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Tactile SLAM with a biomimetic whiskered robot

Charles Fox, Mat Evans, Martin Pearson and Tony Prescott

Abstract— Tomorrow’s robots may need to navigate in sit-
uations where visual sensors fail. Touch sensors provide an
alternative modality which has not previously been explored in
the context of robotic map building. We present the first results
in grid based simultaneous localisation and mapping (SLAM)
with biomimetic whisker sensors, and show how multi-whisker
features coupled with prior knowledge about straight edges in
the world can boost its performance. Our results are from a
simple, small environment but are intended as a first baseline
to measure future algorithms against.

I. INTRODUCTION

Tactile sensing capabilities allow rodents to excel in envi-

ronments where many other sensory modalities are impaired.

Rodents often operate in the dark or in complex underground

tunnels, many are diurnal or nocturnal, and consequently can-

not rely on their eyes to navigate, hunt and explore. Instead

they are excellent at tactile sensing and use their whiskers

(known anatomically as ‘vibrissae’) to gather information

about the world. Unlike distal sensors such as lasers and

vision, whiskers make direct contact with the world around

the location of the agent only.

There are environments where distal sensors are inappro-

priate in robotics, for example in smoke-filled search and

rescue operations, or adversarial environments where covert

(i.e. emission-less) sensing is required. Biomimetic touch

sensors such as whiskers have been proposed as useful in

such environments [12].

The task of determining the nature of a surface a whisker

has made contact with is a difficult one. Both the location

in space, and the identity of an object must be determined

while taking the agent’s location uncertainty into account.

A number of systems have been constructed for whisker-

based tactile discrimination: using the geometry of whisker-

object contact [20]; measurement of bending moments at the

whisker base [16], [3]; or through the extraction of features

from the whisker deflection signal for texture [13],[10] and

radial distance estimation [5]. Integrating sensory systems

onto an autonomous mobile robot presents additional chal-

lenges. Though a number of whiskered mobile robots have

been built, [19] few if any perform mapping and navigation,

beyond simple reactive behaviours such as wall-following

and obstacle avoidance.

On first consideration, it may appear that touch-based

SLAM is doomed to failure due to the sparsity of the

likelihood functions. A previous study [8] gave examples

of whisker-based likelihood functions, and showed them to
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Fig. 1. (a) The robot platform. (b) A single whisker unit. See Section II-A
for a description of the components

have high spatial variances as well as many discontinuities

and non-Gaussian shapes. The high spatial variances occur

because many locations in the world look the same to touch

sensors. In related – but different – modalities, short range

infrared [1] and sonar sensors [25] have enabled SLAM

through multiscans and inferences over pose histories; and

infrared sensors with the (very) strong prior assumption that

the world is made of rectilinear structures only [24].

In this paper we present an alternative approach to

strengthen mapping, using properties of whisker sensors

without the need for multiscans or rectilinear assumptions.

Unlike infra-red or sonar sensors, which collect only distance

information from a nearby point, individual whiskers are

able to recover information about the local orientation of the

surface from their contacts [7]. We present three methods for

whisker based tactile SLAM. First, using contact locations

only; second, using geometric contact information from

groups of whiskers to recover surface orientation (these two

methods would also be applicable to the other types of short

range sensors mentioned above) and third, using whisker-

specific strain time series to recover surface orientation. In

all methods we also exploit prior knowledge about the world

structure: all three methods assume that neighbouring points

are correlated; the two surface orientation methods assume

that the environment is made mostly of straight edges, but

of any orientation, unlike the rectilinear assumption.

II. METHODS

A. Whiskers.

Our experiments were performed using four artificial

whiskers measuring 140mm in length, 1.45mm diameter at



the base tapering linearly to 0.3mm at the tip. They are

designed to mimic properties of rodent whiskers, at a scale

of ≈5:1. They are built from nanocure25 using an Evisiontec

rapid prototyping machine. Like rat whiskers, sensing takes

place only at the base (or ‘follicle’), and measures the

local strain there [4]. Magnets are bonded to the bases of

the whiskers and held in place by plugs of polyurethane

approximately 0.75 mm above Melexix 90333 tri-axis Hall

effect sensor ICs [17]. These sensors each generate two

outputs representing the magnetic field direction (in two

axes) with respect to its calibrated resting angle. These two

16-bit values are sampled by a local dsPIC33f802 micro-

controller which is collected using an FPGA configured as

a bridge to a USB 2.0 interface. Up to 28 whiskers can be

connected to this FPGA bridge at one time. Using a software

driver and API (Cesys GmbH), users can request horizontal

and vertical strain data from all whiskers at a sample rate of

2kHz.

B. Robot platform.

Four whiskers are mounted in the cargo bay of an iRobot

Create base (www.irobot.com), positioned on an rapid

prototyped ball joint mountings which allow adjustment

of the whiskers. We have also extended the cargo bay

mounting to accommodate a netbook PC, which is used

for local control of the robot and runs Ubuntu 10.10 on

a single-core Intel Atom processor. A circular buffer in

shared memory is used to make data from the Cesys

driver available to other processes. The netbook hosts a

Player server (playerstage.sourceforge.net) pro-

viding high-level, networked API interfacing to the Create’s

serial port commands. Low-level processes such as texture

and shape recognition and basic motor control can run on the

netbook, reading the raw data from the circular buffer. These

processes send their results to a desktop machine which

handles mapping. Communication is via the C++ Thrift

RPC protocol. Differential and absolute odometry data from

the Create is also sent to the mapping server. Preliminary

experiments showed that the odometry of the Create, once

loaded with the sensing and control hardware, is accurate to

< 5% of any straight line or turn on the spot movements. It

was useful to cache commonly used trigonometric quantities

describing the whisker geometry to enable fast lookup during

navigation.

C. Environment and behaviour

The robot is placed in the 1.25m × 1.25m square arena

shown in Fig. 2, containing several square objects. Its move-

ments are controlled by a finite state machine (FSM),
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Fig. 2. Arena used in map building experiments

which moves the robot forward in a straight line (FWD1)

repeatedly until its whiskers hit something (HIT1). It then

moves the robot forward again at a slower speed (FWD2)

until either a second whisker makes contact (HIT2), or the

strain in any whisker exceeds a safety threshold (ABORT ).

The robot then reverses (BACK) and turns on the spot

(TURN ). Turns angles are draw from a mixture of two

Gaussians, one of which has a small mean and variance

(0.14π, 0) to encourage wall following and the other a large

mean and variance (0.3π,0.25π) to encourage movement

away from walls to explore other parts of the arena. Each

FWD1, FWD2 and BACK step of the FSM lasts for

0.5s, the FWD1 and BACK state moves at 0.05m/s and

the FWD2 state moves at 0.02m/s for safety. Turning is at

0.3rad/s. Within each 0.5s FSM step, the whisker strains are

monitored regularly for strains exceeding the safety threshold

– if this occurs, the motion is terminated early and the FSM

switches to the ABORT state then BACK to escape. Under

these behaviours, the robot tends to move anticlockwise

overall around the arena, interspersed with periods of wall

following and exploration, and typically makes around 3 or

4 circuits (and hopefully loop closures) in a 6 minute run.

Combined odometry and radial distance (i.e. the distance

along each whisker shaft to any contact, or lack of any

contact) reports are sent after every FSM step with the

exception of BACK states, which revisit recently visited

poses and would double-count recent observations there if

their likelihoods were fused into localisation and mapping.

D. Localisation

Localisation is performed using the standard particle filter

of algorithm 1 [23]. 100 particles {si}i=1:100 are maintained,

each of which carries a continuous-valued pose (2D loca-

tion and orientation) and a grid cell map, m[x, y], of the

environment. We use a 50 × 50 grid cell map covering a

2.5m×2.5m space (double the dimensions of the arena to

allow for overspill; 50mm cells). Updates occur at each FSM

step.



Algorithm 1 Sequential importance particle filter

for each time step t do

for s = 1 : N do

sample sI [t] ∼ P (si|si[t− 1], δtrans, δrot)
end for

for s = 1 : N do

λi[t]← 1

Z
P (o[t]|si[t])

end for

resample si[t]← sj [t− 1] with P (j) = λj [t]
end for

The observation vector o consists of radial distance esti-

mates {ri}i=1:4 from the four whiskers, along with trans-

lational (δtrans) and rotational (δrot) odometry estimates

from the Create platform (and wall surface angle estimates

φ, not used for localisation). The resampling step draws

samples according to the likelihood (importance) weights of

the previous set.

Previous work has shown that radial distances from

whisker sensors by be estimated using methods such as

inverse beam theory [3], [16] and feature extraction [5] which

could later be plugged in here – but in the present localisation

(not mapping) module we simply set a strain threshold and

declare a contact at a standard, fixed radius (130mm) when

that threshold is exceeded (and the FSM moves to HIT1 at

this point).

Each particle’s grid cell map contains occupancy proba-

bilities which are used to compute the likelihood function λ
as the product of the individual whisker likelihoods,

λ =

4∏

w=1

λw. (1)

The likelihood of the ith whisker is a function of its

radial contact distance, ri, and the particle pose and particle

map m. We discretise the whisker shaft into 5 segments,

and assume the segments are represented by equally spaced

points, G ∈ 1 : 5 along the length of the shaft. The observed

radial distance r is discretised to the nearest segment number

R. The location L of each segment point in the grid map is

found, [x, y] = L(G). The whisker likelihood is then given

by the product of the map’s probability of contact at the

reported location, m(L(R)) and all the probabilities of no

contacts at the segments between the base of the shaft and

the observed contact,

λw = m(L(R))

R∏

G=0

(1−m(L(G))). (2)

Software speed is important in particle filtering, so we pre-

allocate memory for two populations of particles, then copy

and update values between them in the manner of double-

buffering, to avoid computational overheads of construction

and destruction of objects. The two population buffers are

held in shared memory, which allows monitors such as GUI

displays to run as separate processes on the dual-core desktop

SLAM machine with minimal communications overhead.

E. Blob-based mapping

The simplest whiskered mapping method would treat

each contact as an observation of a single grid cell at the

contact location, and assume independence between cells.

Preliminary experiments showed this is impractical, as there

are many grid cells and only a small number of contacts (e.g.

30) during a run (of 6 minutes). A simple extension of this

idea is to assume a local correlation between grid cells, as

in a Markov Random Field. Under this assumption, a single

contact observation gives rise to a small local Gaussian ∆m
likelihood to be fused into the grid map m,

∆m[x, y] = ∆[xc, yc] exp{−
(x− xc)

2 + (y − yc)
2

2σ2
}, (3)

where (xc, yc) are the coordinates of the contact cell, σ is set

to make the resulting blob affect a radius of about two pixels,

and ∆m[xc, yc] is the likelihood of the original contact cell

occupancy given the current particle and observation (set to

a constant > 0.5).

Whiskers that do not make contact also carry likelihoods

that grid cells along their lengths are empty. We approx-

imate this by a single Gaussian as in eqn. 3, but with

∆m[xc, yc] < 0.5, and (xx, yc) in the center of the whisker

shaft. Furthermore, we know that the region occupied by the

robot’s current body position cannot be occupied by another

object, so we can also fuse a similar negative evidence

Gaussian centred on the robot body location.

F. Angle-based maps with multi-whisker contact geometry

A more sophisticated mapping strategy is to exploit prior

knowledge about the structure of the world, coupled with

using features from multiple whiskers together. Previous

work [24] made the strong assumption that all objects in

the environment have straight edges aligned along Cartesian

axes, exploiting the fact that many man-made environments

are based on square grids. Strong hierarchical object pri-

ors were used by [11] to constrain the interpretation of

contacts as known 3D object forms. Here we use a prior

whose strength lies somewhere between these strong prior

approaches and the weak prior blob method of sec. II-E.

We assume that the environment is made up mostly of long,

straight edges, but do not impose a Cartesian grid on their

poses or make assumptions about the 3D forms of objects.

So rather than placing Gaussian blobs at contact points, we

place a blur of long, oriented edges.

We and others have previously investigated the recovery of

surface normal information from individual whisker strains

[16],[7]. A new simple approach for multi-whiskered robots

is to locate two contact points on the same surface with two

different whiskers, then compute the angle between them.

Assuming that edges in the world are locally straight at this

scale, then this angle gives the angle of the surface. The two

contacts can be read during the FSM states HIT1 and HIT2

as described in section II-C. (In some cases the FWD2 state

terminates to ABORT without a second contact due to a

strain safety threshold being exceeded. In these cases, we



revert to mapping a single Gaussian blob at the first contact

point only as in sec. II-E.)

When an oriented surface is found in this way, we fuse a

blur of long oriented edges into the map,

∆m[x, y] = ∆[xc, yc] exp{−
R2

2σ2

R

− frac(θ − θc)
22σ2

θ},

(4)

where (R, θ) are radial coordinates centered on the contact

midpoint (xc, yc) and estimated surface angle θc. We use

σR = 0.25 and σθ = π/12. Importantly, this produces a

long (0.25m) blurred edge in the map around the contact

point.

G. Angle-based mapping with multi-whisker templates

It has been shown that simple k-means style templates on

strain time series from individual whiskers can be used for

discriminating contact distance classes in physical simula-

tion [9], and stationary robot hardware [6]. In the present

study we have access to four whiskers together, so we

can train templates corresponding to contact angle classes

from the 8-dimensional time series from the whole multi-

whisker set (four whiskers, each with vertical and horizontal

strain channels). The rationale for this approach is that the

geometric multi-whisker method of sec. II-F must assume

that the estimated contact locations are accurate – which

is not necessarily true – and is restricted to utilising data

from two contact whisker locations only. In contrast, a

template method can utilities bulk data from all whiskers

to find similar surface normals, and without any geometric

assumptions. It is a purely data-driven method. Oriented

edges as in eqn. 4 may again be added to the map once

surface normals are found using templates.

Offline training data was collected by programming the

robot to drive into a wall at fifteen different angles (20◦:160◦

in 10◦ intervals) four times. Data was aligned to initial

contacts (at HIT1 occurrence), low pass filtered (17Hz)

to remove oscillations caused by robot body movement,

recorded for 2s, and smoothed with a five-point moving

average. Templates were generated by averaging across the

four sets for each angle. Templates for each angle comprised

data of all eight channels from the four whiskers to allow

multi-whisker information to inform classification.

During online SLAM, strain time-series data was logged

from immediately after each HIT1 to the following HIT2

then sent to the classifier at HIT2. The average squared error,

e for each template, Ti is computed over the N logged data

points,

e(Ti) =
1

N

n∑

t=1

(I(t)− Ti(t))
2. (5)

The template with the lowest sum of squared errors was

determined the winner, and its surface normal used in eqn.

4 to fuse an oriented long edge into the map.

III. RESULTS

Results are presented for mapping using the three methods:

blobs, geometric multi-whisker and template multi-whisker.
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Fig. 3. Ground truth grid map based on the arena used for comparison
with generated maps. Brightness indicates occupancy. (cf. Fig. 2.)

In each instance the robot was programmed to run for twenty

trials of six minutes (6 hours’ data in total). The resulting

grid maps are compared to a ground truth grid map (Fig. 3; as

built by a human observer – which is then smoothed with a 5

× 5 cell Gaussian filter, standard deviation 2.5). Occupancy

in the grid map is represented by a 1 (object present) or a 0

(object not present). Unexplored areas are marked with 0.3

as this is approximately the mean occupancy of the arena.

Grid maps, m[x, y], are compared by an element-wise sum of

absolute errors calculation to the ground truth map, gt[x, y],

1

N

n∑

t=1

1

50

50∑

x=1

1

50

50∑

y=1

|m[x, y]− gt[x, y]|. (6)

The mean error per grid cell is reported for each map. For

baseline comparison, error for a random map populated from

a Bernoulli distribution (p = 0.5) is 0.47 (unitless difference

of probability).

Fig. 4(a) shows the average map generated from running

the robot with the blob based mapping system. Mean oc-

cupancy error was 0.40. Fig. 4(b) shows the average map

generated from running with the geometric multi-whisker

based mapping system. Mean occupancy error was 0.39. Fig.

4 shows the average map generated from running with the

template based mapping system. Mean occupancy error was

0.37.

So get some idea of failure cases, we also tested a larger

2.5m square arena in simulation only, using Player/Stage and

the geometric angle method (physical strains for templates

being unavailable in simulation), which allowed us to explore

different odometry noise levels. For 2% noise in δtrans and

δrot, the inferred map and ground truth arena are shown in

Fig. 6. Correct location tracking was maintained during the

200 steps used to build this map. We then ran a simulation

with 5% odometry noise, but loop closures failed in this case.



(a) (b) (c)

Fig. 4. (a) Average grid map generated when using blob based mapping over twenty trials. Note grid occupancy outside of the area of the arena and low
mean grid occupancy (dark occupied regions). (b) Average grid map generated when using multi-whisker angle based mapping over twenty trials. Note
grid occupancy restricted to the area of the arena and high mean grid occupancy (brighter occupied regions). (c) Average grid map generated when using
template based mapping over twenty trials. Note grid occupancy restricted to the area of the arena and high mean grid occupancy (brightest occupied
regions). Brightness indicates occupancy, all maps are drawn on the same occupancy scale (0:1)

IV. DISCUSSION

All three mapping methods perform well. The template

method is the best and blob-based is the worst under the

metric of eqn. 6. This seems to be because errors in locali-

sation meant the robot became lost and occupied the map

with objects outside of the area of the arena (as can be

seen when comparing the lower right quadrants of Fig.3 and

Fig. 4(a)1). Geometric multi-whisker angle mapping was an

improvement on blob based mapping, with grid occupation

being restricted to the area of the arena, and surface contours

are recovered partially (white patches in Fig.4(b)).

The best performance comes from the template method.

Mapping is restricted to the area of the arena and large

sections of surface contours are recovered (prominent white

patches in Fig.4(c)). Templates are especially useful as they

provide strong predictions of surface angle even when only

single whisker contacts are made – unlike the geometric

method. Templates therefore can extract more information

from impoverished whisker data, informing stronger predic-

tions of object contours, leading to a greater occupancy in

the grid maps.

Differences between the mapping performance of the three

methods can be seen more clearly in the maps generated on

individual trials. Fig.5 shows typical maps generated in each

of the three conditions. Blob based mapping (Fig.5 (a) and

(b)) results in sparse object location reports, and unreliable

localisation resulting in mapping outside of the area of the

arena. Geometric multi-whisker based mapping (Fig.5 (c)

and (d)) generates predictions of object contours, and these

improve localisation to restrict mapping to the bounds of the

arena. Template based mapping (Fig.5 (e) and (f)) generates

more, better predictions of object contours (white areas in

the grid maps), improving localisation. Object features such

1May not display well on some printers, please see on-screen pdf.

as sharp corners can also be seen in the template based grid

maps (lower region of Fig.5 (a) and (b)).

The template classifier was able to discriminate the orien-

tation of a surface but was not trained to discriminate other

sorts of contacts, for example with the corners of objects. In

principle it is possible to train a template classifier on every

possible contact in the arena. However collecting such a data

set would be impractical, and the computations involved in

comparing incoming data to templates for every possible

contact could be cumbersome. An alternative approach is

to extract features from the tactile data, as has been done in

the field of haptic touch [22],[21] and is commonly used in

vision [15], and audition [2]. It has been proposed that cells

in the thalamus and cortex of the rat are encoding features

[18],[14] in this way. In our own lab we are developing

features for whisker based tactile sensing of contact geometry

[5] and texture [10]. In future we hope to be able to combine

features for diverse tactile properties in rich environments

into a coherent system onboard a mobile robot.

V. CONCLUSION

We have previously [8] showed that the Create platform

can perform basic localisation using whiskers and a given

map. The present study has addressed the other aspect of the

SLAM problem – mapping – and showed that it is feasible to

build up maps of small arenas using whisker sensors alone,

by exploiting timing information between contacts and prior

knowledge about edges in the environment.

The results presented here are from a simple small arena

only, and are of course not competitive with current SLAM

systems using visual or laser sensors, which can run in

large outdoor environments. However we have presented

the first results of whiskered grid mapping, which may

serve as a baseline for future, improved whiskered systems.

For example, [11] presents an alternative, more complex

whiskered object recognition system, which could in future
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Fig. 5. Grid maps generated on individual trials for blog based mapping
((a) and (b)), multi whisker geometry based mapping ((d) and (e)), and
template based mapping ((e) and (f)). Brightness indicates occupancy.

form a navigation component, and it would be useful to

compare its results with the baseline presented here.
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