reported and the fingertip sensor moved randomly to retry

decision making at another location. The same method of

Bayesian perception was used as for the fixed-position study

from Sec. III-B, but with a deadline number of taps for the

null decision (Fig. 3). This method can still be considered

Bayesian sequential analysis, even though the standard opti-

mality theorems [18] would need re-examining with respect

to the costs of null outcomes. This study interprets this

cost as from the accumulated delay in reaction time for the

previous null results before finally making a decision.

We used random moves to re-position the fingertip because

of the lack of structure in the error dependency on rod shape

and location (Fig. 8). Discarding the data before the random

move also simplified the validation. In general, the number

of null decisions (move requests) increased as the belief

threshold became closer to one and also as the deadline

became shorter (Fig. 6). This behavior was expected, because

more decisions should time out as the thresholds become

harder to reach within a maximum allowed decision time.

The principal effect of allowing repositioning of the finger-

tip is improved decision accuracy (Fig. 4; colored lines) and

reaction times (Fig. 6B; colored lines). The most dramatic

improvements were for the shortest considered deadline of

5 taps (Fig. 4; blue line), which reduced the average shape

errors to about 1.4 mm and the average position errors to

about 0.1 mm at the highest belief thresholds (compared

with 2.1 mm and 0.6 mm originally). This was accompanied

with an improvement in reaction time, provided the belief

threshold was not too large. Both effects combined together

to give a pronounced improvement in the speed-accuracy

plots of decision making (Fig. 5; colored lines).

These improvements in reaction speed and decision ac-

curacy are a consequence of rejecting positions where the

perception is poor or ambiguous. Although there is a cost

to the reaction time in losing the data from the previous

position, this can potentially be outweighed by the benefits of

a location with faster and more accurate decisions. Therefore,

Bayesian perception can give a natural way to assess the

quality of a location for perceptual decisions, which can be

utilized to re-position the sensor for improved perception.



IV. CONCLUSIONS

We have implemented a brain-based framework of

Bayesian perception in a robot using a biomimetic sensor

based on the human fingertip. For this study, the touch sensor

was mounted on a dedicated positioning robot to test its

capabilities in a controlled setting (Fig. 1A). For test stimuli,

we used five cylindrical steel rods with diameters ranging

from 4 mm to 12 mm (Fig. 1B) offset by a 16 mm range of

positions relative to the fingertip. The robot gathered sensory

data by tapping its fingertip against the curved surface.

These experiments were suitable for characterizing both the

shape and position-sensing capabilities of the iCub fingertip,

and inform about the real-time capabilities of Bayesian

perception with this tactile sensor.

Using a simple ‘fixed-position’ instantiation of Bayesian

perception, the fingertip sensor could reach mean accuracies

of ∼2 mm for the rod diameter and below 1 mm for relative

fingertip-object position with just a few taps within a single

position class. Given the taxel spacing was around 4 mm, the

fingertip could achieve positional accuracy with mean errors

less than 25% of the spatial resolution between taxels. In the

biological literature, achieving a perceptual accuracy that is

better than the sensor resolution is known as hyperacuity.

Progressing to a more complex reactive implementation

of Bayesian perception, we found substantial improvements

in shape and position discrimination when the robot could

respond to the sensory data by randomly re-positioning the

fingertip after a deadline. Hence, this movement strategy per-

mitted an even greater degree of hyperacuity in the positional

perception. The reaction time in Bayesian perception as-

sessed the quality of a location for perceptual discrimination,

which could be utilized to re-position the sensor for improved

performance. Several other lines of enquiry remain open

for improving robot perception. For example, the reactive

perception considered here used random moves rather than

purposively trying to improve the decision accuracy. In our

opinion, significant gains could arise from allowing these

movements to be guided with active perception [20], [21],

such as by deciding the best move to disambiguate competing

hypotheses during the perceptual process.

To the best of our knowledge, we have presented the

first explicit demonstration of hyperacuity in robot touch.

Hyperacuity is a generic aspect of animal perception, and

while best known in vision also occurs for tactile perception.

For example, Braille reading involves perceiving spatial

patterns of a finer resolution than the spacing between

touch receptors in the fingertips [22]. The hyperacuity in the

present robot experiment was a consequence of the method

of Bayesian perception being capable of utilizing the graded

population response across taxels to interpolate between taxel

positions. It arose from both the implementation of Bayesian

perception and the morphology of the artificial fingertip

sensor, coupled together by the statistics of the stimuli, and

hence we refer to it as embodied hyperacuity. We expect

that tactile hyperacuity will be a general phenomenon when

Bayesian perception is applied to positioning tasks beyond

those considered here, and could be a key consideration in

the design of tactile sensors (as it is in the composition of

their biological counterparts).
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