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Naive Bayes texture classification

applied to whisker data from a moving robot

Nathan F. Lepora, Mat Evans, Charles W. Fox, Mathew E. Diamond, Kevin Gurney and Tony J. Prescott

Abstract— Many rodents use their whiskers to distinguish
objects by surface texture. To examine possible mechanisms for
this discrimination, data from an artificial whisker attached to a
moving robot was used to test texture classification algorithms.
This data was examined previously using a template-based clas-
sifier of the whisker vibration power spectrum [1]. Motivated by
a proposal about the neural computations underlying sensory
decision making [2], we classified the raw whisker signal using
the related ‘naive Bayes’ method. The integration time window
is important, with roughly 100ms of data required for good
decisions and 500ms for the best decisions. For stereotyped
motion, the classifier achieved hit rates of about 80% using
a single (horizontal or vertical) stream of vibration data and
90% using both streams. Similar hit rates were achieved on
natural data, apart from a single case in which the performance
was only about 55%. Therefore this application of naive Bayes
represents a biologically motivated algorithm that can perform
well in a real-world robot task.

I. INTRODUCTION

Many rodents that are nocturnal or crepuscular rely on

their whiskers for foraging and navigation in poor light.

Their tactile acuity for sensing textures can rival the human

fingertip [3]. A working model for this discrimination is

that as the rodent whisks across an irregular surface, the

relative motion between the whisker and the surface induces

a vibration along the whisker shaft that is characteristic of the

texture [4]. The kinetic aspects of this vibration are encoded

in neuronal activity, from which an internal discrimination is

made. Electrophysiological recordings from the barrel cortex

of anaesthetized and awake rats support that there is sufficient

information in the temporal patterns of neuron firing to allow

effective discrimination of whisker vibrations [4]–[7].

To examine possible computational processes underly-

ing this discrimination, time series data from an artificial

whisker attached to a moving robot was used to test texture

classification algorithms. This approach of implementing a

complete system from stimulus to sensor to computation

has been applied to whisker-based systems [1], [8]–[10],

but only some reported quantitative results [1], [10]. These

latter two studies used a spectral classifier to discriminate

textures [11], using the whisker vibration power spectrum

to distinguish textures with a template matching algorithm.
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Here we analyzed the data from Ref. [1] using a classifier

based instead on the raw whisker vibration signal. Moreover,

rather than matching ‘features’ of the data, as in template-

matching, we used the statistical properties of the vibrations

to characterize textures. This classification was achieved

using a naive Bayes classifier.

Our motivation for using this classifier was that it relates

to an influential proposal for the neural computations that

underlie decisions about sensory stimuli. For a two-choice

classification, the naive Bayes classifier is equivalent to using

a (log) likelihood ratio, which Gold and Shadlen said ‘is a

natural currency for combining sensory evidence obtained

from... multiple samples in time’ [2]. For two or more

choices, the naive Bayes classifier can be interpreted as

integrating evidence for each alternative until a decision is

made after a given time, which is similar to a number of

proposals for how humans and animals make decisions [13]–

[15]. Meanwhile, from a machine learning perspective, Naive

Bayes classifiers are known for their ease of implementation

and effectiveness, despite their naive assumption that samples

are statistically independent (see e.g. [16], [17]).

We found that naive Bayes is a powerful classifier of

robot whisker vibration data that usually achieves hit rates

of over 80% on test data. Therefore this simple, biologically

motivated algorithm for sensory discrimination can generally

achieve good performance when implemented in a robot

undergoing a real-world task.

II. MATERIALS AND METHODS

A. Data collection

The texture data was taken from a previous study of

an artificial whisker attached to a moving robot [1]. The

following methods briefly summarize the data acquisition.

Further details can be found in the original reference.

The whisker sensor consisted of a flexible plastic (Acry-

lonitrile butadiene styrene) whisker shaft (200mm long, 2mm

diameter) mounted at its base into a short, polyurethane

rubber filled, inflexible tube called a follicle case. The

plastic used for the whisker shaft was chosen for its flex-

ibility, appropriate mechanical match to scaled-up biological

whiskers, and suitability for rapid prototyping. A magnet was

bonded to the base of the whisker shaft so that it was po-

sitioned directly above a tri-axis Hall effect sensor (Melexis

MLX90333) in the assembled follicle case/whisker shaft on

the whisker mount [1, Fig. 1]. The sensor integrated circuit

was programmed to generate two voltages with magnitudes

linearly proportional to the tangential component of the two



Fig. 1. The robot.
An iRobot Roomba vacuum cleaner was used as a platform for the
experiments. The whisker was mounted on the front of the robot, angled
down to make constant contact with the floor.

orthogonal displacement angles (X and Y ) of the magnet

from its resting position above the sensor.

An iRobot Roomba vacuum cleaner (iRobot, 8 Crosby

Drive, Bedford, MA 01730) was chosen as the platform

for these experiments (Fig. 1). This robot was ideal for

the task as it could also be a candidate system for any

behavioral output from the texture classification. The whisker

was mounted on the front of the robot using epoxy resin,

directed at a 45 degree azimuth from the forwards direction

of travel and with a slight downwards elevation sufficient

to make constant contact with the floor during movement.

Thus the whisker transduced a constant stream of deflection

information as the robot moved over the floor.

Four surfaces were chosen for classification: two carpets of

different roughnesses, a tarmac surface and a vinyl surface.

These surfaces were chosen because they were appropriately

generic for a real world experiment and they provided a

range of surface types that were sufficiently similar to make

classification difficult. Two primary behavioral conditions

were chosen with the robot moving either anticlockwise

only, or clockwise only. To demonstrate the difficulty of

classification without knowledge of the robot motion, data

were also recorded for each surface during the Roomba’s

‘spot’ cleaning programme, which consisted of a series

of (externally) unpredictable clockwise, anticlockwise and

forward motions.

As the robot moved the whiskers were swept across

the floor. Any deflections of the whisker were transmitted

through the hall effect sensors through a LabJack UE9

USB data acquisition card (www.labjack.com) at a rate

of 2kHz for each of the X- and Y -directions. This data

was sent to a computer through the BRAHMS middle-

ware (brahms.sourceforge.net) for analysis in MATLAB

(www.mathworks.com). Example data from the four floor

surfaces is shown in Fig. 2 for the four clockwise and four

anti-clockwise trials, each of duration sixteen seconds.

B. Analysis methods

1) Quantized time series: The data are discrete time series

of the sensor voltages produced by deflection of the artificial

whisker attached to the robot. As this sensor measures both

the horizontal and vertical deflections of the whisker, at

each sample time there are two distinct sensor voltages x
and y associated with these deflections. These voltages are

measured at times ti = (i− 1)/fs, where i runs from one to

the number of samples n and fs is the sampling frequency.

For analysis, it will be convenient to quantize the time

series values xi into discrete intervals. Suppose that all

signals under consideration vary between minimum xmin and

maximum xmax values, with range ∆x = xmax−xmin. This

range is binned into N equal-width intervals, where x is in

the qth bin if

xmin +
q − 1

N
∆x ≤ x < xmin +

q

N
∆x, (1)

and if q = N the upper bound also includes xmax. The

continuous-valued time series x1, · · · , xn then becomes a

discrete-valued time series q1, · · · , qn with each qi an integer

between one and N . In a similar way, a discrete-valued time

series w1, · · · , wn can be constructed for the samples yi
associated with the vertical whisker deflection. Quantization

intervals of width 10mV were used here, compared with an

approximate 3V spread of sensor measurements.

2) Measurement distributions: The classifier examined

here relies on using the probability distributions of the

individual time series values, calculated from the empirical

frequency with which each measurement value occurs in

example (training) data of each texture. If nq is the total

number of times that the value q occurs in the quantized

time series, then the normalized frequency is pq = nq/n. As∑N

q=1
nq equals the total number of samples n, the sum of

all normalized frequencies equals one and can be interpreted

as a probability distribution.

Denoting the four textures by T1, · · · ,T4 (for rough car-

pet, smooth carpet, tarmac and vinyl flooring, respectively),

the conditional probability of a quantized measurement q
from the texture Tl is

P (x|Tl) ≡ P (q(x)|Tl) =
nq(Tl)

n
. (2)

Here the probability distribution for the sensor measure-

ments, P (x|Tl), is considered to represent the probability

of a measurement x being in the interval q(x) = q given it

is from the texture Tl.

In practice, it was necessary to smooth the normalized

frequencies nq to correct for sampling bias in the training

data. Without this smoothing, the few samples in the tails

of the distributions can lead to large errors in estimating

the probabilities, which deteriorates the performance of the

classifier. All inferred conditional probabilities were thus



Fig. 2. Example data for four textures
The above data for the four floor surface textures was collected in eight trials each of length sixteen seconds, with the four initial trials for clockwise
motion and the four final trials for anticlockwise motion.

convolved with a Gaussian smoother of width σ = 100mV

(10 quantized intervals), which improved classification per-

formance while smoothing on a relatively small scale com-

pared to the overall spread of data.

3) Bayes classifier (single measurement): The method

used here is based on: (a) Supposing the conditional prob-

abilities of the measurements P (x|Tl) are known from

estimating them on training data of all textures. (b) Then,

given a measurement x, finding for the most probable texture

from which it arose. This method compares the conditional

(posterior) probabilities P (Tl|x) for each texture given a

measurement x, which are related to the above estimated

conditional probabilities by Bayes Theorem,

P (Tl|x) =
P (x|Tl)P (Tl)

P (x)
, (3)

where P (Tl) are the (prior) probabilities of having a par-

ticular texture, P (x) are the (marginal) probabilities of

measuring x given no information about the textures. The

conditional probability P (x|Tl) is now considered a likeli-

hood of a texture from a measurement.

The classifier finds which texture T has maximum a pos-

teriori (MAP) probability given a measurement x. By Eq. 3,

T = argmax
Tl

P (Tl|x) = argmax
Tl

P (x|Tl)P (Tl)

P (x)
, (4)

where arg max denotes the argument of the maximum,

namely the texture for which P (Tl|x) is maximal.

The following arguments assume there is no prior in-

formation about which texture is being measured, so that

the priors P (Tl) are all equal and can be ignored when

evaluating arg max over the textures. Moreover, since the

marginals P (x) are independent of the textures they can

also be ignored in the arg max. Finally, it will be convenient

to use the logarithm of the posterior probability, and since

log(x) (monotonically) increases with x it also does not

affect arg max. Putting these arguments together, the texture

classification in Eq. 4 is equivalent to finding

T = argmax
Tl

logP (x|Tl), (5)

which is just the maximum over the likelihoods determined

from the training data given a new measurement x.

4) Naive Bayes classifier (multiple measurements): A

potentially more reliable method for classifying textures is

to make the decision over many time samples rather than

a single value. The arguments in the previous section are

unaffected if the single measurement x is replaced by a series

of values. Then the equal-prior Bayes texture classification

from Eq. 5 becomes

T = argmax
Tl

logP (xns
, · · · , xnf

|Tl), (6)

where ns and nf are the start and finish of the window.

An important simplification occurs if the measurements

are assumed independent at each time t(i) across the win-

dow. Then the overall conditional probability of a series of



Fig. 3. Conditional probabilities of texture measurements.
The conditional probabilities were calculated from the empirical frequencies
with which the measurement values occur in training data for each of the
four textures. Each distribution has been smoothed to reduce sampling bias.
Data from the X-sensor (panel A) and Y -sensor (panel B) were considered
separately.

measurements given a texture factorizes into a product of

conditional probabilities for each individual measurement

P (xns
, · · · , xnf

|Tl) = P (xns
|Tl)× · · · × P (xnf

|Tl). (7)

Consequently, the classification in Eq. 6 can be rewritten as

T = argmax
Tl

nf∑

i=ns

logP (xi|Tl), (8)

Thus the most probable texture is found from the argument

of the maximum over the summed log-likelihoods for the

series of measurements.

5) Combined X- and Y -sensor classification: Rather than

classifying the X- and Y -sensor data individually, it is

possible to make a joint classification using both sensors

together. Considering the two sensors to take independent

measurements, then the overall conditional probabilities for

two measurements also factorize into a product of the indi-

vidual X- and Y -sensor conditional probabilities

P (x, y|Tl) = P (x|Tl)P (y|Tl), (9)

Then the classification rule in Eq. 8 can be rewritten as

T = argmax
Tl

nf∑

i=ns

logP (xi|Tl) + logP (yi|Tl). (10)

Thus the most probable texture is found from the argument

of the maximum over the summed log-likelihoods for the

individual sensor measurements.

III. RESULTS

A. Probability distributions from the training data

Training data from the four clockwise and four anticlock-

wise trials (Fig. 2) was pooled to determine the probability

distributions for the measured X- and Y -sensor voltages. The

initial 8 seconds of each trial was used for training data, and

the final 8 seconds of each trial saved for later validation of

the classification algorithms.

The X- and Y -sensor training data was found to vary

between 1.36V and 4.83V. This range was separated into

347 bins of width 10mV, and the measurements quantized

into these intervals (Methods, Eq. 1). The number of mea-

surement values within each bin was then totalled to estimate

the conditional probabilities of sensor voltage values for the

four textures (Methods, Eq. 2).

The resulting probability distribution for each texture is

shown in Fig. 3A for the X-sensor and Fig. 3B for the

Y -sensor. Notice that the X-sensor probabilities are sin-

gle peaked, with the means and variances roughly com-

patible with a visual inspection of the measurements in

Fig. 2A,C,E,G. On the other hand, the Y -sensor probabilities

have more complicated shapes with two or more peaks. This

distribution shape is caused by systematic differences in the

response of the Y -sensor to clockwise and anticlockwise

motion, as is also visible in Fig. 2.

B. Texture classification on X- and Y -sensor validation data

Given data from an unknown texture, the conditional

probability distributions plotted in Fig. 3 can be used as a

basis of a classification of which texture is most probable

for this data. For validation, the data was separated into

discrete segments of fixed temporal window size over which

the texture is determined. In general the first half of each

trial was used for training and the second half for (holdout)

validation, which seemed natural in relation to how a robot

or animal might be taught and also allowed the training data

to include data correlated beyond the window size. Then the

Fig. 4. Hit rates of correct texture identification.
The percentage of correct classifications was evaluated over validation data
of the four textures. Each hit rate is shown as a function of window size over
which the classification was made. Data from the X-sensor (panel A) and
Y -sensor (panel B) were considered separately, followed by combining the
X and Y measurements in a single classifier (panel C). The single and dual
sensor classifications were then compared by their mean hit rates (panel D)



TABLE I

CLASSIFICATION OF X -SENSOR VALIDATION DATA (0.5S WINDOW).

MEAN HIT RATE = 79%

Validation data Rough carpet Smooth carpet Tarmac Vinyl

Rough carpet 52% 22% 26% 0%
Smooth carpet 18% 79.5% 2.5% 0%

Tarmac 10% 5.5% 84.5% 0%
Vinyl 1% 0% 0% 99%

TABLE II

CLASSIFICATION OF Y -SENSOR VALIDATION DATA (0.5S WINDOW).

MEAN HIT RATE = 82%

Validation data Rough carpet Smooth carpet Tarmac Vinyl

Rough carpet 82.5% 8.5% 1% 8%
Smooth carpet 8% 72.5% 19.5% 0%

Tarmac 1% 19% 77% 3%
Vinyl 2.5% 0% 2.5% 95%

TABLE III

CLASSIFICATION OF X & Y -SENSOR VALIDATION DATA (0.5S WINDOW).

MEAN HIT RATE = 92%

Validation data Rough carpet Smooth carpet Tarmac Vinyl

Rough carpet 90% 8% 3% 0%
Smooth carpet 8% 90.5% 1.5% 0%

Tarmac 0% 9.5% 90.5% 0%
Vinyl 2.5% 0% 0% 97.5%

naive Bayes classifier (Methods, Eq. 8) considered the log-

likelihood values for the four candidate textures from the

conditional probability distributions at the same measure-

ment value in the training data. These log-likelihoods were

summed across the window for each of the four textures, and

the maximum one gave the classified texture.

The proportion of correct classifications, or hits, across

validation data for each of the four textures is shown in

Fig. 4A for the X-sensor and Fig. 4B for the Y -sensor. The

classification was clearly a success, with the data from both

sensors reaching a good mean hit rate of about 80%. Even

though some hit rates improved and some worsened with

increasing window size, the mean hit rate improved steadily

across the range of window sizes shown (Fig. 4D). This

mean hit rate improved substantially as the window size was

increased from 0.5ms (single sample) to 100ms, and then

modest gains occurred thereafter. Notice also that the two

sensors had problems with different textures: the X-sensor

classifier was most mistaken for rough carpet, while the Y -

sensor classifier was worst on smooth carpet.

Details of the texture classification and misclassification

are shown in Table I for the X-sensor data and Table II for

the Y -sensor data at a fixed window size of 0.5 seconds.

The diagonals of each table were the percentage of correct

classifications over the validation data for each texture.

Consistent with Fig. 4A,B, vinyl was excellently classified

(> 90%) for either sensor, while rough carpet was the most

difficult to classify with the X-sensor (∼ 50%) but well

classified (∼ 80%) with the Y -sensor. The mean hit rate

was calculated over the diagonal of the table, and was about

80% for either sensor. The off-diagonal elements represent

how often each texture is misclassified as another texture and

can be thought of the degree of confusion. For example, the

X-sensor classification confuses rough carpet with tarmac

26% of the time and almost never confuses anything with

vinyl. The confusion between rough carpet and tarmac is

consistent with visual inspections of the data (c.f. Figs 2A

and 2C) and the probability distributions (Fig. 3A), both of

which are quite similar by eye.

To illustrate when the classifiers make mistakes, Fig. 5

shows the texture classification applied to Y -sensor valida-

tion data for the four textures. Hits are shown on the plot by

coloring the data black and misses in gray. It is interesting

that the instances when a texture was misclassified often

coincides with artifacts in the data. For example, the rough

and smooth carpets were mainly misclassified on dead-zones

and the vinyl texture is misclassified on jumps. In a sense,

therefore, the classification algorithm is not really making

mistakes, but is instead identifying correctly where the data

does not look like a typical example of that texture.

C. Improved classification by combining X- and Y -data

Rather than using validation data from the X- and Y -

sensors individually, it is possible to perform a classification

using both sets of data together (Methods, Eq. 10). Because

more evidence is used in the classification, the combined

Fig. 5. Examples of misclassification.
The panels show the performance of the classification over a 0.5 second
window applied to Y -sensor validation data of the four textures. Hits are
shown in black and misses in gray.



TABLE IV

CLASSIFICATION OF X & Y -SENSOR VALIDATION DATA (0.5S WINDOW).

ARTIFICIAL TRAINING DATA; NATURAL VALIDATION DATA.

MEAN HIT RATE = 68.0%

Validation data Rough carpet Smooth carpet Tarmac Vinyl

Rough carpet 67% 32% 1% 0%
Smooth carpet 2% 97% 1% 0%

Tarmac 3% 9.5% 87.5% 0%
Vinyl 23% 9.5% 47% 20.5%

TABLE V

CLASSIFICATION OF X & Y -SENSOR VALIDATION DATA (0.5S WINDOW).

NATURAL TRAINING DATA; NATURAL VALIDATION DATA.

MEAN HIT RATE = 81%

Validation data Rough carpet Smooth carpet Tarmac Vinyl

Rough carpet 88% 12% 0.5% 0%
Smooth carpet 8% 91.5% 0.5% 0%

Tarmac 6% 2.5% 91.5% 0%
Vinyl 7% 0% 40% 53%

X- and Y -sensor classifier should be more accurate. In

particular, a main cause of misclassifications of the individual

sensor data was when a sensor picked up an artifact such as

a dead-zone or jump. Using data from both sensors together

gave more chance of receiving reliable information from

at least one of the sensors when the signals are hard to

discriminate.

The hit rate of correct texture identification is shown in

Fig. 4C for the combined X- and Y -sensor classifier. The

combined classification is clearly a substantial improvement

over the results for the individual sensors in Figs 4A,B, with

all textures reaching an excellent correct identification of

about 90% for window sizes of 0.5 seconds or more. The

classification of vinyl has suffered slightly compared to that

by just the X-sensor, but this is more than compensated by

the significant gains in classifying the other textures. These

improvements can be seen more clearly in a comparison of

the mean hit rate for the X-sensor, Y -sensor and combined

XY -sensor classifier in Fig. 4D: the combined sensor clas-

sification reaches a mean hit rate of about 90% compared to

about 80% for the individual sensors.

Details of the texture classification and misclassification

for the combined XY -sensor classification are shown in

Table III for a window size of 0.5 seconds. The percentages

of correct classifications are shown down the diagonal, and

as all are approximately 90% the mean is also about 90%.

The percentages of misclassifications are shown by the off-

diagonal elements. Roughly speaking, if the individual X-

and Y -sensor classifiers confuse two textures, then these

are mistaken to a lesser-degree by the combined XY -sensor

classification.

D. Application to ‘natural’ data

Thus far the classification algorithm has been both trained

on and validated against data from artificial, stereotyped

clockwise or anticlockwise robot motion (with the first half

of each trial used for training and the second half for

validation). A more difficult task is whether the texture

classification is still successful on ‘natural’ motion, taken

from the Roomba’s internal programme of a series of (exter-

nally) unpredictable clockwise, anticlockwise, stationary and

forward motions.

The first classification was for artificial training data and

natural validation data (results in Table IV), applying the

same combined XY -sensor classifier as in the previous sec-

tion. The classifier performed excellently on smooth carpet

(97%) and tarmac (87.5%), adequately on rough carpet (57%)

and terribly on vinyl flooring (20.5%). The mean hit rate

(68%) is shifted down relative to that for the artificial vali-

dation data (Table III, 92%), mainly by the poor performance

on vinyl. Curiously, none of the other textures are confused

with vinyl, even though it is frequently confused with rough

carpet (23%) and tarmac (47%).

Natural training and natural validation data were then

considered, using training data from the first half of each

natural trial and validation data from the second half. The

results of the combined XY -sensor classification text are

shown in Table V. The classification was now excellent

(∼ 90%) on all textures except for a moderate performance

on vinyl (53%).

Therefore, other than for vinyl, the classification general-

ized well from artificial to natural data, and even performed

adequately if trained on the artificial data and applied to the

natural data. Unfortunately, vinyl was not well-recognized

on natural data, which was a surprise considering that it

was most easily classified for the artificial motion. However,

closer inspection of the natural vinyl data revealed a sys-

tematic difference between the initial and final four trials of

the X sensor data (Fig. 6A) that was absent in the artificial

data (Fig. 2G). This difference explains the poor performance

(20.5%) when classifying vinyl using artificial training and

natural validation data, as the absence of this important

feature in the training data made recognition of the natural

data impossible. The moderate performance (53%) on natural

training and validation data is more difficult to explain, and

Fig. 6. Natural data for the vinyl texture.
The data was collected in eight trials each of length sixteen seconds, where
the robot performed ‘natural’ motion according to its internal program.



could relate to a limitation of the naive Bayes classifier, such

as not using the clearly visible temporal correlations in the

natural vinyl data (Fig. 6) or a correlation between the X and

Y sensor measurements.

IV. DISCUSSION

To examine the underlying processes involved in sensing

surface textures with whiskers, data from an artificial whisker

attached to a moving robot was used for testing possible

classification algorithms. This data was previously analyzed

using a template matching method on the whisker vibration

power spectrum [1]. Here a naive Bayes classifier was used

on the raw vibration signal: this method estimates the most

probable texture to have produced a series of measurements,

given estimated likelihoods for single measurements from

training data of the textures. The naivety refers to using

only the likelihood from single measurements, which ignores

any temporal structure in the data. Our reason for using

this classifier was that it relates to proposed mechanisms for

neural decision making [2], [13]–[15].

The naive Bayes classifier gave excellent results on data

from four different textures (rough carpet, smooth carpet,

tarmac, vinyl flooring). For stereotyped clockwise and an-

ticlockwise motion, the algorithm could reliably recognize

textures with a mean hit rate of about 80% using single

stream data from either the X or Y whisker deflection.

If both X and Y data streams were considered together,

the mean hit rate improved to a very impressive 90%. It

was important that enough data was being used to make a

decision, with temporal window sizes of about 500ms being

necessary to give these hit rates. Furthermore, the times

when incorrect decisions were made tended to coincide with

artifacts such as dead zones or jumps, consistent with the

algorithm then identifying correctly where the data does not

look like the texture on which it has been trained.

The classifier was also applied to ‘natural’ motion, taken

from a series of (externally unpredictable) clockwise, anti-

clockwise, stationary and forward motions. Although there

were now problems with vinyl flooring, the classifier could

still recognize the other three textures with 85-90% success.

A. Comparison with the spectral template-based classifier

The robot whisker data was previously examined in a study

that used a spectral template-based classifier [1]. Spectral

classifiers characterize data from the profile of their power

spectra. In the previous study, training data of each texture

was separated into 400ms segments, from which a template

was estimated from the mean power spectrum for each

texture (Fig. 7, Ref. [1]). The performance of the template

matching was then analyzed on validation data of each

texture. First, the power spectrum over each 400ms segment

of validation data was found, followed by a determination of

the mean square error from each of the texture templates,

which then classified the data segment according to the

template with the lowest error.

Theoretically, there are two (related) differences between

the spectral method and our use of the naive Bayes classi-

fier: (a) The naive Bayes classifier was applied to the raw

whisker deflection data, whereas the spectral classifier uses

the frequency spectrum of the whisker signal captured by the

power spectra; (b) The naive Bayes classifier does not use

any information about statistical dependance of the signals

at different times, whereas the spectral classifier uses only

information about the statistical dependance, represented by

the power spectrum. Hence, we view the two methods as

complementary approaches, since each uses a quite different

component of the information available from the whisker.

This is important because both methods could in principle

be combined together to give a more reliable classifier than

either on its own.

The differences in performance between the two classifiers

can be seen by direct comparison. For stereotyped texture

data from clockwise or anti-clockwise motion, the spectral

classifier achieved an overall mean hit rate of 72% (clock-

wise) and 64% (anticlockwise) using a data from just the X-

sensor, whereas naive Bayes achieved about 80% over both

motions with either the X- or Y -sensor. Therefore the naive

Bayes classifier does seem to be moderately more reliable

when the hit rates over all textures are averaged.

Note though that the two classifiers have problems with

different textures. For X-sensor data, the spectral classifier

had most difficulty with smooth carpet (33% and 54% hit

rates) and performed well on rough carpet (78% and 64%)

while the naive Bayes classifier performed well on smooth

carpet (79.5%) and found rough carpet most problematic

(52% hit rate). Moreover, for natural data, the spectral

classifier performed well on all textures (hit rates 60-77.5%)

except smooth carpet (11%), while the naive Bayes classifier

(both sensors) performed well on all textures (hit rates 88-

91.5%) except vinyl (53%). This behavior is consistent with

the two methods being complementary in their performance

in addition to their theoretical basis.

B. Relation to biological decision making

Our use of the naive Bayes classier in the present study

is motivated by a proposal for the neural computations that

underlie decisions about sensory stimuli. Based upon mea-

surements of neural activity in monkeys performing percep-

tual decision making (e.g. [12]), Gold and Shadlen suggested

that the logarithm of the likelihood ratio (log LR) provides

a natural currency for forming a perceptual decision [2].

The likelihood ratio applies only to choices between two

alternatives, say H1 and H2, with a decision rule that given

a sequence of measurements x1, · · · , xn,

n∑

i=1

log LR1,2(xi) =

n∑

i=1

log
P (xi|H1)

P (xi|H2)
≷ 0, (11)

where greater than zero supports hypothesis H1 and less than

zero H2. This decision rule is identical mathematically to the

naive Bayes MAP rule in Eq. 8 for two textures. Crucially,

both naive Bayes and the log-likelihood ratio are based on



assuming that the measurements xi are independent over

time. In this sense, we interpret naive Bayes’ as a direct

extension of Gold and Shadlen’s proposal to the situation

with three or more alternatives. Such a mechanism is known

more generally as evidence accumulation or Bayesian inte-

gration and has formed the basis for a number of proposals

for neural decision making [13]–[15]

Therefore we see the present whiskered robot study as an

initial stage in clarifying tactile decision making processes

in rodents. We showed that a simple, texture classification

algorithm, which is closely related to a number of proposals

for perceptual decision making, is an excellent classifier of

textures for a robot moving in (its) natural environment. This

suggests a functional hypothesis for tactile decision-making

in rodents based on a similar evidence accumulation strategy.

The log-likelihoods could be stored from previous experience

of the textures, and then a decision reached on a new stream

of sensory experience by accumulating evidence for each of

these texture ‘memories’.

A complementary step to investigate such a proposal

would be to examine electrophysiological recordings from

barrel cortex to see whether whisker vibrations can also

be distinguished with similar computational methods. If

successful, these studies taken together would give reason-

able circumstantial evidence for a related form of decision

making in rodents. That being said, a true test of the neural

processing could only be achieved by comparing the com-

putational results to the performance of an awake, behaving

rat. A behavioral performance that was neither more nor less

accurate than that achieved by the classifier on barrel cortex

activity would provide strong evidence that the rat uses such

a decision making strategy.
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