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Mapping with sparse local sensors and strong
hierarchical priors

Charles Fox Tony Prescott

Abstract— The paradigm case for robotic mapping, as in
Simultaneous Localisation and Mapping problems, considers
a mobile robot with noisy odometry and laser scanners. Laser
scanners provide large amounts of sensory information, and
have effectively unlimited range in indoor environments. Such
large quantities of input information allow the use of relatively
weak priors. In contrast, the present study considers the
mapping problem in environments where only sparse, local
sensory information is available. To compensate for the lack
of likelihood evidence, we make use of strong hierarchical
object priors. Hierarchical models were popular in classical
blackboard systems but hare here applied in a Bayesian setting
and novelly deployed as a mapping algorithm. We give proof
of concept results, intended to demonstrate the algorithm’s
applicability as a part of a tactile SLAM module for the
whiskered ScratchBot mobile robot platform.

I. I NTRODUCTION

The paradigm case for robotic mapping, as in Simul-
taneous Localisation and Mapping (SLAM) problems [1],
considers a mobile robot with noisy odometry and SICK laser
scanners. Laser scanners provide large amounts of sensory
information, and have effectively unlimited range in indoor
environments. Such large quantities of input information
allow the use of relatively weak priors, such as independent
grid cell occupancy or flat priors over the belief of small
feature sets [1].

In contrast, the present study considers the mapping
problem in environments where only sparse, local sensory
information is available. For example, a fire-fighting robot
building up a map in a smoke-filled house cannot rely on
laser scanners functioning at all times, and could instead
operate by feeling its way around with touch sensors. Proof
that this type of navigation is possible is found in biology:
electric fish make use of highly localised electric field sensors
[2] and rats navigate through dark underground tunnels
using their whiskers [3], [4], both having ranges of a few
centimetres. In robotics, touch sensors are relatively cheap in
both material and computational processing terms, and their
use has previously been considered to enhance navigation in
cheap household robots [5], [6]. (Related work on research
robot platforms includes [7], [8], [9], [10], [11]).

As an example of this type of mapping, we consider the
case of a mobile robot having six whiskers, able to report the
(noisy) locations and orientations of contacts with surfaces.
Such mechanical sensors and computational classifiers have
previously been demonstrated in [5], [6], [12], and are able

Charles Fox and Tony Prescott are with the Active Touch Laboratory
at Sheffield (ATL@S), University of Sheffield, S10 2TN, UK. Email:
charles.fox@sheffield.ac.uk This work was supported by EU FP7 Biomi-
mentic Architectures for Active Touch (BIOTACT), ICT- 215910.

Fig. 1. Simulation screen-shot at high temperature. Many hypothesised
(wire-frame) tables and legs are on the blackboard, primed by the shapelets
(yellow rectangles) contacted by the robot (cone)’s whisker sensors, in an
arena containing a physical table (pink).

to report locations, orientations and textures of contact points
(note that textures are especially difficult to report using
other sensor modalities). The present mapping algorithm is
intended to form part of a future SLAM navigation module
for the whiskered ScratchBot hardware platform [13], but
here we give a proof of concept mapping-only algorithm in
a simulated and simplified microworld. It is the first work to
begin fusing whisker contact reports to perform mapping.

To compensate for the sparseness of the sensory informa-
tion available from short-range touch sensors, we make use
of strong, hierarchical priors about objects in the world. Hier-
archical object recognition models were popular in classical,
symbolic AI in the guise of blackboard systems [14], [15],
[16] but have recently been recast in terms of dynamically
constructed Bayesian networks [17], [18], [19], [20]. Here
we provide a novel application of Bayesian blackboards to
the robotic mapping problem.

Object based mapping models have recently appeared [21],
[22], [23], [24] which use laser sensors to recognise and
learn complex spatial models. However in the sparse local
sensor case, this level of detail is unavailable, and only a
few contact points may be present. Thus we go beyond the
use of individual movable objects, to use strong hierarchical
model priors. For example, on recognising a table leg, we
may then infer the probable presence the rest of the table,
including other leg objects, and edges and corners making up



Fig. 2. Simulation screen-shot at low temperature. A single table hypothesis
remains.

these legs, without ever sensing them directly. To construct
hierarchical objects, we use hypothesis priming and pruning
heuristics as in blackboard systems. However, following
[17], we treat such heuristics as approximations to inference
in a dynamically-constructed, Monte Carlo Markov Chain
(MCMC) sampling Bayesian network, endowing them with
probabilistic semantics.

II. M ETHODS

A. Minidomain task

Consider the task of building a map of an arena populated
by four-legged table-like objects as in figs. 1 and 2. (Such
objects could include chairs and desks for example). A mo-
bile whiskered agent moves along a predetermined trajectory
of location-angle poses,(xt, yt, θt), around the arena, over
discrete time stepst. At each time step, its six whiskers
(w ∈ 0 : 5) report the radial distancer to, and surface normal
φ and textureτ of, any contacts made with the tables,

r̂wt = rwt + εr, (1)

φ̂w
t = φw

t + εφ, (2)

τ̂wt = φw
t + ετ , (3)

where ε are i.i.d. Gaussian noises having zero mean and
standard deviationsσw

r , σ
w
φ , σ

w
τ respectively.

B. Static structures: generative models

Tables, T , are parametrised by tuples,
T (xT , yT , θT , w

L
T , τT ), where x, y is the location, θ is

the pose angle,wL is the width of their (square) legs, and
τ ∈ (0, 1) is a texture parameter describing roughness or
smoothness of the material. A generative model of tables is
used. We assume a flat prior probabilitydensitygenerating
tables in the world,

p(x, y, θ, wL, τ) = cT , (4)
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Fig. 3. Hierarchical object recognition.Left: Robot R (circle) with
six whiskers (lines) makes tactile contact with legsLj (squares) of a
hypothesised tableT1 (rectangle). The two contact points (‘shapelets’) on
the right are sufficient to infer the location of the corner oflegL4. Coupled
with prior knowledge about the shape and size of tables, and the third
shapelet, this can be used to infer that there is a table either in the ground
truth location or in a second configurationT2 (dashed rectangle).Right:
Bayesian network constructed to represent the same scenario. Square nodes
are the shapelet observations.

wherecT is a constant. (cT is not required to normalise the
distribution, but is chosen so that

∫

A
p(x, y, θ, wL, τ) ≤ 1

over the arenaA).
If a table T exists, its presence causes (in

Pearl’s sense [25]) the presence of four leg objects
L(xL, yL, θL, w

x
L, w

y
L, τL, T ), wherewx, wy are the width

and breadth of the table leg;x, y, θ are its location and
rotation, andτ is its texture, with probability density

p(L(xL, yL, θL, w
x
L, w

y
L, τL, T )|T (xT , yT , θT , w

L
T , τT ))

= αL exp−∆TL, (5)

whereα is a generallynon-normalising constant describing
the overall probability ofsomelegs being generated, and the
distance measure is

∆TL = min
i

(

(xi
T − xL)

2 + (yiT − yL)
2

σ2
r

)

+

(

θT − θL

σθ

)2

+

(

wL
T − wx

L

σw

)2

+

(

wT − w
y
L

σw

)2

+

(

τT − τL

στ

)2

, (6)

wherei ranges over the four legs of the table, and(xi
T , y

i
T )

are the coordinates of its corners. The inclusion ofT in the
parametrisation ofL denotes thatL is the hypothesis that the
leg was caused only by tableT rather than any other tables
or causes.

If contacted by the robot’s whiskers, (and assuming perfect
robot localisation in the present study only) the leg objects
causeshapeletreports,S(xS , yS , θS , τS). These report the
position, surface normal, and texture of the contact, and again
are subject to Gaussian noise. Such reports are currently
available on the ScratchBot hardware platform, [13], [5], [6]
but are simulated in the present study by

p(S(xS , yS , θS , τS)|L(xL, yL, θL, w
x
L, w

y
L, τL)) = αS exp−∆LS

where

∆LS = min
r

(

r

σr

)2

+

(

θL − θS

σθ

)2

+

(

τL − τS

στ

)2

, (7)



and r is the shortest radial distance from any point on the
perimeter of the leg to(xS , yS), computed by basic geometry.

We also allow legs and shapelets to be caused by chance,
rather than by generative parents. That is, we allow a (small)
prior that a single leg exists by itself, or that a shapelet
exists with no macroscopic parent (these are required during
construction on the blackboard). Such causation is modelled
with the flat ‘null’ priors,

p(L(xL, yL, θL, w
x
L, w

y
L, τL, ∅|∅) = cL, (8)

p(S(xS , yS , θS , τS)|∅) = cS , (9)

with constants such that the marginalised densities,

p(S(xL, yL, θL) < p(L(xL, yL, θL) < p(T (xL, yL, θL),
(10)

i.e. larger objects are more probable to exist without high-
level causes than smaller objects are.

Shapelets may be caused by multiple leg hypotheses, and
by the null prior (eqn. 9). For example if there are two legs
very close together then the density for shapelets in the area
increases. We assume that multiple causal sources combine
using noisy-OR semantics,

P (xi|pa(xi)) = 1−
∏

xj∈pa(xi)

(1− P (xi|xj)) . (11)

As we use probabilitydensity functions we require the
continuous version of noisy-OR, proved in the Appendix:

p(xi|pa(xi)) =
∑

xj∈pa(xi)

p(xi|xj). (12)

Similarly, legs may be caused both by their (single) specified
parent (i.e. theT parameter in eqn. 5) and the null prior (eqn.
8), so use a similar combination rule to fuse these two causes.
Tables can only be caused by the null prior (eqn. 4).

Taken together, the equations in this section define a
Bayesian network for any given collection of tables, legs
and shapelets as shown in fig. 3. However, in addition to the
previous causal probabilities, we require probability factors
to model the following constraints: (a) tables always have
four legs; (b) each table leg is at a different corner of the table
(we should not see two legs attached to the same corner); (c)
two objects of the same type (table or leg) cannot overlap
in physical space. Standard Bayesian networks cannot model
such relations, as they are limited to joint distributions of the
form

P ({xi}i) =
∏

i

P (xi|pa(xi)), (13)

wherepa(xi) denotes the set of parents of nodexi. To model
these additional constrains, we extend the Bayesian network
to the factor graph,

P ({xi}i) =
1

Z

(

∏

i

P (xi|pa(xi))

)

×





∏

ij

φc(xi, xj)φb(xi, xj)





(

∏

i

φa(xi)

)

, (14)

Algorithm 1 Blackboard-inspired approximate Metropolis-
hasting proposals generation.

for each time stept do
update shapelet setS
for each annealing temperatureβ do

for each shapeletSi ∈ S do
propose and test parentHi from Q(pa(Si))
if accepted, addHi to hypothesis setB

end for
for each hypothesisHi ∈ B do
r ← rand(0, 1)
if r < r1 then

propose death ofHi

if accepted, removeHi from B

else
if r < r2 then

propose parent change forHi

if accepted, replaceHi’s parent parameter
else

if r < r2 then
propose childhj from Q(ch(Hi)|Hi)
if accepted, addHj to hypothesis setB

else
propose parenthj from Q(pa(Hi)|Hi)
if accepted, addHj to hypothesis setB

end if
end if

end if
end for

end for
prune all hypotheses not linked to any shapelet directly
or via a common ancestor.

end for

whereZ is a normalising constant, andφa, φb, φc are un-
normalised penalty factors corresponding to the three new
constraints. We use

φa(xi) = ǫm, (15)

wherem is the number of missing legs iffxi is a table, and
m = 0 otherwise. Similarly,

φc(xi, xj) = ǫv, (16)

wherev is a Boolean (0,1) value, true if hypothesesxi andxj

are of the same type and overlap in physical space. Finally,

φb(xi, xj) = ǫr, (17)

wherer is a Boolean, true if hypothesesxi andxj are legs
and share the same parent (recalling the parametrisation of
leg hypotheses on particular tables).

C. Inference

For a given set of shapelet observations and a set of
candidate hierarchical legs and tables, we may thus construct



Fig. 4. Overhead view showing ground truth table configuration, and
locations (black dots) of the discrete poses occupied by therobot. There
are four angle poses at each location, facing in compass directions.

a factor graph. (We later describe how such a set of candi-
dates is obtained automatically). Inference becomes highly
complicated if the agent has an infinite memory for shapelets,
so in the present study we use a working memory of the
seven most recent shapelets, and discard all others. At each
t, new shapelets are read from the sensors, and inference
is performed with the aim of obtaining the Maximum A
Posterior (MAP) interpretation of their causes, before the
next time step begins,

MAP = arg{Tj} maxP ({Tj}j |{Sk}k). (18)

Thus we currently treat each time step as an independent
inference problem. Limiting inference to the most recent
shapelets also has the effect of working within a local ‘fovea’
of attention: if no recent shapelets are from distant areas,
then only hypotheses around the agent’s location will be
considered.

There is some subtlety in defining the meaning of MAP
states in continuous parameter spaces. In the present study,
we assume that discrete hypothesesHi(x, y, θ,Θ) (where
H ∈ {S,L, T}) represent small but non-infinitesimal col-
lections of possible(x, y, θ) poses, with probability

P (H((x− δ, x+ δ), (y − δ, y + δ), (θ − δ, θ + δ),Θ))

= (2δ)3p(H(x, y, θ,Θ)), (19)

whereδ is a small but nonzero constant,Θ are the remaining
parameters, andp is the density.

We use the annealed [26] approximate Metropolis-
Hastings sampler of algorithm 1 to perform inference. Unlike
standard inference problems, object-based mapping is a form
of scene analysis task, i.e. the number of objects in the world
– and therefore the number and type of nodes in the network
– is unknown in advance. Algorithm 1 uses blackboard-like

Fig. 5. Montage showing the collection of inferred tables from each
independent robot pose.

priming and pruning heuristics integrated with the sampling,
to control the size of the network.

Details of the algorithm are as follows. Each hypothesis
in the current ‘blackboard’ setB maintains (amongst other
parameters), pose parametersx, y, θ and a current parent.
(The purpose of the explicit parent parameter is to model
constraint (b)). The current parent may be another hypothesis,
or may be null. Importantly, hypotheses that are not true are
never stored inB. The setB acts as a factor graph as detailed
in the previous section, and may be thought of as the contents
of a blackboard [14].

To obtain unbiased samples from the true joint distribu-
tion, Metropolis-Hastings sampling requires detailed tech-
nical conditions to be met, which are complicated by the
jumps between factor graphs of different structures and sizes.
Reversible jump methods [27] provide a rigorous theoretical
basis from which to define acceptance probabilities based on
reweighting proposals. Future work should incorporate such
theory, for now we heuristically choose theQ distributions
andri thresholds; and use the annealed originalP distribu-
tion from the factor graph as a simple Gibbs [26] acceptance
probability,

P (acceptHi)← P β(Hi|mb(Hi)), (20)

wheremb(Hi) is the Markov blanket ofHi, β is inverse
temperature, and the arrow describes drawing a sample from
the distribution. The Markov blanket conditional is

P (Hi|mb(Hi)) = P (Hi|pa, ch, riv)

=
1

Z

φa(Hi)φb(Hi, rivs)φc(Hi, rivs)P (Hi|pa)P (ch|Hi)

P (ch|(Hi))P (Hi|pa) + P (ch|¬Hi)P (¬Hi|pa)

=
1

Z

φa(Hi)φb(Hi, rivs)φc(Hi, rivs)p(Hi|pa)p(ch|Hi)

δ3(p(ch|Hi)p(Hi|pa) + p(ch|¬Hi)p(¬Hi|pa))
,



Fig. 6. Montage showing the collection of inferred tables from each
independent robot pose, for ideal, noiseless sensors.

where pa = pa(Hi), ch = ch(Hi), rivs = rivs(Hi); δ is
the constant of eqn. 19; andφa includes missing children
of Hi and also the missing child penalty for each parent
of Hi which would have a missing child in the case where
Hi is false. The update allows computation to proceed using
density functions rather than probabilities, but includesδ.

When proposing a change in parent parameter forHi, it
is necessary to locate all potential parentspa(Hi) to choose
from. A threshold radius in pose space is used, which limits
this set to candidates which are close enough to have non-
negligible generating probabilitiesP (Hi|Hj), Hj ∈ pa(Hi).
For computational efficiency it is useful to implement a
spatial hash-table to look up nearby hypotheses. This hash-
table may also be reused to look up overlapping hypotheses
in the computation ofφc.

III. R ESULTS

We have implemented a simple simulation of a whiskered
robot in a world populated by six four-legged, table-like
objects, in a simple mapping task. The simulation is coded
in C++ using the ODE physics engine (www.ode.org) for
collision detection. Source code is available on request. The
agent follows a fixed sequences of poses around the world
and runs algorithm 1 once at each pose. There are10×10×4
poses, from 10 discretex andy positions and four compass
θ angles, as shown in fig. 4. To further simplify the present
simulation, tables are all of a fixed size and have identical
leg width and texture parameters.

TODO: say what noise levels and priors used
Steps in the inference are illustrated in the supplemental

video material. The MAP hypothesis sets from all poses
are collated and plotted onto a map of the arena in fig. 5.
Comparing against the ground truth in fig. 4, the collated plot
shows that table hypotheses are usually found in the correct

Fig. 7. Montage showing the collection of inferred tables from each
independent robot pose, for very noisy (σr = 0.5, σθ = π/8) sensors.

locations, corresponding to the real tables. The average
number of whiskers contacting tables at each pose having
at least one table contact is 4.2±1.7. As we would expect
from such a sparse amount of data, there are thus many
incorrect hypotheses found in MAPs of the form shown in
fig. 3. These are created from poses which do not provide
enough information about the tables to resolve ambiguities,
for example when the robot is close enough to touch two legs
but no third leg as in fig. 3. Also of interest in the results are
the many table hypotheses perceived around the edge of the
arena. These are due to the agent observing shapelets from
contact with the walls around the arena. The system does not
(yet) have perceptual models of walls, so the best available
explanations for such shapelets are those which postulate
tables with legs at these shapelet locations. (This is a formof
perceptual relativism: lacking a WALL concept, the system
explains the data using its best available TABLE theories.)
Similar plots for noiseless and highly noisy sensor cases are
shown in figs. 6 and 7 for comparison. In both cases, the
approximate locations of inferred tables are similar, though
the accuracy of inferred table poses depends on the noise.

IV. D ISCUSSION

We have presented a proof-of-concept simulation of a
novel framework for hierarchical object-based mapping from
sparse local sensors, such as whiskers and other types of
touch; but also applicable to sensors such as low-power or
covert short range scanners; or local field-based sensors as
used by electric fish.

Many simplifications were made in this proof-of-concept,
which future versions of the system should relax. The results



presented here are simply the collation of many independent
inferences made from the different poses in the sequence,
and no information is shared between poses. Storing longer-
term memories of shapelets and fusing them into the infer-
ences would obviously allow a more refined map of the
arena to be constructed: at present each table shown in
the results has been inferred from typically three or four
shapelets only. The present system makes no use of negative
evidence, i.e. the observed absence of shapelets on non-
contacting whiskers: this could be used to remove some of
the ambiguous percepts. The heuristic threshold constantsin
the proposal distribution should be replaced with Reversible
Jump MCMC reweightings to remove bias in the sampling
distribution (although in practice the heuristic thresholds can
work well, as ultimately only the annealed MAP is sought,
rather than an approximation to the whole distribution).

Importantly, the proof-of-concept simulation operates ina
world having only one size and texture of table (though tables
may have different leg sizes). Enlarging the parameter space
to range over tables sizes and textures will allow inference
of more realistic four-legged objects such as different kinds
of chairs and desks. Other types of objects could also be
introduced, such as walls, kitchen units and radiators. The
Bayesian blackboard architecture is able to automatically
select between rival object models, treating them as rival
hypotheses [17]. However, as the number of models and
parameters grows, sampling of course becomes less efficient.
For example, it becomes less probable that a perfectly-fitting
table will ever be proposed. (Even though once proposed,
it will tend to remain accepted for having such a good
fit.) We plan to investigate the use of ‘smart proposals’
which are classical heuristic object detectors (e.g. Hough
transforms to find edges and corners) but re-purposed as
Metropolis-Hastings proposals in the Bayesian Blackboard.
When combined with RJ-MCMC acceptance probabilities,
this gives a way to speed up the proposals but retain the
probabilistic semantics.

We next hope to extend our implementation to recognise
several types of object of varying size, and move from
simulation to the ScratchBot platform [13], which is currently
able to report shapelets of the form used in simulation.
ScratchBot includes noisy odometry, so will require our
mapping system to function as part of a SLAM system. New
forms of loop-closure in SLAM may become possible by
recognising different parts of the same hierarchical object.
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APPENDIX: NOISY-OR DENSITY COMBINATION

Let Yi range over nodepa(X) in a continuous-valued
Bayesian network with noisy-OR parent combinations,

P (X|{Yi}i) = 1−
∏

(1− Pi). (21)

Consider the probability of a small range of hypotheses,

δ3p(X|{Yi}i) = 1−
∏

(1− δ3pi), (22)

where p are probability densities andP are probabilities.
Expansion terms with powers ofδ that are> 3 vanish, so

δ3p(X|{Yi}i) = δ3
∑

pi. (23)

The δ3 terms cancel to yield

p(X|{Yi}i) =
∑

pi. (24)


