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Naive Bayes novelty detection for a moving, whiskered robot

Nathan F. Lepora, Martin J. Pearson, Ben Mitchinson, Mat Evans, Charles Fox,

Tony Pipe, Kevin Gurney and Tony J. Prescott

Abstract— Novelty detection would be a useful ability for any
autonomous robot that seeks to categorize a new environment
or notice unexpected changes in its present one. A biomimetic
robot (SCRATCHbot) inspired by the rat whisker system was
here used to examine the performance of a novelty detection
algorithm based on a ‘naive’ implementation of Bayes rule.
Naive Bayes algorithms are known to be both efficient and
effective, and also have links with proposed neural mechanisms
for decision making. To examine novelty detection, the robot
first used its whiskers to sense an empty floor, after which it
was tested with a textured strip placed in its path. Given only
its experience of the familiar situation, the robot was able to
distinguish the novel event and localize it in time. Performance
increased with the number of whiskers, indicating benefits from
integrating over multiple streams of information. Considering
the generality of the algorithm, we suggest that such novelty
detection could have widespread applicability as a trigger to
react to important features in the robot’s environment.

I. INTRODUCTION

A major goal of robotics is to build autonomous devices

that can explore and recognize their environment. Novelty

detection could be a key component for achieving these

tasks, by allowing the robot to notice environmental features

that it has never experienced before; these features can then

be prioritized for further exploration, after which they are

recognizable and thus no longer novel. Another aspect of

novelty detection is that, like their biological counterparts,

successful biomimetic robots should be able to identify and

react to a changing environment. Novelty detection offers a

general way to notice such changes and trigger an appropriate

change in behavior, such as avoidance or approach.

The present approach to novelty detection is based on a

previous study of texture classification [1], which used data

from a moving robot with biomimetic whiskers that sensed

various floor textures [2]. Given training data from each class

of texture, a test dataset was then classified into one of

the previously experienced categories using a naive Bayes

classifier. This classifier used Bayes rule to calculate the

(posterior) probabilities of the test data being from each class

of training data, ‘naively’ assuming statistical independence

to simplify the computation. Such classifiers relate to several

influential proposals for how humans and animals integrate
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evidence to make decisions [3]–[6] and are renowned for

being effective despite their computational simplicity [7], [8].

This effectiveness was confirmed in the above study, with the

classifier achieving success rates close to 90% and many of

the errors actually due to data artifacts (such as collisions

with objects) rather than misclassifications.

Here we adapted the naive Bayes classifier to novelty

detection and applied it to data from a biomimetic robot

(SCRATCHbot) inspired by the rat whisker system [9]–[11].

The key idea is that whereas classification recognizes which

previous event a new experience is most like, novelty de-

tection finds when a new experience is not like a previous

one. Novelty, or outlier, detection has many practical ap-

plications, such as discovering financial fraud or computer

hacking, using a wide variety of statistical, neural network

and machine learning methods [12]–[15]. The naive Bayes

method is appropriate for making efficient decisions over

multiple channels of time series data, motivating its present

use in a mobile robot with multiple whisker sensors.

To test the applicability of naive Bayes novelty detection

for robot task, we used an experimental approach in which

a robot was first trained in a familiar environment and

then tested in a novel situation (Fig. 1). In training, the

Fig. 1. Novelty detection with SCRATCHbot.
Panel A shows a control trial, where the robot traversed a plain vinyl floor
while sweeping its whiskers across the surface. Panel B shows a test trial,
where a textured strip was placed in the robot’s path.



Fig. 2. Example training and test data.
Panels A-D show the X- and Y -sensor measurements for one left and one right whisker in trial 2 of the training data. Panels E-H show the corresponding
measurements for the same whisker in trial A1 of the test data. The data was preprocessed to remove the low-frequency artifact due to whisker self-motion.

moving robot performed some trials in which it swept its

whiskers across an empty floor. For testing, the robot then

had to detect a textured strip placed in its path. In all cases,

the detection algorithm distinguished the novel event based

only on previous experience of the familiar situation, and

accurately localized this event in time.

II. MATERIALS AND METHODS

A. Data collection

The SCRATCHbot platform [9]–[11] consists of three

main components: a head, onto which the whisker arrays

are mounted; a neck, that allows the head to move in-

dependently from the body; and a body that contains the

computing resources, locomotion systems and power supply.

The processing architecture of the robot is based on the

neural pathways identified in the rat whisker system. Neural

structures such as the trigeminal sensory complex, superior

colliculus and basal ganglia are modeled and developed in

software and integrated into a unified system for testing

using the BRain And Head Modelling System (BRAHMS)

execution framework [16].

The head was designed to carry six independent columns

of three whiskers, with each column driven in the anterior-

posterior axis by a small motor. These columns are arranged

in three-by-three arrays, projecting from the left and right

sides of the head. To measure deflections of the whisker shaft

caused by environmental contact, a small magnet is bonded

to the base of each whisker, so that a Hall effect sensor can

sample the whisker displacements in two directions (denoted

here by X and Y ). The sensory information from each array

is passed to the computing resources on the platform body

via serial buses. For the present experiment, the data was

sampled and recorded at 2kHz.

Each of the bilateral arrays of whiskers has an associated

microcontroller to sample all nine whiskers and to control the

rotation of the three columns and tilt angle of the array. This

rotation was controlled with the Whisking Pattern Generator,

based on a model of the activity underlying the rhythmic

whisker motion observed in behaving rats [11], [17]. This

self-motion introduces a low-frequency artifact in the whisker

signal that will make object detection more difficult. Here

we preprocessed the whisker data by simply subtracting the

low-pass filtered signal off line (using a gaussian smoother

of width 5ms). Note, though, that more general and effective

adaptive noise cancelation methods are becoming available

for this platform that can achieve the subtraction online [18].

The experimental setup for investigating novelty detec-

tion consisted of a length of vinyl flooring over which

SCRATCHbot traveled whilst sweeping all eighteen whiskers

across this surface. As the robot moved forwards, its head

also angled from side-to-side to more fully sample the

environment in front of it. In addition to this periodic left-

right motion, the whiskers also whisked back and forth

according to their pattern generator. This generated a total of



thirty six data streams (18 whiskers each with two directions)

about the floor surface over which the robot was traveling.

Three experimental situations were considered, using eight

trials of 10 seconds. The first two trials were the control sit-

uation, and consisted of just normal vinyl flooring (Fig. 1A).

The next three trials (A1-A3) had the robot travel over a thin

strip of rough textured surface placed over the vinyl floor,

occurring between about four and seven seconds after the

beginning of the trial (Fig. 1B). The final three trials (B1-

B3) were similar to the previous three, but instead used a

smoother strip that was harder to distinguish from the floor.

The goal of the novelty detection task is for the robot to

notice the textured strips in trials A1-A3 or B1-B3 based

only on its previous experience of the two control trials. In

this sense, the two control trials are considered as training

data on which to tune the novelty detection algorithm, and

the other six trials are test data for validating its performance.

B. Analysis methods

1) Probability distributions: The methods described here

rely on using the probability distributions of the measured

time series values, calculated from the empirical frequency

with which each value occurs in training data of the control

(familiar) situation. These sensor measurements are sampled

in time at frequency fs and their range is binned into N
equal-width intervals.

Denoting the training data of the familiar situation by F,

the conditional probability of a quantized measurement q
being from it is

P (x|F) ≡ P (q(x)|F) =
nq∑N

q=1 nq

, (1)

where nq is the total number of times that the value q occurs

in the quantized time series. The conditional probability

P (x|F) is commonly referred to as a likelihood of the sensor

measurement x occurring.

Note that to reduce sampling bias from having too few

samples in the distribution tails, the normalized frequencies

nq were convolved with a Gaussian smoother of width 10

quantized intervals before applying Eq. 1, as described in [1].

2) Bayes novelty detection (single measurement): Given a

new set of test data, Bayes Theorem states that the (posterior)

probability P (F|x) for a measurement x being drawn from

the training data is proportional to the likelihood of that

measurement P (x|F) estimated from the training data

P (F|x) =
P (x|F)P (F)

P (x)
, (2)

where P (F) is the (prior) probability of the data being

familiar and P (x) is the (marginal) probability of measuring

x given no other information.

Here we consider a novelty detector that finds when the

posterior probability for a measurement x being familiar

passes below a fixed threshold θ weighted by the marginal

probability. By Bayes theorem, a measurement x is novel if

P (F|x) =
P (x|F)P (F)

P (x)
<

θ

P (x)
⇒ Novel. (3)

For the following arguments, it is convenient to use the

logarithm of the posterior probability, which since log(x)
(monotonically) increases with x does not affect the inequal-

ity in Eq. 3. Then with a little algebra, the above novelty

condition can be rewritten in terms of the log-likelihood

logP (x|F) < η ⇒ Novel, (4)

where the novelty threshold η = log[θ/P (F)] implicitly

contains also the contribution from the prior probability.

How is the novelty threshold determined? A simple cri-

terion followed here is to suppose that it is the minimum

value of η for which the novelty detector in Eq. 4 would

always infer familiarity when tested on the training data.

This threshold lies just above the log-likelihood values for

all single measurements x,

η = sup
x∈F

logP (x|F). (5)

where sup denotes the supremum (least upper bound) over

the familiar training set F .

3) Naive Bayes novelty detection (many measurements):

A potentially more powerful method for detecting novelty is

to make the decision over many measurement values, either

in time and/or in parallel across different whisker sensors.

The above arguments using Bayes theorem are unaffected

if the single measurement x is replaced by a time series

x1, ...,xn, of vectors xi = (x
(1)
i , ..., xK

(i)). Then the novelty

detection criterion from Eq. 4 becomes

logP (xns
, · · · ,xnf

|F) < η, (6)

and the novelty threshold from Eq. 5 is now

η = sup
xi∈F

logP (xns
, · · · ,xnf

|F), (7)

with ns ≤ i ≤ nf and ns, nf the window start and finish.

An important simplification occurs if all these measure-

ments are assumed independent, because the overall con-

ditional probability factorizes into a product of individual

conditional probabilities,

P (xns
, · · · ,xnf

|F) =

K∏

k=1

nf∏

i=ns

P (x
(k)
i |F). (8)

Consequently, the classification in Eq. 6 can be rewritten as

K∑

k=1

nf∑

i=ns

logP (x
(k)
i |F) < η, (9)

and the novelty threshold is now

η = N
K∑

k=1

sup
x
(k)
i

∈F

logP (x
(k)
i |F), (10)

with N = nf − ns + 1 the length of the time-series.

The novelty detector finds when the summed log-likelihoods

passes a novelty threshold, given by N times the sum of the

individual thresholds (Eq. 5) over all dataset dimensions.



Fig. 3. Training data probability distributions.
These probabilities were calculated from the empirical frequencies with
which the measurement values occurred in the training data. In total, there
were 36 probability distributions, here grouped by sensor (X or Y ) and
whisker position (left or right).

III. RESULTS

A. Properties of the (familiar) training data

Two control trials for training were considered as examples

of the familiar situation, in which the moving robot swept its

whiskers over a plain vinyl floor (top panel of Fig. 1). This

data was preprocessed to reduce the low frequency artifact

due to the whiskers’ periodic motion relative to the floor.

Example traces are shown in Figs 2A-D for the X- and

Y -sensor measurements of the whisker deflection, showing

one left and one right whisker. The peak reading for the X-

sensor was about 0.2V and that for the Y -sensor about 0.05V,

consistent with the greater displacement of the whiskers in

the horizontal plane during whisking. Visual inspection of

recordings from the other whiskers and others trial revealed

no obvious qualitative differences from those in Fig. 2.

Data from the two training trials were pooled to determine

the probability distributions of the measured X- and Y -

sensor voltages for each of the 18 whiskers. The range of

sensor voltages were binned into widths of 2mV and the

number of values in each bin totaled. These totals are the

empirical frequencies of the measurements, from which the

probability distributions of the sensor values are estimated

(Methods, Eq. 1). All 36 probability distributions resembled

Gaussian profiles centered on zero deflection (Fig. 3). These

probabilities are interpreted as the likelihoods of the X- and

Y -sensor measurement for each whisker.

B. Novelty detection over (non-familiar) test data

Given test data that may include a new event, the condi-

tional probability distributions over the familiar training data

(Fig. 3) can be used to estimate the occurrence of a novel

event. This estimation uses a novelty score calculated with

the naive Bayes’ rule (Methods, Eq. 2), which represents

the log-probability that the test data was drawn from the

same distribution as the training data. (More precisely, this

score is the log-posterior probability estimated from the log-

likelihood for each test data measurement.) The utility of

the naive Bayes assumption is that allows the evidence for

novelty to be summed over both the time-window and differ-

ent whisker sensors (Methods, Eq. 9). In the following, the

temporal window was fixed at 0.5 seconds to be consistent

with related work on texture classification [1].

The novelty score was first calculated over the familiar

training data, using the likelihood determined from that same

training data. For both training trials, this resulted in a con-

stant log-posterior value overlaid with random fluctuations

(Fig. 4A). A novelty threshold η was then determined as the

minimum log-posterior value over both training trials, corre-

sponding to the most unlikely window of training data. Note

that the novelty scores plotted in Fig. 4 show the log-posterior

normalized by this threshold, and thus the novelty threshold

Fig. 4. Novelty score over training and test data.
Panel A shows the novelty score for the training data, while panels B and C
are for the two types of test data. This novelty score was the log-posterior
probability for a window of data being from the conditional probability
distributions in Fig. 3, normalized by the threshold for novelty detection.
The approximate times of encountering the novel texture are shown in gray.



Fig. 5. Times of novelty detection.
Panel A shows the times when the novelty score in Fig. 4 passes the novelty
threshold for the six test trials using all 18 whiskers. Panels B and C shows
the corresponding times for only 9 whiskers grouped to the left or right.
Novelty detections are depicted by the bold lines.

is depicted at unity (dashed line); in addition, because the

novelty threshold is negative, the log-posterior/threshold ratio

is less than unity over the training data.

This normalized novelty score was then calculated over the

six trials of test data, again using the likelihood determined

from the training data. As described in methods, this test data

consisted of the vinyl floor (like the training data), but with

the robot moving over a novel strip in the central portion of

the trial (robot pictured in Fig. 1B). Two types of strip were

considered: type A, roughly textured, and type B, a smoother

texture more similar to the vinyl floor itself. There were three

test trials, A1-3 and B1-3, for each strip.

In trials A1-A3, for the roughly textured strip, the normal-

ized novelty score rose above the unit threshold in the central

portion of each trial and was below it otherwise (Fig. 4B).

Thus, by only having knowledge of the familiar situation,

the robot is able to tell that a novel event has occurred and

accurately localize it in time. A graphical depiction of the

associated novelty detection is shown in Fig. 5A. Novelty

detection is clearly a success in this situation.

In trials B1-B3, for the smoother strip, the normalized

novelty score again rose above unit threshold in the center

of the trial, but was less pronounced than for the textured

strip (Fig. 4C). The characterization of novelty now seems

more difficult, presumably because the strip is similar to the

familiar situation. Examining the graphical depiction of when

novelty detection occurs (Fig. 5A), the principal detection

times are at the initial and final contacts with the strip.

Because the strip is placed over the floor, it seems likely

that the novelty score is detecting the sharp contact with

its edges. In contrast, the rest of the strip is similar to the

familiar situation and is thus not detected as novel.

C. Reliability of novelty detection with whisker number

Thus far the novelty detection has been both trained on

and tested against data using all 18 whiskers. Given that

each whisker sensor measures both the X and Y deflection,

this detection uses a total of 36 distinct information streams.

To examine whether all this information is necessary,

we checked whether novelty could be detected reliably

using only single whiskers. For the present platform and

experiments, this was found to not give a reliable way

of detecting novelty, with many false negatives and false

positives resulting. This outcome was expected because the

novel whisker signals could not be obviously distinguished

from the familiar signals by eye (e.g. Fig. 2).

Next, we considered an intermediate test using half of

the whiskers, grouped to either the left or right sides of the

robot’s head. The detection performance for the three whisker

groups (all, left and right) is depicted graphically in Fig. 5.

The top panel (Fig. 5A) shows the control group using all

whiskers. The plotted bold lines show when the normalized

novelty score rose above unit threshold for the six test trials

from Figs 4B,C. As discussed above, the novel events in

trials A1-A3 were easily distinguishable, whereas only the

initial and final contacts were detectable in trials B1-B3.

For the left whiskers, the novelty detection (Fig. 5B) was

slightly over-sensitive compared with the control group of

all whiskers. In consequence, there were false-positives in

trials A2 and A3, although these inaccuracies were somewhat

compensated by more reliable detections in trials B1-3. For

the right whiskers, the novelty detection (Fig. 5C) was far

poorer that the control group. In particular, trial A1 was

detected as novel across most of its duration and trials B1

or B3 had no novel events. Therefore the left whisker group

was slightly over-sensitive to novelty, while the right group

was a poor detector of novelty.

This unreliability with fewer whiskers indicates that the

naive Bayes novelty detector performs best if it is given more

information, as one might expect intuitively. Given there

were no discernable difference between the left and right

whiskers from the training data, there was also no obvious

way to choose the better (left) group before testing. Instead,

the best decisions were made by pooling over all data. Then

if a misleading signal occurred in one data stream, it could be

outweighed by reliable information from the other channels.

IV. DISCUSSION

The performance of a naive Bayes novelty detection

algorithm was examined in several experiments using a

biomimetic robot (SCRATCHbot) based on the rat whisker

system. These experiments consisted of two control trials,



in which the robot swept its whiskers over an empty floor

to characterize a familiar situation. These were followed by

six test trials in which a strip was placed across the robot’s

path, with the first three using a roughly textured strip easily

distinguishable from the floor and the last three using a

smoother strip more similar to the floor. Using information

from all 18 whiskers, the detection algorithm was able to

identify the novel event in all test trials. In general, the

textured strip had a strong novelty signature that was easy

to identify, whereas the smoother strip was mainly evident

from the initial and final contacts with its edge.

A crucial aspect of the detection algorithm was that it

could integrate information over multiple streams of whisker

data. Initial results were thus obtained with all 36 channels

(18 whiskers with two directional displacements each). To

check the reliability of the detection if less data were used,

novelty was reassessed using only 9 whiskers on either the

left or right sides of the robot’s head. Although the novel

event was still noticeable in many test trials, the results

were degraded with many false-positive and false-negative

detections resulting. Meanwhile, testing with single whiskers

gave no useful information about novelty. In general, robust

decisions resulted from pooling as much data as possible,

which allowed a misleading signal in one channel to be

outweighed by the other evidence.

A. A common system for novelty detection and classification

The present approach to novelty detection is based on a

classification method that was previously used to recognize

textures [1]. Because the same mathematical structure under-

lies these two types of algorithm, both tasks can in principle

be achieved with a common computational architecture. Thus

a robot could test for recognition (classification) and non-

recognition (novelty detection) of its environment using a

single, hybrid classification/novelty system.

For example, suppose a robot navigates using whiskers to

sense texture. It has previously been trained on some repre-

sentative surfaces, say smooth vinyl and rough carpet, and

the memory of each texture is stored as the log-likelihoods

of the sensor measurements. On each set of training data,

the largest novelty threshold that characterizes this data as

familiar has also been calculated and stored. Now, as the

robot moves around its environment, it continually streams

data to two parallel modules, one for vinyl and one for

carpet, that each calculates a log-posterior from their stored

log-likelihoods and thresholds this value to test for novelty.

The robot can then make various inferences from these

results: to recognize vinyl or carpet, it identifies the largest

log-posterior; or to determine novelty, it examine whether

both modules conclude novelty. These decisions can trigger

different behaviors, such as continued navigation in a familiar

environment, or exploration/avoidance when there is novelty.

B. Novelty-triggered learning

How might an autonomous robot use novelty detection to

characterize a new environment? One method would be to

use novelty detection to trigger an exploring behavior, where

novel aspects of the environment are examined repeatedly

to provide training data for future classification. This ex-

ploration ceases when the environment no longer appears

novel, as judged from applying the novelty detector trained

by the exploration data to the environment being explored.

The robot can then return to its normal behavior until novelty

is again encountered. Such a behavioral strategy would, in

effect, intrinsically motivate the robot to reduce the perceived

novelty of its environment.
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