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Mapping with sparse local sensors and strong
hierarchical priors

Charles Fox Tony Prescott

Abstract— The paradigm case for robotic mapping, as in
Simultaneous Localisation and Mapping problems, considers
a mobile robot with noisy odometry and laser scanners. Laser
scanners provide large amounts of sensory information, and
have effectively unlimited range in indoor environments. Such
large quantities of input information allow the use of relatively
weak priors. In contrast, the present study considers the
mapping problem in environments where only sparse, local
sensory information is available. To compensate for the lack
of likelihood evidence, we make use of strong hierarchical
object priors. Hierarchical models were popular in classical
blackboard systems but hare here applied in a Bayesian setting
and novelly deployed as a mapping algorithm. We give proof
of concept results, intended to demonstrate the algorithm’s
applicability as a part of a tactie SLAM module for the
whiskered ScratchBot mobile robot platform.

I. INTRODUCTION

The paradigm case for robotic mapping, as in Simul-
taneous Localisation and Mapping (SLAM) problems [1]Fig. 1. Simulation screen-shot at high temperature. Many thgsised
considers a mobile robot with noisy odometry and SICK |lasdwire-frame) tables and legs are on the blackboarq, primedh@ysmap_elets
scanners. Laser scanners provide large amounts of sens Izwcgi?;?:iﬂlga ;ﬁ;;?f;f?agfet?peint;?c’t (cone)'s whisiensors, in an
information, and have effectively unlimited range in indoo
environments. Such large quantities of input information

allow the use of relatively weak priors, such as independept . : . .
. . . 0 report locations, orientations and textures of contaatts
grid cell occupancy or flat priors over the belief of small

(note that textures are especially difficult to report using
feature sets [1], other sensor modalities). The present mapping algorithm is
In contrast, the present study considers the mappin ' P pping alg

. : idtended to form part of a future SLAM navigation module
problem in environments where only sparse, local sensoL

information is available. For example, a fire-fighting robo O the whiskered ScratchBot hardware platform [13], but

- : e ere we give a proof of concept mapping-only algorithm in
building up a map in a smoke-filled house cannot rely 021 simulated and simplified microworld. It is the first work to

laser scanners functioning at all times, and could insteabd in fusing whisker contact reports to perform maopin
operate by feeling its way around with touch sensors. Proof? 9 b P PPINg.

that this type of navigation is possible is found in biology: 10 cOmpensate for the sparseness of the sensory informa-
electric fish make use of highly localised electric field segs tON available from short-range touch sensors, we make use
[2] and rats navigate through dark underground tunne%fStfong’ hllerarchlcal priors about objects in the v_vorIdarH
using their whiskers [3], [4], both having ranges of a femprchlca_l objept recognition models were popular in clagsic
centimetres. In robotics, touch sensors are relativelaglie symbolic Al in the guise of blackbogrd systems [14], [_15]’
both material and computational processing terms, and thét6] Put have recently been recast in terms of dynamically
use has previously been considered to enhance navigatiorCfStructed Bayesian networks [17], [18], [19], [20]. Here
cheap household robots [5], [6]. (Related work on researche provuje a n0\_/el application of Bayesian blackboards to
robot platforms includes [7], [8], [9], [10], [11]). the robotic mapping problem.

As an example of this type of mapping, we consider the Object based mapping models have recently appeared [21],
case of a mobile robot having six whiskers, able to report tH82]l, [23], [24] which use laser sensors to recognise and
(noisy) locations and orientations of contacts with siefac !earn complex spatial models. However in the sparse local
Such mechanical sensors and computational classifiers h&@sor case, this level of detail is unavailable, and only a

previously been demonstrated in [5], [6], [12], and are ablfW contact points may be present. Thus we go beyond the
use of individual movable objects, to use strong hieraathic
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Fig. 3. Hierarchical object recognitiorLeft: Robot R (circle) with
six whiskers (lines) makes tactile contact with leds (squares) of a
hypothesised tablg; (rectangle). The two contact points (‘shapelets’) on
the right are sufficient to infer the location of the cornettesf L. Coupled
with prior knowledge about the shape and size of tables, &edthird
shapelet, this can be used to infer that there is a tablerdithe ground
truth location or in a second configuratiahe (dashed rectangleRight:
Bayesian network constructed to represent the same sceBgtiare nodes
are the shapelet observations.

Fig. 2. Simulation screen-shot at low temperature. A sinditethypothesis wherecy is a constant.d is not required to normalise the

remains. distribution, but is chosen so thg’tAp(x,y,O,wL,T) <1
over the aren&l).

these legs, without ever sensing them directly. To construc If a table T exists, its presence causes (in

hierarchical objects, we use hypothesis priming and painirPearl’s sense [25]) the presence of four leg objects

heuristics as in blackboard systems. However, followind.(zr,yr,0r, w,wY, 7., T), where w”,w¥ are the width

[17], we treat such heuristics as approximations to infeeen and breadth of the table leg;, y,6 are its location and

in a dynamically-constructed, Monte Carlo Markov Chairrotation, andr is its texture, with probability density

(MCMC) sampling Bayesian network, endowing them with

L
probabilistic semantics. p(L(zr,yr, O, wi, wi, 7o, T)|T (@7, yr, b7, wr, 7))

Il. METHODS = apexp —Arg, (5)

A. Minidomain task wherea is a generallynonnormalising constant describing
Consider the task of building a map of an arena populatdfe overall probability osomelegs being generated, and the

by four-legged table-like objects as in figs. 1 and 2. (Sucflistance measure is

objects could include chairs and desks for example). A mo- <(xiT — )%+ (i — yL)Q) N <9T — 9L>2

bile whiskered agent moves along a predetermined tra},ectoATL = miin
of location-angle posesz:,y:, 6;), around the arena, over
discrete time steps. At each time step, its six whiskers <w% —w¥ > 2 N <u)T - w%>2 N (’TT -7 > 2 ©)

2
oy g0

(w € 0 : 5) report the radial distanceto, and surface normal
¢ and texturer of, any contacts made with the tables,

Ow Ow or

wherei ranges over the four legs of the table, gnd., y.)

r =1+ e, (1) are the coordinates of its corners. The inclusiorf'oh the
Qg;v =Y + ey, @) parametrisation of, denotes thaL is the hypothesis that the

leg was caused only by tablg rather than any other tables
7 =¢) +er, (3) or causes.

where ¢ are i.i.d. Gaussian noises having zero mean and !f contacted by the robot's whiskers, (and assuming perfect

standard deviations, o', o respectively. robot localisation in the present study only) the leg olgiect
causeshapeletreports, S(zs,ys, 0s,7s). These report the

B. Static structures: generative models position, surface normal, and texture of the contact, aaihag
Tables, T, are parametrised by tuples, are subject to Gaussian noise. Such reports are currently

T(xr,yr, 07, wk ), where z,y is the location,d is available on the ScratchBot hardware platform, [13], [6], [

the pose angley’ is the width of their (square) legs, andbut are simulated in the present study by

7 € (0,1) is a texture parameter describing roughness

smoothness of the material. A generative model of tables

used. We assume a flat prior probabildgnsitygenerating where

tables in the world, O\ 2 0, — 0e\2 e\ 2
() (U50) (757) - o

or
%)és(xSaySa 957TS)|L(xLa yr, gvafvwszL)) = (xg €xXp _ALS

p(may787wLaT) = Cr, (4) T Oy oy} Or



andr is the shortest radial distance from any point on thélgorithm 1 Blackboard-inspired approximate Metropolis-
perimeter of the leg t6z s, ys), computed by basic geometry. hasting proposals generation.

We also allow legs and shapelets to be caused by chancefor each time step do

rather than by generative parents. That is, we allow a (3mall
prior that a single leg exists by itself, or that a shapelet
exists with no macroscopic parent (these are required glurin
construction on the blackboard). Such causation is madielle
with the flat ‘null’ priors,

p(L(x[nyLaeLawfawZLl,aT[m@'@) =CL, (8)
p(S(xS7y55057TS)‘®):CS7 (9)
with constants such that the marginalised densities,

p(S(zr,yr,0r) < p(L(zr,yr,01) < p(T(vL,yL,01),
(10)
i.e. larger objects are more probable to exist without high-
level causes than smaller objects are.

Shapelets may be caused by multiple leg hypotheses, and
by the null prior (egn. 9). For example if there are two legs
very close together then the density for shapelets in the are
increases. We assume that multiple causal sources combine
using noisy-OR semantics,

P(x;|pa(z;)) =1 — H
z;Epa(z;)

As we use probabilitydensity functions we require the
continuous version of noisy-OR, proved in the Appendix:

> plailry). (12)
zjEpa(x;)

Similarly, legs may be caused both by their (single) spetifie
parent (i.e. thg” parameter in egn. 5) and the null prior (egn.

(1= P(zilz;)).  (11)

p(zilpa(x;)) =

update shapelet sét
for each annealing temperatusedo

for each shapelef; € S do
propose and test pareff; from Q(pa(S;))
if accepted, add{; to hypothesis seB
end for
for each hypothesi¢/; € B do
r < rand(0,1)
if r <ry then
propose death off;
if accepted, removéi; from B
else
if r < ry then
propose parent change féf;
if accepted, replacéi;’s parent parameter
else
if » < ry then
propose childr; from Q(ch(H;)|H;)
if accepted, add{; to hypothesis seB
else
propose parent; from Q(pa(H;)|H;)
if accepted, add{; to hypothesis seB
end if
end if
end if
end for

end for
prune all hypotheses not linked to any shapelet directly
or via a common ancestor.

8), so use a similar combination rule to fuse these two causesend for

Tables can only be caused by the null prior (eqn. 4).
Taken together, the equations in this section define a

Bayesian network for any given collection of tables, leg§yhere 7 is a normalising constant, angl,, é;, 6. are un-
and shapelets as shown in fig. 3. However, in addition 0 thgyrmalised penalty factors corresponding to the three new

previous causal probabilities, we require probabilitytdéas
to model the following constraints: (a) tables always have
four legs; (b) each table leg is at a different corner of thxeta

(we should not see two legs attached to the same corner); (c
two objects of the same type (table or leg) cannot overla\ﬁ{

in physical space. Standard Bayesian networks cannot mod@é|=

such relations, as they are limited to joint distributiofshe
form

P({z;};) = [ P(xilpa(z:)), (13)
wherepa(z;) denotes the set of parents of nage To model

these additional constrains, we extend the Bayesian nketwor
to the factor graph,

P({x;}i) = % (H P($i|pa(ﬂfi))> X

ij

(quC(xi,xj)qﬁb(xi,xj)) (Hqﬁa(xi)), (14)

constraints. We use

Pa(wi) = €™, (15)

%erem is the number of missing legs iff; is a table, and
0 otherwise. Similarly,

(16)

¢c($i7 x]) = 61}’

wherev is a Boolean (0,1) value, true if hypothesgsandz;;
are of the same type anderlap in physical space. Finally,

¢b(ffi75€j) =, (17)

wherer is a Boolean, true if hypothesas andz; are legs
and share the samenaat (recalling the parametrisation of
leg hypotheses on patrticular tables).

C. Inference

For a given set of shapelet observations and a set of
candidate hierarchical legs and tables, we may thus canistru



Fig. 4. Overhead view showing ground truth table configoratiand
locations (black dots) of the discrete poses occupied byrdbet. There

are four angle poses at each location, facing in compasstidinsc Fig. 5. Montage showing the collection of inferred tablesnir each
independent robot pose.

a factor graph. (We later describe how such a set of candi-

dates is obtained automatically). Inference becomes )high'?“mmg and pruning heuristics integrated with the sanlin
to control the size of the network.

complicated if the agent has an infinite memory for shapelets Details of the algorithm are as follows. Each hypothesis

so in the present study we use a working memory of the o
P y . 9 y In, the current ‘blackboard’ seB maintains (amongst other

seven most recent shapelets, and discard all others. At each
arameters), pose parameteargy,§ and a current parent.

t, new shapelets are read from the sensors, and mfererf%e purpose of the explicit parent parameter is to model

is performed with the aim of obtaining the Maximum A ; .
Posterior (MAP) interpretation of their causes, before thgonstralnt (b)). The current parent may be another hyptsthes
next time step begins, or may be nu_II. Importantly, hypotheses that are not trug are
never stored irB. The setB acts as a factor graph as detailed
MAP = argp, max P({T;};|{Sk}x)- (18) inthe previous section, and may be thought of as the contents
' ) ) of a blackboard [14].
Thus we currently treat each time step as an independentry gptain unbiased samples from the true joint distribu-

inference problem. Limiting inference to the most recenfio Metropolis-Hastings sampling requires detailedhtec

shapelets also has the effect of working within a local ‘®ve iz conditions to be met, which are complicated by the

of attention: if no recent shapelets are from dis_tant areagmps between factor graphs of different structures anessiz

then only hypotheses around the agents location will bReyersible jump methods [27] provide a rigorous theorktica

considered. _ o _ basis from which to define acceptance probabilities based on
There is some subtlety in defining the meaning of MARe\eighting proposals. Future work should incorporatensuc

states in continuous parameter spaces. In the present styfféory for now we heuristically choose tiig distributions

we assume that discrete hypotheségz,y.0.©) (Where anq;; thresholds; and use the annealed origiRatlistribu-

H € {S,L,T}) represent small but non-infinitesimal col-¢on from the factor graph as a simple Gibbs [26] acceptance

lections of possiblézx, y, 0) poses, with probability probability,
P(H((x =0,z +0),(y — 6,y +0),(0 - 0,0 +6),0)) P(acceptH;) < PP(H;|mb(H;)), (20)
= (20)°p(H(x,y,6,0)), (19)  where mb(H;) is the Markov blanket ofH;, § is inverse

temperature, and the arrow describes drawing a sample from

whered i mall nonzer n re the remainin . ;
ered is a small but nonzero consta,are the remaining the distribution. The Markov blanket conditional is

parameters, angd is the density.
We use the annealed [26] approximate Metropolis- P(H;lmb(H;)) = P(H;|pa, ch, riv)

Hastings sampler of algorithm 1 to perform inference. Umnlik . .

standard inference problems, object-based mapping isva for = L $a(H:) ¢y (Hi, rivs)¢e(Hi, rivs) P(Hilpa) P(ch| Hy)

of scene analysis task, i.e. the number of objects in thedwvorl < P(ch|(H;))P(Hilpa) + P(ch|=H;) P(=Hipa)

— and therefore the number and type of nodes in the network 1 ¢, (H;)¢s(H;, rivs)p.(H;, rivs)p(H;|pa)p(ch|H;)

— is unknown in advance. Algorithm 1 uses blackboard-like ~ 7 83 (p(ch|H;)p(H;|pa) + p(ch|—H;)p(—H;|pa))
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Fig. 6. Montage showing the collection of inferred tablesnir each
independent robot pose, for ideal, noiseless sensors.

Fig. 7. Montage showing the collection of inferred tablesnir each

. ) . independent robot , fi isy-(= 0.5,09 = 7/8 .
wherepa = pa(H,),ch = ch(H,),rivs = rivs(H,); 6 is independent robot pose, for very noisy,( g = 7/8) sensors

the constant of eqgn. 19; ang, includes missing children

of Hf; and also the missing child penalty for each pare%cations, corresponding to the real tables. The average

of Hi which would have a missing Ch"d. in the case Whe.r%umber of whiskers contacting tables at each pose having
H; is false. The update allows computation to proceed USiNg | sast one table contact is 42.7. As we would expect

density functions rather than probabilities, but includes from such a sparse amount of data, there are thus many

. When proposing a change m_parent parameterHor it incorrect hypotheses found in MAPs of the form shown in
is necessary to locate all potential parepu¢H;) to choose fig. 3. These are created from poses which do not provide

frqm. A threshol_d radius N POSE Space 1s used, which IImItgnough information about the tables to resolve ambigyities
this set to candidates which are close enough to have n

o ) o Br example when the robot is close enough to touch two legs
negligible generating probabilitieB(H;|H;), H; € pa(H:). ) n thirg leg as in fig. 3. Also of interest in the results are
For computational efficiency it is useful to implement

. . e many table hypotheses perceived around the edge of the
spatial hash-table to look up nearby hypothe;es. This haSaHéna. These are due to the agent observing shapelets from
table may also be reused to look up overlapping hypothes

in the computation ofs E8ntact with the walls around the arena. The system does not
P ¢ (yet) have perceptual models of walls, so the best available
I1l. RESULTS explanations for such shapelets are those which postulate

We have implemented a simple simulation of a whiskeretfPI€s with legs at these shapelet locations. (This is a fdrm
robot in a world populated by six four-legged, tab|e_|ikeperce.ptual relat|V|sm_: Iaqklng a WAL_L concept, the sysFem
objects, in a simple mapping task. The simulation is code‘?ﬁ(pl_a'“s the data using its best.avallab!e TABLE theories.)
in C++ using the ODE physics engineviw. ode. or g) for Similar 'plo'gs for noiseless and hlghly noisy sensor cases ar
collision detection. Source code is available on requese. TShown in figs. 6 and 7 for comparison. In both cases, the
agent follows a fixed sequences of poses around the wodgProximate locations of inferred tables are similar, giou
and runs algorithm 1 once at each pose. Therd @wel0 x 4 the accuracy of inferred table poses depends on the noise.
poses, from 10 discrete andy positions and four compass
0 angles, as shown in fig. 4. To further simplify the present
simulation, tables are all of a fixed size and have identical We have presented a proof-of-concept simulation of a
leg width and texture parameters. novel framework for hierarchical object-based mappingnfro

TODO: say what noise levels and priors used sparse local sensors, such as whiskers and other types of

Steps in the inference are illustrated in the supplementtduch; but also applicable to sensors such as low-power or
video material. The MAP hypothesis sets from all posesovert short range scanners; or local field-based sensors as
are collated and plotted onto a map of the arena in fig. bised by electric fish.

Comparing against the ground truth in fig. 4, the collated plo Many simplifications were made in this proof-of-concept,
shows that table hypotheses are usually found in the correghich future versions of the system should relax. The result

IV. DISCUSSION



presented here are simply the collation of many independert]
inferences made from the different poses in the sequence,
and no information is shared between poses. Storing Iongersl
term memories of shapelets and fusing them into the infer-
ences would obviously allow a more refined map of the
arena to be constructed: at present each table shown [?1]
the results has been inferred from typically three or foupno]
shapelets only. The present system makes no use of negative
evidence, i.e. the observed absence of shapelets on ngn;
contacting whiskers: this could be used to remove some of
the ambiguous percepts. The heuristic threshold consitants12]
the proposal distribution should be replaced with Revégsib
Jump MCMC reweightings to remove bias in the samplingL3]
distribution (although in practice the heuristic threstsotan
work well, as ultimately only the annealed MAP is sought[14]
rather than an approximation to the whole distribution).

Importantly, the proof-of-concept simulation operatesin
world having only one size and texture of table (though tbleg; g
may have different leg sizes). Enlarging the parameterespac
to range over tables sizes and textures will allow inferendé’]
of more realistic four-legged objects such as differentg&in
of chairs and desks. Other types of objects could also lpes]
introduced, such as walls, kitchen units and radiators. The
Bayesian blackboard architecture is able to automatical[)llg]
select between rival object models, treating them as rivgdo]
hypotheses [17]. However, as the number of models and
parameters grows, sampling of course becomes less efficiggi
For example, it becomes less probable that a perfectlpgitti
table will ever be proposed. (Even though once proposed
it will tend to remain accepted for having such a goocﬁﬂ]
fit) We plan to investigate the use of ‘smart proposalg23]
which are classical heuristic object detectors (e.g. Hough
transforms to find edges and corners) but re-purposed as
Metropolis-Hastings proposals in the Bayesian Blackboarg4]
When combined with RJ-MCMC acceptance probabilities25
this gives a way to speed up the proposals but retain t i
probabilistic semantics.

We next hope to extend our implementation to recognigg’]
several types of object of varying size, and move from
simulation to the ScratchBot platform [13], which is curttgn

[
[4)]
=

able to report shapelets of the form used in simulation. Let Y; range over nodea(X)
3

ScratchBot includes noisy odometry,
mapping system to function as part of a SLAM system. New
forms of loop-closure in SLAM may become possible by
recognising different parts of the same hierarchical dbjec
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APPENDIX: NOISY-OR DENSITY COMBINATION
in a continuous-valued

so will require ouBayesian network with noisy-OR parent combinations,

P(X|{Yi}:) = 1=t - Py (21)

Consider the probability of a small range of hypotheses,

P*p(X|{Yi}:) =1 [[(1 - &p), (22)

where p are probability densities an@ are probabilities.
Expansion terms with powers éfthat are> 3 vanish, so

Fp(X|{Yi}:) = > pi. (23)
The §2 terms cancel to yield
p(XKYik) =) pi- (24)



