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Hippocampus as unitary coherent particle filter

Charles Fox and Tony Prescott

Adaptive Behaviour Research Group

Department of Psychology, University of Sheffield

charles.fox@sheffield.ac.uk

Abstract— We present a mapping of the hippocampal for-
mation onto a Temporal Restricted Boltzmann Machine [23]
based architecture, running a deterministic version of Gibbs
sampling, and extended with a lostness detection and recovery
circuit modelled on subiculum and septal acetylcholine (ACh).
The mapping approximates Bayesian filtering, which infers both
auto-associative de-noised percepts and temporal sequences, the
latter including sequences of places during navigation. Inference
may be viewed as a neurally implemented particle filter with
a single particle – as suggested previously [5] as a purely
behavioural animal model.

I. INTRODUCTION

The classical view of hippocampus is as a single loop.

The principal input structures of the hippocampus are the

superficial layers of Entorhinal Cortex (ECs). ECs projects

to Dentate Gyrus (DG) which is believed to sparsify the

encoding of ECs. Both ECs and DG project to CA3, which

also receives strong recurrent connections that are disabled

[10] by septal ACh. There is a recently-discovered back-

projection from CA3 to DG [20]. CA3 and ECs project to

CA1, which in turn projects to the deep layers of Entorhinal

cortex, ECd. ECs, CA1 and ECd outputs appear to share

a coding scheme, as evidenced by one-to-one topographic

projections. In contrast, DG and CA3 outputs are thought

to work in a second basis or latent space. There is a also

a second loop. ECs and CA1 project to Subiculum (Sub),

which projects to the midbrain Septum (Sep) via fornix.

Septal ACh and GABA fibres project back to all parts of

hippocampus.

We make a distinction between two broad schools of hip-

pocampal modelling: spatial sequences, and auto-associative.

They differ in their representation of the world, and in the

role attributed to the recurrent connections.

Spatial sequence models (e.g. [21], [2], [4]) are based

on the existence of rodent cells responding to place. They

use the activity of the ith CA3 (or sometimes CA1) cell to

represent a strength of belief, P (i), in the agent being at the

ith discrete place,

CA3(i) = P (i). (1)

Weights connect the place cells to sensory inputs, and possi-

bly to features extracted from inputs by DG. Asymmetric

recurrent CA3 weights may then specify probabilities of

moving from one place to another. Assuming that the places

are mutually exclusive and exhaustive, such models are simi-

lar to the Hidden Markov Model which we discuss in section

III, inferring a complete distribution of place probabilities

{P (i)}i from a vector of inputs and prior transitions.

In contrast, auto-associative models based on primate

physiology [15], [12], [18], [22] use vector-coded discrete

or continuous attractors to represent a single (‘unitary’) but

complex (‘coherent’) state of the world. For example, each

unit in a Hopfield network [12] may correspond to the

presence of an object, and the network stores and recalls

patterns of many objects which occur together. Thus an

episode corresponds to a collections of facts experienced

simultaneously, which may include the agent’s location and

its percepts. To construct stable attractors, the recurrent

connections are generally assumed to be symmetric, wij =
wji (there is no biological evidence for this assumption), and

trained so that an energy function,

E =
∑

ij

wijCA3(i)CA3(j), (2)

is optimised at stored episodes. By encoding the world state

as a vector, we note that only a single world state,

arg max
{i}

P ({i}i), (3)

can be represented at each point in time – not a probability

distribution over world states.

A recent model in machine learning, the Temporal Re-

stricted Boltzmann Machine (TRBM) [23], has been pro-

posed [3] as a hippocampal model, and uses a rate-coded,

mean-field assumption to approximate whole belief distri-

butions over a vector-coded CA3. This combines aspects

of both the above modelling approaches. Our model uses

a similar architecture to the TRBM but uses a different

inference algorithm, and extends the architecture with a

lostness detection and recovery module, mapped to Sub

and cholinergic Sep functions. Our model is also similar

to that of Samu et al. [19] which uses a CA to correct

rate-coded grid cells. As with the TRBM, this model treats

CA as recognising and de-noising configurations of inputs.

Our model differs from Samu et al. by specifying precise

probabilistic semantics; adding recurrent CA3 connections;

using sampling instead of rate coding; adding DG, CA1, Sub

and Sep; and de-noising the whole input vector rather than

just the inputs that are grid cells.

We do not model biological learning in the present study,

rather we set weights by hand and with a machine learning

algorithm. The aim is purely to illustrate inference and

lostness detection and recovery in a pre-trained network.

Previous experiments and models [10] suggest that septal

ACh is involved with learning: we suggest an additional,

complementary function for this signal in lostness recovery.



Fig. 1. Hippocampal network architecture used in the model. Connections
are labelled with UML notation indicating many-to-many fully connected
links (* → *), one-to-one links (1 → 1) and many-to-one links (* → 1).
Thick lines are ACh projections, thin lines are glutamate.

II. BAYESIAN FILTERING

The objectives of both auto-associative and spatial se-

quence memories are combined by a general Bayesian filter

with noisy observations, which infers the hidden state of the

world xt at each time from a series of noisy observations

zt = yt + ǫt of ideal, deterministic sensor states yt = f(xt)
through the update

P (xt|z1:t) =
1

Z

(

∑

yt

P (zt|yt)P (yt|xt)

)

×





∑

xt−1

P (xt−1|z1:t−1)P (xt|xt−1)



 . (4)

where Z is a normalising coefficient. Such a filter is further

able to provide a de-noised version of the sensors,

P (yt|z1:t) =
1

Z

∑

xt

P (yt|xt)P (xt|z1:t). (5)

which is a form of auto-association, but one which also

incorporates prior knowledge from the previous step in a

sequence of inferences. If part of the sensor observation

relates to place then spatial sequences can be captured, but

also sequences of other senses.

We would like to map the Bayesian Filter to a high-level

model of the hippocampus circuitry, to allow it to perform

both auto-associative and spatial sequence inference. Let us

first consider how a purely spatial sequence, place-cell based

model may be mapped onto such a filter. In this case, the

state of the world is a single variable representing the agent’s

location, rather than a complex coherent set of associations.

The ith CA3 cell could each represent the ith location,

CA3t(i) = P (xt = i|z1:t), (6)

and each of the EC and DG cells zt(j) = (ECt, DGt)
represents the presence or absence of a sensory feature.

As the hidden states are exhaustive and mutual rivals, this

special case of the Bayesian filter is a Hidden Markov Model

(HMM). Neural HMM mappings may be subsequently be

constructed [17] so that the activation of the CA3 cells

can represent the location posteriors. Such mappings allow

optimal tracking during navigation, assuming a set of discrete

places, but unfortunately cannot account for the presence of

other CA3 cells in the hidden state such as those found in

biology responding to odours [6] and objects [7].

III. UNITARY COHERENT PARTICLE FILTERING

Auto-associative models, on the other hand, can represent

complex hidden states of the world, such as:

isAt(self,location1) AND isAt(edge,myRight) AND isVisi-

ble(light) AND isAt(light,location3),

which denotes the agent’s own allocentric position at

location 1, the egocentric presence of a boundary on the

agent’s right, the immediate visibility of light, and the

position of a light in allocentric space. Each logical term can

be represented by the activation of a CA3 cell, and thus the

conjunction of terms by the activity of the whole CA3 vector.

Such representation is unitary because it represents a single

state of the world, rather than a pdf over many states. It is

coherent because it comprises several facts which mutually

cohere with one other.

Such a scheme can represent exponentially more unique

states than the HMM mapping above, but by forfeiting

the ability to represent a belief distribution over states.

The presence of cells responding to particular facts is in

agreement with the biological CA3. We would thus like to

utilise such representations in a hippocampus model, as in

auto-associative memories. But we would also like to retain

an ability to track sequences of states, including locations,

as in the HMM mapping.

We combine these ideas using a variant of the Temporal

Restricted Boltzmann Machine (TRBM) architecture [23].

The TRBM assumes weight matrices Wxz and Wxx, Boolean

vectors for the hidden state xt(i) ∈ {0, 1} and observations

zt(j) ∈ {0, 1}, and specifies joint probabilities,

P (xt, xt−1, zt) =

1

Z
exp

∑

t

(−xtWxxxt−1 − xtWxzzt − bxxt − bzzt), (7)

where b are biases that may be viewed as specifying the

priors on each of x and z. If we extend each population

vector v to a vector v′ = (v, 1), appending an additional

node which is always on, then the biases may be moved

inside the weight matrices:

P (xt, xt−1, zt) =
1

Z
exp

∑

t

(−x′
tWx′x′x′

t−1 − x′
tWx′z′z′t).

Assumption 1. Unlike the standard TRBM – which uses

rate coding – we will assume when inferring xt that both the

sensors and previous hidden state are observed. That is, we

assume that the previous inference step produced an exact,

correct estimate x̂t−1 = xt−1. Under this assumption, all



links in the TRBM graphical model [23] become effectively

directed, and we may write

P (xt|xt−1, yt) =
1

Z
exp

∑

t

(−x′
tWx′x′x′

t−1 − x′
tWx′z′z′t).

A previous mapping of TRBM to hippocampus [3] used the

rate-coded, variational approximation to the full posterior,

Q(xt) =
∏

i

Q(xt(i)) ≈ P (xt|z1:t), (8)

as in the original TRBM [23]. In contrast, we suggest the

following update as a model of CA3 function,

CA3t = x̂t ← arg max P (xt|x̂t−1, zt)

= {x̂t(i) = (P (xt(i)|x̂t−1, zt) >
1

2
)}i (9)

This is a deterministic update which may be viewed as the

zero-temperature limit of an annealed Gibbs sampler. As we

update to a unitary coherent state at each time step, all nodes

are Boolean valued and the conditioning on x̂t−1 becomes

definite, satisfying Assumption 1. Therefore the cells x̂t(i)
become independent over i and may be updated locally and

individually, using sigmoidal threshold-and-fire units with

P (xt(i)|x̂t−1, zt) =
P (xt(i)|x̂t−1, zt)

P (xt(i)|x̂t−1, zt) + P (¬xt(i)|x̂t−1, zt)

= sig(Wx′x′(i)x̂′
t−1 + Wx′z′(i)z′t), (10)

where W (i) denotes the ith row of matrix W , sig(x) =
(1 + exp(−x))−1 is the sigmoid function, and the output of

eqn. 10 is used with a threshold of 1
2 to set the Boolean

vector x̂t as in eqn. 9. This tracking method may be viewed

as a particle filter (PF) with a single particle, and the zero-

temperature annealed Gibbs distribution as its proposal dis-

tribution. The particle has a complex, vector-coded coherent

state, hence we call the algorithm a unitary coherent particle

filter (UCPF). Unitary particle filters have previously been

proposed as a model of external behaviour [5] – here we give

an internal neural implementation which could give rise to

such behaviours.

We map the noisy inputs to the combined ECs and

DG, where the DG activations are functions of the ECs

activations, zt = (ECst, DGt(ECst)). Finally we map the

estimated de-noised output to ECd, ŷt = ECdt. Each neural

population is a Boolean vector at each discrete time step t,

which may be viewed as an abstracted spike or absence of

spike within a theta cycle.1

We will later describe subpopulations within each region.

For example, ECs contains a subpopulation of grid cells,

which in turn is indexed by 2D row and column coordinates

r, c. We use chains of functions to index such popula-

tions, for example, ECs denotes the whole ECs population,

ECs(grid) denotes the subpopulation of grid cells, and

ECs(grid)(r, c) denotes a particular grid cell at row r

1The precise timing of theta oscillations and phase-precession within
them in hippocampus have attracted much modelling interest but we do
not consider them in the present model.

and column c. We may also write zt(ECs)(grid)(r, c) to

emphasise that ECs is itself a subpopulation of the input zt.

IV. LOSTNESS DETECTION AND RECOVERY

A major problem with particle filters having small numbers

of particles – and especially a unitary particle – is getting lost.

PFs approximate the posterior at each step by a small number

of samples, and the UCPF approximates it with a single

sample. If the sample set drifts away from the true state,

then it becomes difficult or impossible to regain tracking.

An approach to dealing this problem used in robotics [13]

is to monitor the performance of the filter and heuristically

detect when tracking is lost, for example by thresholding a

moving average,

et = α
∑

i∈¬o

(z(i)t − ŷ(i)t)
2 + (1− α)et−1, e0 = 0, (11)

where the sum ranges over the non-odometric inputs only

(discussed further in section V). If tracking is lost, then priors

(and odometry-dependent sensors, discussed in section V)

should be disabled and an alternative proposal distribution

used, based only on immediate sensor likelihoods.

We hypothesise that the Subiculum-Septum circuit per-

forms such monitoring. We model CA1 as performing partial

decoding of the CA3 hidden state into the de-noised, poste-

rior beliefs about the sensors, which are then relayed or fully

decoded in ECd. Sub is then well-placed to compare the

de-noised CA1 information against the original ECs input,

receiving one-to-one connections from both regions. If the

posterior CA1 decodings are sufficiently different from the

ECs likelihoods for a period of time, this indicates loss of

tracking. The cholinergic projections from Sep, activated via

Sub, are especially well-placed to disable the CA3 priors

as described above, as they are known [10] to disable the

recurrent connections in CA3.

V. TREATING ODOMETRY AS NOISY GPS OBSERVATIONS

Including odometry information in the sensory input zt is

somewhat problematic for an HMM-like architecture. In the

Bayesian filter, inputs must be independent of one another

conditioned on the hidden states. One allowable type of place

sensor would be a noisy GPS system, which gives noisy

estimates (θt + ǫt) of pose θt, being a vector comprised

of 2D position and angular heading. However animals do

not posses such a sensor, rather they must integrate a series

of noisy differential odometry measurements ∆θt + ǫt to

obtain a sense of location. If summed naively, a sequence of

heavily error-correlated estimates of pose is obtained. Such

correlation violates the Bayesian filter requirements.

To force the place and heading observation inputs to

respect HMM semantics, our ECs assumes that that the

previous hippocampal output estimate of pose is so accurate

as to be perfect, so when added to the latest differential

odometry gives an input equivalent to a noisy GPS obser-

vation, appropriate for the Bayesian filter. This is a similar

assumption as used in the UCPF update: assuming that the

previous inference was perfect. Of course – as with the UCPF
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Fig. 2. Plus-maze environment used in the demonstration.

update – the noisy-GPS assumption will break when tracking

is lost. We already have a system for lostness detection

described above. So its output can be reused to completely

disable the noisy GPS input until tracking is regained, in

addition to its role in disabling the prior in the UCPF itself.

To provide the capability of switching between full in-

ference (using odometry, other senses, and CA3 priors)

and inference from odometry-independent sensors only, care

must be taken in setting up the TRBM and its biases in

particular. We partition the input vector zt into a pure sensory

component zt(¬o) which is independent of all odometry, and

a component dependent on odometry, zt(o). These vectors

are extended to z′t(¬o) and z′t(o) respectively, by appending

a 1 at the end, to provide separate bias terms. We partition

the de-noised version yt similarly. (This is an orthogonal

partition to (zt(EC), zt(DG)), as both ECs and DG will

contain both odometry dependent and independent variables.)

We then define a global bias on the hidden TRBM nodes,

bx = sig−1(P (x)), (12)

yielding the first-order priors on the hidden states under the

Boltzmann distribution,

P (x) =
1

Z
exp bx. (13)

Next we define separate sets of weights for the three

information sources, conditioning on the global bias, so that

the joint posterior is

log ZP (xt, xt−1, zt) =
∑

t

(bx + x′
tWx′x′x′

t−1 + x′
tWx′z′(¬o)z(¬o)′t + x′

tWx′y(o)′z(o)′t).

As addition in the weight domain corresponds to distribu-

tion fusion in the probability domain, the terms in this sum

correspond exactly to the factors in

P (xt, xt−1, zt) =
1

Z
P (x)P (xt−1|xt)P (z(o)t|xt)P (z(¬o)t|xt).

(14)
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Fig. 3. The first 500 steps around the maze in the simulation. The x and
y locations shown here correspond to the top two graphs in figs. 5 and 6.

It is necessary to define the global bias first before learning

the other weights, so that the bias terms in the other weight

matrices exclude the contribution from the global prior and

thus form likelihood terms which may be fused correctly with

it. In particular this then allows the odometry-dependent and

recurrent prior information to be removed using

P (xt, z(¬o)t) =
1

Z
exp

∑

t

(bx, + x′
tWx′z(¬o)′z(¬o)′t).

(15)

The terms in this exponent then correspond, as desired, to

P (xt, z(¬o)t) =
1

Z
P (x)P (z(¬o)t|xt). (16)

We may write equation 15 as

P (xt, z(¬o)t) =
1

Z
exp

∑

t

(bx + x′
t(0×Wx′x′)x′

t−1 (17)

+x′
tWx′z′(¬o)z(¬o)′t + x′

tWx′z(o)′(0× z(o)′t)), (18)

where (0 × Wx′x′) is equivalent to disabling the recurrent

CA3 connections, and (0 × z(o)′t) is equivalent to inhibit-

ing all activity in ECs and DG areas receiving odometry-

dependent input. Importantly, both of these disablings assume

that the source population includes an always-on bias node.

In contrast, the effect of the global bias may easily be moved

into the firing threshold for CA3 cells.

VI. PLUS-MAZE EXAMPLE

We illustrate the UCPF with Subicular lostness detection

and recovery using a simple microworld based on a standard

environment used in hippocampal research [1]. Fig. 2 shows

a simulated plus-maze, consisting of 13 discrete locations.

An agent can move between these locations, and rotate to

face the four discrete compass headings. The north and

east arms of the maze have coloured posters placed some

distance behind them, to provide visual cues when facing

in those directions. Two components of the state of the

world are the agent’s own place, place ∈ [0 : 13], and

heading, hd ∈ {N,E, S,W}. In order to illustrate more

complex coherent world states, lights are placed at the ends

of each arm. One light is on at each time step. When the

agent reaches the end of the arm with the active light, it is
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Fig. 4. Walsh-like basis functions used as simplified grid cell receptive
fields. Each of the six cells shown here has a Boolean valued receptive field
ranging over the 2D space occupied by the maze.

switched off and another light, from a fixed 4-light sequence,

is activated. So a third component of the world state is,

light ∈ {N,E, S,W}, describing which of the four lights

is currently on. The complete world state is thus the triple,

(place, hd, light).
The present model is concerned only with hippocampal

inference, so no learning is modelled, and the agent moves

in a random walk. The task is to infer the world state from

its noisy sensors. The model network is shown in fig. 1 and

weight types summarised in table I.

A. Entorhinal inputs

The agent has touch sensors detecting the presence of

boundaries on its left, right and forward; a lightAhead

sensor which is active when facing the active light; and

red, green and blue colour sensors, active when facing a

coloured poster. The values of these sensors are all Boolean

and are placed into ECs. For example, we have cells

ECs(touch)(left) and ECs(colour)(red).
The other two senses are history-dependent, based on

odometry information under the noisy GPS assumption. First,

medial ECs is known to encode position using grid cells [9]

rather than unique place cells – we model a population of

six simplified grid cells, ECs(grid), having Boolean valued

receptive field functions of 2D location (denoted by r, c, for

row and column),

EC(grid)(n, 1) = (r mod 2n+1 < 2n)(c mod 2n < 2n−1)

EC(grid)(n, 2) = (c mod 2n+1 < 2n)(r mod 2n < 2n−1),

for n ∈ {1, 2, 3}, as shown in fig. 4. Secondly, there are

four head direction cells EC(hd)(dir) responding to dir ∈
{N,S,E,W} headings.

The effects of odometry on the ECs grid and head direction

cells are modelled only functionally. The previous location

estimate is read from ECd, odometry is added, and the result-

ing locations is encoded and placed in the ECs population,

EC(grid)t = EC(grid)t−1 + odomt

EC(hd)t = EC(hd)t−1 + gyrot, (19)

where the addition operator is here defined as decoding the

grid or head direction cells, adding the Cartesian odometry

(odom) or angular gyroscopy (gyro), then re-encoding new

grid or head direction activations. (See [16], [8] for neural-

level models of this process.)

B. Dentate Gyrus

DG has handset weights, WEC→DG, which form a sparse

encoding of entorhinal feature combinations including: com-

binations of head direction and light ahead; left and right

touches together; left, right and center touches together;

and the 13 discrete places in the maze (given by com-

binations of grid cell activity). We denote these by, for

example DG(hd ⊗ lightAhead)(N) for the head direction

and lightAhead combination responding to north facing and

the light ahead; DG(touch ⊗ touch)(left)(right) for the

combination of two boundaries on the left and right. We write

DG(place) = DG(grid⊗grid⊗grid⊗grid⊗grid⊗grid),
defining place as a combination of grid activations to reduce

notation.

C. CA3

The semantics (not the weights) of the CA3 cells are set

by hand. We specify CA3 cells responding to each of the

13 discrete locations, CA3(place); combinations of place

and head direction, CA3(place⊗ hd); the state of the light

sequence CA3(light); and combinations of location and

light sequence, CA3(place⊗ light) (Thus the micro-domain

illustrates CA3 cells responding to simple facts about the

world, and to combinations of those facts, cf. [7]).

The weights to CA3 are partitioned into

(Wx′z′(¬o),Wx′z′(o),Wx′x′) as in equation 15, where

x̂ = CA3, z(o) is the collection of EC and DG cells

dependent on odometry, and z(¬o) is the collection of EC

and DG cells that are independent of odometry.

The weights are fit using a version of the wake-sleep algo-

rithm [11] as follows, used for convenience rather than as a

biological model of learning. World states (place, hd, light)

and noisy sensors (including a genuine noisy GPS training-

only sensor) from a random walk of 30,000 steps are

recorded. Using the prescribed CA3 semantics, ideal CA3

activations are determined directly from the world states,

and global biases bx computed from their occurrence fre-

quencies. Populations in EC and DG are pooled to form

z(o) and z(¬o), according to whether they include odometry

information. In wake steps, ECst, CA3t and the previous

CA3t−1 are all thus directly observed, and Hebbian learning

is performed, conditioned on bx. In sleep steps, predictions

of the next CA3 and next EC are made from the ideal CA3,

and anti-Hebbian learning is performed, conditioned on bx.2

D. CA1 and ECd

ECd consists of the same population types as ECs (being

the deep layers of the same cortical columns as the ECs

units), but stores de-noised sensor values ŷt.

2We found that it was important to train all three weight matrices
together, in the same wake-sleep cycles. Theoretically they could be trained
separately, all conditioned on the same global bias, to learn the likelihoods
in equation 14. However in practise the likelihoods are never learned exactly,
and variations in weight strength can occur during separated training, which
combine to give inaccurate predictions when fused together.
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Fig. 5. Results with septum lesioned. Top two graphs show the actual
(dark) and inferred (light) x and y locations in the plus maze respectively,
during 3000 steps of a random walk. These are the same x, y coordinates
shown in 2D in fig. VI. The walk consists roughly of journeys to arms
N,E,W,N,S,N,W,S. Tracking performs well until t = 500 and then becomes
lost – i.e. the actual and inferred lines diverge – until regained by chance
alone at t = 800. Tracking is lost again at t = 1000 and regained by
chance at t = 1300. Is is lost a third time at t = 1700 and regained by
chance around t = 1900. It is lost a fourth time at t = 2600 and regained
at t = 2700. The third, heading, graph shows actual (dark) and inferred
(light) head directions, which have four discrete values for N,E,S,W and
also diverge during lostness. The lower graph shows Subicular immediate
and averaged activation. This activation is seen to be highest at times when
the agent is lost, i.e. when there is divergence between the actual and inferred
locations. With Sep lesioned the Sub output has no effect on the inference.

A naive decoding method would be to map the unitary

TRBM posteriors ŷ(EC)t directly to ECd, using

ECd = ŷ′
t(EC) = (sig(WT

x′y′ x̂
′
t) >

1

2
), (20)

and ignoring the ŷ(DG)t components. This can be done,

but the results are poor because the TRBM assumes the

sensor units to be independent of one another. However we

know that some of the yt subpopulations – place, heading

and whisker combinations – in fact always have exactly

one active unit, as they represent mutually rival and exhaus-

tive hypotheses. Much of this structure is contained in the

ŷ(DG)t components that are discarded in the naive decoding.

We can exploit the structure by using a two stage decoding

processes, mirroring the two-stage (EC,DG) encoding. Our

CA1 contains all the same population types as our DG,

representing combinations of EC features. For example,

CA1(place) is the de-noised version of DG(place). (It also

contains populations mirroring the EC populations that do

not benefit from mutual rivalry, namely lightAhead and

colour.) The mutual rival features in each population s are

then sampled using the winner-take-all rule,

CA1(s)(i)← (P (CA1(s)(i)) > P (CA1(s)(j));∀j 6= i)

(such an update may be implemented neurally using winner-

take-all feedback.)

The composite features in DG and CA1 are all conjunc-

tions of EC features, so it is simple to handset weights
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Fig. 6. Results with septum intact. When the moving average subicular
output reaches a threshold, it causes Sep to fire (shown as spikes on the
lower plot), releasing ACh into CA3 and ECs. This disables the recurrent
prior connections in CA3 and inhibits all grid cell activity in ECs, causing
inference to proceed using sensory likelihoods only for the next step. This
sometimes allows the network to jump to the correct solution. If recovery
fails, then subiculum continuous to fire until recovery succeeds. For example
around t = 1100 there are two long Sep bursts before recovery occurs; in
contrast at about t = 2500 there are two errors which are corrected almost
immediately. Comparing with fig. 5 it can be seen that periods of lostness
begin at the around the same times, but last for shorter periods due to the
corrections.

WCA1→ECd to decode them back into the EC basis in ECd.

(An ECd cell is on if any of its conjunctive parents is on.) In

the case of non-rival populations, CA1 activations are simply

relayed to the corresponding ECd populations.

E. Subiculum and Septum

We postulate that Subiculum consists of four parts: a

decoder, comparator, an accumulator and an integrator. They

are modelled functionally, not neurally. The decoder per-

forms the same computation as ECd, to obtain a copy of

the de-noised signals from the partially-decoded CA1. The

comparator has cells in one-to-one correspondence with the

sense cells in ECs and ECd (excluding place/grid and head

direction cells), and which fire when the corresponding ECs

and ECd cells differ. (It receives one-to-one input from ECs

and decodes input from CA1 in the same way as ECd.) The

accumulator computes the integer sum of these differences.

The integrator tracks the exponentially weighted moving

average of the accumulator to give an overall indication of

tracking error. (Accumulation and integration could perhaps

take place along the fornix.) When the integrator exceeds a

threshold, a single-unit cholinergic Septum unit is activated.

The ACh modulation then projects from Sep to ECs and to

CA3, having the two effects described by equation 17.

F. Results

Results of the model running in the plus maze simulation

are shown in figs. 5 and fig. 6, with Septum lesioned and

intact respectively. Without the septum, there is no recovery

from loss of tracking (except when the agent moves by



TABLE I

CONNECTIVITY IN THE MODEL. H=HAND SET WEIGHTS, L=LEARNED

WEIGHTS, T=TRANSPOSE OF LEARNED WEIGHTS, R=ONE-TO-ONE

RELAY, I=IMMEDIATE INPUTS, O=ODOMETRIC INPUTS. CONNECTIVITY

IS SHOWN IN FIG. 1. SUB RECEIVES INPUTS FROM (ECS,CA1).

pop,region ECs DG CA3 CA1 ECd Sub

grid o h r,h
hd o t r r,r

touch i h r,h
colour i t r r,r

lightAhead i t r r,r
place h t

hd ⊗ lightAhead h
touchCombis h t

place l
place ⊗ hd l

light l
light ⊗ hd l

Fig. 7. Mean errors made about places. (Error bars are vanishingly small
as a large amount of simulation data is used.)
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chance to the location that it believes in). For example,

at t = 500, t = 1000, t = 1700 and t = 2700 the

ground truth and estimate lines diverge and do not rejoin for

several hundred steps. With Septum intact, tracking is able

to recover following the detection of failure and deactivation

of CA3 recurrent connections via septal ACh. At each of

the time above, the Sub-Sep circuit becomes active and the

priors are removed. This often leads to burst of activation,

as the likelihood-driven estimates may also be wrong, but

eventually the correct location is found, the error falls, then

tracking returns to normal.

The error introduced by the Sub-Sep circuit is less than

the tracking error that it corrects, as shown in fig. 7. We also

show the error in a purely likelihood based model, which

has both CA3 priors and odometry permanently removed.

The transitions priors alone do improve the place error

over the likelihood-only model; but a further significant

improvement is gained by using the Sub-Sep circuit. Fig.

8 shows the decreased error in the odometry independent

sensor denoising when the Sub-Sep circuit is active.

VII. DISCUSSION

The UCPF model combines and extends ideas from Samu

et al. [19] and the TRBM hippocampal model of Becker and

Hinton [3]. Samu et al. use a hidden CA population (assumed

to encompass all of DG,CA3 and CA1) to modulate and

Fig. 8. Discrepancies between input and de-noised sensors. These may
be due to genuine de-noising, or to lostness producing incorrect inferences.
(Error bars are vanishingly small as a large amount of simulation data is
used.)
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correct activity in a single EC population of grid cells. Our

model also uses hippocampus to modulate the grid cells.

However it makes a more detailed distinction between the

ECs input and ECd output populations, and adds recurrent

temporal priors. Under the UCPF’s probabilistic semantics,

ECs and ECd are well-defined representations of the noisy in-

put zt variables and the estimated denopised ŷt respectively.

This allows us to interpret both grid and sensor deep layers as

de-noised versions of the superficial layers. These semantics

are drawn from the TRBM model, which the present work

extends with a more detailed mapping to hippocampus, and

the new sampling and lostness inference algorithms. We have

used the temporal sequence semantics of the TRBM (i.e.

recurrent CA3 connections as priors), for example to learn

the places and sensations that typically follow a given place

or sensation. This draws together the notion of asymmetric

weights as spatial transitions between place cells – used in

purely spatial models – with the notion of the weights as

compatibilities between variables – used in auto-associative

models.

The wake-sleep algorithm in particular learns whatever

weights give the best model of the temporal sequence of

vector-valued data, so will incorporate both temporal and

associative factors. (We note that if each input vector was

held constant for a time tending to infinity, then the recurrent

weights would tend towards symmetry, thus the symmetric

auto-associative models are a limiting case of temporal

sequence models.) The wake-sleep algorithm was used here

merely to set the computational weights, and not as part

of the biological model. However it has previously been

suggested as a theory of on-line learning, with learning and

anti-learning triggered by tonic ACh in the theta cycle. (In

contrast, the septal signal here is the phasic ACh level.)

Three biological connections were not modelled:

ECs→CA1, the CA3→DG back-projection, and Sub→EC.

We speculate that ECs→CA1 could play a role in learning:

CA1 must learn to decode CA3 back to the EC basis, so

this connection could act as the supervised training signal.

The CA3→DG back-projection might likewise play a role

in learning, perhaps part of a wake-sleep-like algorithm

where DG sleep states are sampled given CA3 (though full



wake-sleep would also require sampling from ECs).

The mapping would have been more elegant if the Sub

comparator received input from ECs and ECd, instead of

ECs and CA1. The present model requires Sub to perform

the same decoding from the CA1 basis to the EC basis,

as well as the comparison itself. An early version of the

model assigned the full decoding task to CA1, which then

simply relayed all information to ECd, and allowed Sub

to act as a simple one-to-one comparator. While this is a

possible alternative mapping, we found that using an extra

layer of partial decoding produced better results, as it allowed

mutual rivalry to be expressed and inferred in CA1 during

the partial decoding step. It may be possible to move all such

rivalry functionality into CA3, allowing CA1 to act as a pure

decoder and relay, though this would make the function of

ECd rather redundant, and would also require the presence

of grid cells in CA1, rather than the CA1 place cells known

in the biology.

The biological mechanism for resetting grid cells is un-

clear – the model merely requires that lostness detection

causes reset. We modelled the Sep→ECs connections as

performing this role, but it is possible that the Sub→ECs

projection could perform a similar function instead. There is

some evidence for septal ACh activating inhibitory cells in

EC [24], but it is also known to make ECd cells ignore their

inputs and maintain their firing patterns [?].

ACh is well-known to play an important role in learning

in CA3, as well as switching CA1 from responding mostly

to CA3, to responding mostly to ECs. Learning and lostness

go together in many circumstances, namely those where the

agent is in a novel environment, so is both lost and needing

to learn. During novelty, ACh would both disable the priors

and trigger learning. However we might not always want

to disable odometry during novelty. In contrast, in cases of

being lost in a known environment, the removal of both priors

and odometry is desired but without learning. Whilst lostness

and novelty often go together, they are different concepts,

and might be represented by combinations of modulators,

for example dopamine is also known to play a role in

hippocampal learning [14], but its interactions with ACh are

not yet understood.

We have seen that the TRBM uses vector coding, but

can learn weights modelling both the temporal and auto-

associative aspects of the input vectors; we then constructed

a unitary coherent particle filter algorithm operating on

the TRBM structure and illustrated how tracking failure

may be detected and corrected in a UCPF by monitoring

input/output difference and removing the effects of transition

and priors and odometry when lost. We have showed how to

map the UCPF onto the hippocampal EC-DG-CA3-CA1-EC

loop, and how tracking correction could be implemented by

the Subiculum and Septum, using ACh to deactivate CA3

recurrent connections.
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