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Future climate change is likely to increase the frequency of coastal storms and floods, with major consequences

for coastal transport infrastructure. This paper assesses the extent towhich projected sea-level rise is likely to im-

pact upon the functioning of the Dawlish to Teignmouth stretch of the London to Penzance railway line, in

England. Using a semi-empirical modelling approach, we identify a relationship between sea-level change and

rail incidents over the last 150 years and then usemodel-based sea-level predictions to extrapolate this relation-

ship into the future.Wefind that dayswith line restrictions (DLRs) look set to increase byup to 1170%, to asmany

as 84–120 per year, by 2100 in a high sea-level rise scenario (0.55–0.81m). Increased costs to the railway indus-

try deriving frommaintenance and line restrictionswill be small (£millions) in comparisonwith damage caused

by individual extreme events (£10s of millions), while the costs of diversion of the railway are higher still (£100s

of millions to billions). Socio-economic costs to the region are likely to be significant although they are more

difficult to estimate accurately. Finally, we explain how our methodology is applicable to vulnerable coastal

transport infrastructure worldwide.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

There has beenmuch discussion about the impacts of climate change

on a variety of sectors and debate on how to model and measure these

impacts (Bosello and De Cian, 2014), but comparatively little research

has been conducted into the potential impacts of climate change on the

functioning of transport systems (Koetse and Rietveld, 2009;

Jaroszweski et al., 2010; Jaroszweski and McNamara, 2014; see also

Ryley and Chapman, 2012). In the UK, for example, only recently have

the government and other key bodies begun seriously to acknowledge

the importance of resilient transport infrastructure in the face of future

climate and weather-related threats (HM Government, 2011;

Department for Transport, 2011, 2014a; ICE, 2009; RSSB, 2010; High-

ways Agency, 2011; Network Rail, 2014a). Hooper and Chapman

(2012: 106) argue that in addition to studies focusing on how the trans-

port sector can assist in mitigating the effects of climate change, largely

by reducing carbon emissions (see Chapman, 2007; Banister et al.,

2012), the “impacts of climate change on transport networks need care-

ful consideration to allow the networks to continue operating effectively

in the future.” In other words, a focus on adaptation as well asmitigation

is important.

Jaroszweski et al. (2010) list seven causes of disruption to transport

systems linked to climate change. Six mainly relate to inland areas (an

increased number of hot days, fewer cold days, more heavy precipita-

tion, seasonal changes, drought and a higher number of extreme

events), but sea-level change is identified, unsurprisingly, as problemat-

ic for coastal zones. Indeed, Hooper and Chapman (2012) suggest that

the threat of flooding from sea-level rise combined with that from

more extreme precipitation events renders coastal transport infrastruc-

ture more at risk than its equivalent inland. It is thought that climate

change could bring about a global sea-level rise of as much as 0.97 m

by 2100, through processes of thermal expansion and the melting of

ice caps (Church et al., 2013). The threat of coastal floodingwill increase

significantly, not least because of the increase in the occurrence of ex-

treme water levels when strong winds and low atmospheric pressure

combine to produce storm surges. Especially when coupled with high

tides, the effects of such surges can be devastating (Haigh et al.,

2010); the United Kingdom’s North Sea coast, for example, experienced

in the winter of 2013/2014 its highest recorded storm surges since

1953, reaching over 2 m above the predicted high tide and causing

widespread damage and disruption in the east of England (BBC,

2013a; National Oceanographic Centre (NOC), 2014a; Huntingford

et al., 2014). In the southwest of England, theNewlyn tide gauge record-

ed its highest ever water level on 3 February 2014 (Wadey et al., 2014).

Globally, the potential impact of sea-level rise is hugely significant

(Seneviratne et al., 2012), with 13 of the world’s 20 ‘megacities’ (cities
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with populations exceeding eight million) situated on the coast

(Nicholls et al., 2008) and transport infrastructure including ports, air-

ports road and rail links all under threat. Evidence from the United

States identifies the potential impacts on the transport infrastructure

of Boston (e.g., Suarez et al., 2005), New York (e.g., Zimmerman, 2002;

Jacob et al., 2007) and several other low lying regions of the eastern sea-

board (Titus, 2002) as well as transport corridors along the Pacific coast

of California (Heberger et al., 2009). Coastal transport routes in low-

lying areas of northwest Europe (European Environment Agency,

2014) are also at risk.

Notwithstanding an increasing interest in sustainable ‘soft’ mea-

sures such as cliff stabilisation, dune regeneration, beach nourishment

and coastal realignment (Department of Environment, Food and Rural

Affairs, 2005), hard-engineered sea defences such as sea walls, rock ar-

mour and breakwaters have typically been built to protect coastal com-

munities and services (Arns et al., 2013; Nicholls et al., 2013). In the

British context, it is estimated that coastal defence structures protect

around 1200 km – roughly one third – of the English and Welsh

coastlines, with a particular concentration in southern England

(Environment Agency, 1999; Hall et al., 2006; de la Vega-Leinert and

Nicholls, 2008). Defence structures are built to a design standard

based on the statistical return period of extreme water levels – 1 in 50

years, 1 in 200 years, etc. – but it is estimated that even small changes

in sea level, of the order of centimetres, can have a significant effect

on these return periods and the future probability of coastal flooding

(Dixon and Tawn, 1995; Gehrels, 2006; Church et al., 2008; Haigh

et al., 2011). It is thus unsurprising that future sea-level projections pro-

vide an important tool for strategic coastal planning (Hall et al., 2006;

Nicholls et al., 2013). The most recent published projections of regional

sea-level change are found inUKCP09 Science Report:Marine and Coastal

Projections (Lowe et al., 2009) and are derived from model-based fore-

casts of changes in mean sea level and storminess. They also include a

component of land subsidence or uplift, creating a spatial pattern of rel-

ative sea-level rise projections for theUK that are a reflection of theUK’s

glacial history (Shennan and Horton, 2002): the southwest of England,

which is sinking at a rate of 1.1 mm/yr due to ongoing glacio-isostatic

adjustment (GIA), will experience the highest rates of relative sea-

level rise during this century (Gehrels et al., 2011).

The potential for disruption to transport infrastructure and the ser-

vices it supports is of particular concern in countries like the UK that

have under-invested in their transport operations for many decades

(see Shaw and Docherty, 2014). This has been well illustrated by several

recent incidents when sections of the railway network were forced to

close for weeks after embankments and cuttings became damaged after

heavy rain (e.g., Network Rail (NR), 2015). Perhaps most famously, win-

ter storms in 2014 breached the sea wall in several places along a coastal

stretch of the London to Penzance railway line at Dawlish, in Devon, leav-

ing the railway tracks completely unsupported (Fig. 1) and closing the

line for 2 months (Network Rail, 2014b). The importance of reliable

transport (and, for that matter, other) infrastructure to socio-economic

activity is not in doubt (Eddington, 2006): rail patronage in the far south-

west of England has grown around 90% since 2004, strong future growth

is expected (Network Rail, 2014c) and the line is seen as increasingly im-

portant for the region’s seasonal tourist ‘boom’ uponwhich the economy

heavily relies. Very quickly estimates of how much this breach cost the

local economy began to emerge (House of Commons, 2014a, 2014b;

PCCI, 2014). In reality a precise figure is not known (Marsden, 2014),

but the impression given of a region ‘cutoff’ from the rest of the country

was all too keenly felt (witness the #openforbusiness campaign on Twit-

ter). As Ryley and Chapman (2012) note, climate change is a global phe-

nomenon, but its impacts are often felt locally.

It is in this context that we aim to estimate the likely impact of sea-

level change on the Dawlish stretch of the London to Penzance railway

line. In so doing, we draw upon results derived from a study designed

specifically to combine human and physical geography approaches,

and to engage regional and national stakeholders in the production of

policy-relevant discussions and conclusions (Dawson, 2012). We have

already published the data on which our sea-level projections are

based (Gehrels et al., 2011), and here we consider the extent to which

these projections are likely to impact upon the functioning of the line.

The paper proceeds as follows. In the next section, we provide details

of the study site, including a history of overtopping events along the

Dawlish to Teignmouth sea front. Section three outlines the methodo-

logical approach we adopted and discusses the nature of the empirical

relationship we identify between sea-level rise and historic rail inci-

dents. In sections four and five, we estimate how and the extent to

which the linewill be disrupted during the remainder of the 21st centu-

ry and consider the potential costs of these disruptions to both the rail-

way industry and the region more broadly. A conclusion discussing the

wider implications of both ourfindings and ourmethodology brings the

paper to a close.

2. Rails along the sea wall

The London–Penzance railway links England’s southwest peninsular

counties of Cornwall, Devon and Somerset with the UK capital and con-

nects at Taunton with lines to elsewhere in Great Britain. In Devon and

Cornwall, a number of branch lines link with coastal resorts and other

towns, and several freight-only lines also serve the region. The 6.4 km

stretch between Dawlish and Teignmouth (Fig. 2) has been susceptible

to frequent closure during high seas and storm events ever since it was

built (see Kay (1993) for a complete history). The line, designed by I.K.

Brunel who was Engineer to the Great Western and the Bristol and Ex-

eter Railway, opened on 30 May 1846. On 5 October of that same year,

breaches to the sea wall were reported and the line was closed, and as

in 2014, the track was left hanging in mid-air. Third class passengers

not protected by windows were “soaked to the skin”, and Dawlish resi-

dents “thronged the Marine Parade at high tide to see the majestic

mountains of foam thrown up against the wall’ (The Times, 1846, p5).

A temporary fix was achieved using green fir branches laid on top of

the remains of the wall, but in contrast to the 2014 incident, the line

reopened on 7 October after a blockage of just over 2 days (Kay, 1993).

Records indicate thatmajor line closures or blockages typically occur

around every 10 years (Dawson, 2012), but this is not to say that smaller

events do not also cause problems. Table 1 summarises the typical dam-

age associatedwith events categorised by severity. Someof themore se-

vere damage over the years has taken a variety of forms. In February

1974, for example, the Western Morning News (1974) reported that

the track was in ruins and the eastern end of the Dawlish Station plat-

form was unusable for weeks. An incident on 27 October 2004 shut

the ‘down line’ (i.e., the westbound track that takes trains away from

London) for around 5 days. Reports noted that there was over a foot of

standing water on the track bed and that boats had drifted across the

line where it runs along the Exe estuary, just north of Dawlish Warren

(The Times, 2004). The longest period of closure – exactly 2 months –

was brought about by the winter storms of 2014. Interestingly, recent

problems have extended to the rolling stock as well as the infrastruc-

ture. Voyager trains introduced in the early 2000s experience technical

faults and shut downs due to system failures associated with saltwater

intrusion (The Mirror, 2002). As of 2010, the Voyagers no longer run

along the line during heavy seas (Network Rail, 2009), and this results

in disruption for rail passengers having to transfer onto older rolling

stock run by Great Western Railway.

Themajority of overtopping events causingdamage to infrastructure

have taken place at the most exposed section of line at King Harry’s

Walk, Dawlish, where top of the sea defences are only 4.9 m above Ord-

nance Datum (Figs. 2 and 3). NR’s typical response to the threat of in-

coming storms is to restrict train services and use of the track

depending on the severity of event. Track restrictions run from Level 1

to Level 3 and have a range of impacts on rail traffic from 20mph

(32kph) speed restrictions on the down line to full closure of both the

up and the down lines until safety inspections (and any necessary
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remedial works) have been completed (Table 1). In-sea sensors provide

information toNR staff in advance of severe overtopping events in order

to allow them to close the line before it becomes dangerous to passing

rail traffic. The events of February 2014 amounted to a spectacular ex-

ample of a Level 3 restriction, when the in-sea sensors returned the

most extreme warning possible, a ‘black alert’ (Hogg, 2014).

The track immediately to the east and west of the Dawlish–

Teignmouth section is less exposed to the effects of the open sea, but it

is low-lying (see Fig. 3 profile) and as such susceptible to its own prob-

lems of inundation, as tales of standing water and boats appearing on

the line attest. Planning for the long-term future of the line is complicat-

ed owing to potential conflicts of interest between the three agencies re-

sponsible for its protection. NR is responsible for the 6.8 km of frontage

from Teignmouth to Langstone Rock, but defences immediately to the

southwest are managed by Teignbridge District Council while those

just to the northeast, including Dawlish Warren, fall under the purview

of the Environment Agency. Despite the obvious threat from sea-level

rise, a climate scoping study produced on behalf of the (now defunct)

SouthWest Regional DevelopmentAgency stated thatmuch of the trans-

port sector in southwest England had not yet adequately responded to

climate change (Metcalf et al., 2003; ICE, 2009), and indeed the issue is

still under debate (House of Commons, 2014a, 2014b); one of the endur-

ing characteristics ofmulti-agency governance has been the apparent in-

ability of key regional stakeholders to coalesce around a coherent

approach to the problem. The February 2014 storms appear to have

forced some progress in this regard (Plymouth City Council, 2014).

3. Methods and data: a ‘semi-empirical’ modelling approach

Numerous parameters influence the overtoppingof defence structures

–wave processes, hydrological processes, storminess, geometric designs,

structure materials, etc. – but these are complex and can be difficult to

model accurately, particularly over long time scales. Attempts at model-

ling have been made (in the case of the Dawlish sea wall by O'Breasail

et al., 2007), although they often inherit fundamental and statistical

uncertainties from the random processes of nature. While such uncer-

tainties can be reduced by, for example, increasing and improving the

data and refining the models, they can never be completely removed

(Pullen et al., 2007;Williams et al., 2014). As an alternative to relying sole-

ly onnumericalmodelling, some scientists have developed a ‘semi-empir-

ical’ modelling approach whereby historical observations are used to

determine a relationship between variables before extrapolations of this

relationship are made by drawing upon related numerical models. A

good example is Rahmstorf’s (2007) work that circumvents the use of

complex and incomplete process-based sea-level models by instead find-

ing a historical relationship between temperature and sea-level rise, and

applying this to IPCC predictions of future global temperature to derive

global sea-level estimates for the year 2100. (In justifying this approach,

Rahmstorf (2007) draws an interesting parallel with tidal predictions,

which are essentially based on ‘experience’, because calculations from

first principles are too complex and provide results that are less accurate.)

Since thework by Rahmstorf (2007), several other semi-empirical studies

on future sea-level changes have been published (e.g., Vermeer and

Rahmstorf, 2009; Grinsted et al., 2010; Bittermann et al., 2013; see also

Church et al., 2013). Another example of this type of approach is

Challinor et al.’s (2009) study on the impacts of climate change on crops.

In this study, we assume that the underlying driver of change in

overtopping frequency and thus transport disruption is sea-level rise,

and thus for the first, empirical, stage of the work, we seek to establish

from observations a relationship between overtopping and sea-level

change. This is not to say that we overlook the role of other drivers:

storm intensity, storm frequency and low air pressure all lead to ex-

treme sea levels which ultimately are responsible for damaging the rail-

way. But it is long-term mean sea-level change that acts as a ‘baseline’

for the upward trend in extreme water levels (Woodworth and

Blackman, 2004), and this upward trend increases the likelihood of

storm-induced overtopping even if storm activity remains constant.

The second, model-based, stage of our work combines the empirical re-

lationship between historical sea-level trends and transport disruptions

with themodelled projections of future sea-level rise (Lowe et al., 2009)

Fig. 1. The breach in the seawall near King Harry’sWalk at Dawlish, Devon, on 7 February 2014 (see Fig. 2 formap). The damagewas caused by gales and high seas on 4 February, and the

railway track was left hanging over the breach. Source: Network Rail, 2014d.
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to calculate transport disruption in the future. In parallel with

Rahmstorf (2007), therefore, our approach is partly based on observable

‘experience’ and partly on existing numerical model predictions. We

compare our results with those presented in O'Breasail et al.’s (2007)

fully model-based study later in the paper.

3.1. Sea-level change and historical service disruptions

Tide-gauge stations recording hourly changes in mean sea level

(MSL) in the English Channel have produced some of the longest

instrumental sea-level records available worldwide (Woodworth,

1987). Our MSL records were taken from stations at Brest and Newlyn

(downloaded from the Permanent Service for Mean Sea Level at

www.psmsl.org.uk/data/obtaining), which in combination provide a

continuous record from 1861.1 We used the Brest tide gauge from

1861 (data are missing from when the line opened in 1846 up until

this point) until 1916, fromwhich point the Newlyn tide gauge was re-

lied upon as it provides a more continuous and proximal record.2 Re-

cords from Newlyn and Brest correlate well since 1944, but an offset

of ~2 cm is found for the period 1916–1943. The cause of this offset is

unknown (Wöppelmann et al., 2008), but it has no bearing on the re-

sults of our paper because the relationship between sea-level rise and

service disruptions is not significantly positive until after 1975 (see

below). Data were smoothed by calculating central moving averages

over 20-year periods (in alignment with the lunar nodal cycle) to re-

move fluctuations of annual sea-level change and allow a clearer trend

of MSL to be determined.

We constructed a history of overtopping-related line disruptions

(Dawson, 2012) based on accounts from local and regional newspapers

1 The Brest records actually date from 1711 (Wöppelmann et al., 2008) but are broken

in places and the Newlyn records start in 1916.

2 Devonport (Plymouth) has the closest continuous recording tide-gauge station to the

railway, but it dates only from 1964 and is somewhat fragmented, and in any case factor-

ing in this record has a minimal effect on results.

Fig. 2. Location of the Dawlish–Teignmouth section of the London to Penzance railway line. The section of line between Langstone Rock (location B) and King Harry’s Walk (location F) is

particularly susceptible to closure during high tides and storm events. Source of defences’ locations (A–N): Rogers and O'Breasail (2006).
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and literature, local and national libraries and rail historians, augmented

with annual records ofmaintenance intervention (Rogers andO'Breasail,

2006). Two fragmented records were generated (Fig. 4), and although

they cannot be combined because of the different reporting stan-

dards used in each archive, they do provide an empirical baseline

of incidents. The findings were analysed and cross-referenced to pro-

duce as consistent and reliable a record as possible of all the known

days of overtoppings and restrictions, which we refer to as days

with known line restrictions (DLRs), during the period 1846–2010.

Restrictions due to planned maintenance were not included in the

analysis.

By comparing the sea-level records with a history of service restric-

tions associatedwith overtopping events, empirical trends between ris-

ing sea levels and rail problems over the last century and a half can be

observed (Fig. 5a). During the lifetime of the railway, there has been

~0.20 m of sea-level rise in the English Channel, although nearly half

of this occurred during the last 40 years (Haigh et al., 2009). The highest

number of recordedDLRs has been in the last three decades. Plotting the

20-year moving annual average of DLRs against the average MSL height

in the English Channel highlights two distinct periods (Fig. 5b). The first

is between 1860 and 1975 and shows a fluctuating relationship with no

clear trend, suggesting that sea-level change had little, or no, effect on

the number of incidents. The second period, post 1975, is marked by a

clear inflection (or ‘tipping point’). For sea levels higher than

7050 mm above Chart Datum,3 the linear trend between average DLRs

per year and MSL is significantly positive.

We should of course acknowledge that other explanations could also

account for the observed change in trend. One would be an increase in

storm activity. Feser et al. (2015) concluded that there is evidence for

an increase in storm activity over the North Atlantic from the 1970s to

the mid-1990s, but only north of 55–60°N and not beyond the mid-

1990s. Alexander et al. (2005) found an increase in storm intensity for

the southern UK between 1959–1982 and 1983–2003 that was statisti-

cally significant. Long-term trends appear to be associated with decadal

fluctuations of the winter North Atlantic Oscillation (NAO) index (Feser

et al., 2015; Allan et al., 2009), however, and so although storminess

may be a contributing factor for disruptions in the 1980s and 1990s, it

cannot explain the sharp increase in railway line disruptionswe observe

from the mid-1970s until the present day. Indeed, Hanna et al. (2008)

noted that storm activity in the Channel Islands peaked around 1980,

while Zong and Tooley (2003) actually noted a decrease in the frequen-

cy of coastal floods in SW Britain since the 1950s.

3 Approximately the level of the lowest astronomical tide; in Newlyn Chart Datum is

3.05 m below Ordnance Datum.

Table 1

Categorisation of archive of impacts recorded includingNetwork Rail’s current adverseweather protocol and the recorded impacts to passenger services during these events. Based ondata

from 2000 to 2009. ESR= emergency speed restriction; HST=high-speed train; GWR=great western railway. Sources: Network Rail (2009); Rogers andO'Breasail (2006) and Dawson

(2012).

Impact

type

Track

restriction

Duration Description Network Rail protocol Recorded impacts to traffic

Low Level 1 High tide

(2 h either side)

• Localised damage

• Masonry damage to defences

(cracks and fractures)

• Coping stones removed

• 20 mph emergency speed restriction

(ESR) on down line

• CrossCountry class 220/221 services on

watch and likely to be suspended between

Newton Abbot and Exeter

• Local stopping services thinned

• Delays to all services between

5 and 20 min

• Class 2 services cancelled

• b45 trains affected

• Voyager halted (level 2) and train

evacuation needed

Medium Level 2 High tide

(2 h either side)

• Multiple damage

• Ballast washout

• Substantial lengths of copings

removed or loosened

• Beach material removed

(foundations exposed)

• Damage to groynes and breakwaters

• Up line working only

• CrossCountry and Voyagers suspended

(bus service only)

• Maximum line capacity 6 trains p/h, and

reduced to 3 if ESR imposed on whole

track

• Emergency timetable imposed

• 1× HST service each way per hour and

1× GWR local sprinter each way per hour

• All class 1s stop at Newton Abbot

• Exeter-Paignton services withdrawn,

similarly Exmouth and Barnstaple

• Class 2 services severely affected

• Services up to 15–50 min late

• Up to 80 trains delayed

• 45 trains services cancelled

• Trains hit by objects, windscreens

smashed

High Level 3 Several high/

low tides

• Multiple breaches and flooding

(substantial lengths)

• Large masonry damage and copings

washed away (b6 m)

• Large cavities in sea wall and

retaining walls (b3 m)

• Damage to the foundations and

toe of the defence

• Subsidence or depressions of the track

• Dawlish station platform overtopped

• No services between Exeter and

Newton Abbot

• Line will re-open as Level 2

• Both line will remain closed until

inspection has been completed

• Class 2 services cancelled

• Voyagers stranded

• N80 trains affected, of which

20 were Class 1

• Typical Plymouth-Paddington

service one hour late

Severe Level 3

(cont)

Several high/

low tides

• Complete destruction of the line

(e.g., 1846 and 2014)

• All of the above damage

(for multiple days)

• Extensive beach material removed

• Multiple voiding in wall and track (~30 m)

• Severe undermining of the foundations

• Top sections of wall washed away

• Dawlish station roof and platform lifted off

• Severe damage to breakwaters/

walkways/footpaths (demolished)

• Wider rail damage—Starcross, Teignmouth,

Paignton, Looe and Penzance

• Level 3 until line and defences have been

inspected and repaired as needed

• No services between Exeter

and Newton Abbott.

• 134 daily services cancelled

• Replacement bus services adding

an estimated one hour to journey

times.
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Other explanations may include changes in coastal protection mea-

sures. Since the 1970s, there have been significant changes in national

management approaches, such as less hard engineering, and a reduction

in expenditure on coastal defences (French, 2004), although specific de-

tails of the long-term annual expenditure on the defences at Dawlish

were not obtainable. It nevertheless remains that the height of the

water level today is closer to the crest of the defences than has ever

been recorded: 150 years of sea-level rise has significantly reduced

the available ‘freeboard’ (i.e., height of the crest of the defences above

the water level) along the sea wall, allowing for more frequent

overtopping events. In 2009, mean sea level at Newlyn based on

smoothed trends was around 7100 mm above Chart Datum, and there

is a 20-year moving annual average of around three DLRs per year.

The analysis indicates that from 1975 to 2009 a 0.05 m rise in water

Fig. 4.Archival history of theDawlish–Teignmouth railway line: (a) Published accounts of known days of line restrictions; (b) Network Rail’s frontage history record of locations recording

damage (annually). Dotted lines represent the cumulative totals of incidents. Source: Dawson (2012).

Fig. 3.Elevation profile (inmetres relative toOrdnanceDatum) of theDawlish–Teignmouth section of the London to Penzance railway line (in chainage). Locations (A–M)correspondwith

Fig. 2. Crest heights have been compared with the current highest astronomical tide (HAT) and the UK Climate Impact Programme’s sea-level estimates (high & H++) for 2100 (Lowe

et al., 2009).
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level occurred while the average number of DLRs per year quadrupled

from 0.7 to 2.9.

3.2. Extrapolating into the future

In our analysis, we use the relationship identified between sea-level

rise andDLRs per year for the period 1975–2009 as the basis fromwhich

to extrapolate estimates of the potential number of DLRs along the

Dawlish–Teignmouth stretch of railway for the remainder of the centu-

ry. Such an approach is open to challenge, but it provides a reasonable

starting point for policy discussion given how quickly sea level has

risen in the last 40 years and how significantly the average number of

DLRs per year has increased since the ‘tipping point’ of 1975. Before

any such extrapolation could be attempted; however, it was necessary

to calibrate our base data in two ways. First, in comparing our archival

database against NR’s relatively recently devised TRUST delay attribu-

tion system (Fig. 6), the former appears to under-report. This is because

it relies predominantly on newspaper articles – disruptions are only

picked up where they were significant enough to warrant recording in

print – rather than actual recordings of real-time delay information.

The discrepancy is quite marked, with NR’s data showing an average

of ~9.5 DLRs per year over the period 1997–2009, as opposed to an av-

erage of ~4.0 in the archival dataset when the trend line in Fig. 5b is ex-

tended to accord with the average MSL of 7115 mm over the same

period. Since NR’s TRUST data are based on actual running information,

and because the railway industry uses this currency to record delay

events, we have applied amultiplier of 2.4 to adjust thefigures in the ar-

chival database. This allows the recent records of incidents actually

Fig. 5. (a) English Channel sea-level observations from tide gauges, including smoothed running average and compared with Days of known Line Restrictions (DLRs). DLRs presented as a

smoothed 20-year central moving total. (b) Correlation of sea-level change and DLRs from 1861 to 2009. Source: Dawson (2012).
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recorded on the line to be factored into the analysis. Themultiplier is de-

rived from dividing the 1997–2009 average NR value (9.5) by the aver-

age DLRs per year recorded over the same period in the archives (4.0).

Second, we updated existing sea-level predictions (Lowe et al.,

2009) by collecting new geological evidence (published in Gehrels

et al., 2011). The new data showed that the GIA model used for UK

sea-level predictions underestimated the coastal subsidence rate by

14% (~0.16 mm/yr), implying an additional relative sea-level rise of

0.015 m by 2100 compared to values predicted by UK Climate Projec-

tions 2009 (UKCP 09) (Lowe et al., 2009) in its low, medium and high

emissions scenarios. We have thus adjusted 21st century sea-level pre-

dictions to account for the additional sea-level rise. With these calibra-

tions, we are better placed to extrapolate the relationships between

sea-level rise and average DLRs per year, although the results presented

remain inherently linked to current sea-level change predictions – and

are therefore subject to change in light of future updated / anticipated

estimates – aswell as the assumptionsdescribed above about the nature

of the relationship between MSL and DLRs per year.

4. Future line restrictions

In Fig. 7, we extrapolate the relationship between sea-level change

and average number of DLRs per year from 2010 until 2100, showing

the differing impact of the UK Climate Impact Programme’s (UKCIP’s)

adjusted low, medium and high emissions predictions. Table 2 presents

the data in more detail, breaking down the type of restriction into NR’s

Level 1 to Level 3 categories, again for each of UKCIP’s scenarios. In de-

riving this detail, we have assumed the same percentages of warning

level occurrences as recorded in NR’s TRUST database between 1997

and 2009, although should future climate change result in themore fre-

quent occurrence of stormy conditions later in the 21st century (see

Lowe et al., 2009; Slingo et al., 2014), the balance between each of the

categories could change. There might, for example, be more Level 3 ep-

isodes than we suggest here.

The 1997–2009 TRUST data indicate that an average of around five

Level 1 (speed restrictions) and four Level 2 (down line closures) alerts

occur each year, while Level 3 (total line closures) alerts occur once

every 3 to 4 years. If our calculations are correct, and assuming sufficient

maintenance to retain sea defences in their current condition, then in

headline terms: sea-level rise of 0.05–0.07 m by 2020 means the aver-

age number of DLRs will double to 16–19 per year; by 2060, sea-level

rise of 0.27–0.39 m will cause an annual average of 46–63 DLRs; and

by the end of the century as many as 84–120 DLRs will occur each

year as a result of a 0.55–0.81 m increase in sea level. This is more

than five times the maximum number of annual DLRs recorded at any

point in our archival database.

It is worth highlighting in more detail the extent of the impacts that

could occur under the high emissions scenario. By 2020, we estimate

that Level 1 restrictions will occur ten times per year on average,

while Level 2 alerts could be expected 8.4 times per year and Level 3

alerts would affect the line biennially. By 2060, an average of around

34 Level 1 alerts and 28 Level 2 alerts will occur annually, and Level 3

alerts would now be expected twice a year. By the end of the century,

line closures will occur on average 3.6 times per year and Level 1 and

2 alerts will occur 53 and 63 times a year respectively. In total this

equates to an 1170% increase in the average number of DLRs predicted

to affect the line by the turn of the century.

In the event of Network Rail carrying out significantwork to improve

the defences along the line – the company has now tabled this as an op-

tion (see below) –we can reasonably assume that the likelihood of fur-

ther lengthy blockades such as that in early 2014 would reduce,

although there is still the chance that some Level 3 episodes could

bring about comparable disruption. Strikingly, Level 3 incidents are by

the end of the century expected to increase twelve-fold from their

1997–2009 average and in this contextmultiple breaches, undermining

and subsidence of the track, with extensive damage to footpaths and

offshore breakwaters, can probably be expected. By 2060, with high-im-

pact events occurring on average twice a year, the extent to which the

railway would be able to maintain a credible service has to be brought

Fig. 6. Network Rail’s TRUST service data (1997–2009): record of days with line restric-

tions. Dotted line represents the cumulative total of restrictions.

Fig. 7. Projections of average number of days with line restrictions (DLRs).
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into question. Indeed, even by 2040, there are likely to be serious issues

in relation to its reliability. Table 2 shows that by this timewe can expect

some kind of service restriction to be in place for up to 10% of days in the

year (i.e., DLRs / 365 days), while by the end of the century this rises to

fully one third of days in the year. Given, also, that most overtopping

events occur during September–April, restrictions are likely to be

bunched accordingly. Thus by 2060, under a high emissions scenario, a

third of days in the winter period could be subject to some kind of ser-

vice restrictions, rising to two-thirds by 2100. Even under the low emis-

sions scenario winter services could be restricted in oneway or another

for over 40% of days in the year.

Out of interest, we have run our calculations in accordance with an

additional high-impact scenario (H++ in Table 2) advanced by Lowe

et al. (2009) that projects sea-level rise of 1.9 m by 2100. It is at least

worth contemplating the effects of a scenario, albeit a low-probability

one, that would render the line subject to restrictions for nearly

270 days (over 70%) of the year by the end of the century. This would

be the result of more than 260 Level 1 and Level 2 alerts each year,

and eight Level 3s. Maybe our calculations here are rather academic in

the sense that this level of water would flood the estuary defences

east and west of Dawlish even without a storm (Fig. 3).

While this study is the first to adopt a semi-empirical approach to

predicting the impact of rising sea level on the stretch of line between

Dawlish and Teignmouth, the Rail Safety Standards Board (RSSB)

commissioned work on the future of the line several years ago

(O'Breasail et al., 2007). In the RSSB’s study, a modelling approach

based on changes in extreme water levels relative to those observed

in 2006 was used. The authors used sea-level projections from

UKCIP02 (Hulme et al., 2002) – which predicted higher sea levels than

the subsequent UKCP09 estimates – and they estimated the increased

impact of 1-in-1 year overtopping (that would affect the operation of

the line) and 1-in-100 year overtopping (that would impact the struc-

tural integrity of the defences). So far as they are comparable, both stud-

ies arrive at broadly similar results until 2060, from which point

O'Breasail et al.’s (2007) model estimates considerably more

overtopping at King Harry’s Walk (Fig. 8).

Differences between O’Breasail et al.’s analysis and our semi-

empirical approach could result from the higher level of spatial resolu-

tion employed in the model-based study – as noted in Fig. 3 the eleva-

tions of the defence structures along the Dawlish–Teignmouth

frontage vary considerably from the Exe estuary to the Teign estuary –

and as such our work does not have the potential to predict non-

linear trends of future overtopping at the more vulnerable sections of

the coastal defence structures. At the same time, differences could also

be due to O'Breasail et al.’s (2007) incomplete understanding of pro-

cesses that are included in their model. What is clear from both studies,

though, is that an increase in the number of overtopping events and as-

sociated service restrictions very much beyond current norms can be

expected in future decades.

5. Costing future line restrictions

As rising sea levels increase the prospect of service disruptions and

damage to the sea defences or the structural integrity of the railway

line, a key area of concern for railway managers and policy makers

alike will be the associated potential cost implications. These costs can

be classified as ‘internal’ to the railway itself, and ‘external’ to the

socio-economic functioning of the region more broadly. We consider

three components to the internal costs.

First are internal costs associatedwithmaintenance, due to addition-

al ‘wear and tear’ to the sea defences. Network Rail’s ‘base’ spend on

maintaining the sea defences between Dawlish and Teignmouth –

i.e., not including major repairs associated with events such as the

breach of the sea wall in February 2014 – is around £800,000 per year

(or £105,000 per km per year), plus an additional £5 million every

5 years to deal with one-off events such as landslips (Network Rail,

2014c). Perhaps unsurprisingly, it is already one of the most expensive

stretches of line to maintain in the country (the national average is

around £41,000 per km per year; see Railtrack, 1996; Clinnick, 2009;

Network Rail, 2013). Multiplying the reported average annual cost of

maintenance by the estimated increase in days with known line restric-

tions (DLRs) for a given year for the different sea-level rise scenarios –

admittedly a rather rudimentary approach –we arrive at estimated an-

nualmaintenance costs of £5.8–£7.6million per year by 2040 at current

prices, as DLRs increase. This equates to costs of £0.9–£1.7 million per

km per year.

Second are those costs associated with changing the timetable to

deal with line restrictions. Under the complex financial arrangements

of the privatised railway (see Gourvish, 2002, 2008), Network Rail

must compensate train operators when the state of its infrastructure

causes delays to or cancellation of services (ORR, 2013; Network Rail,

2014e). These payments are in turn used by the train operators to com-

pensate passengers for inconvenience, or to provide alternative ar-

rangements such as rail replacement bus services. Each minute of

delay is estimated to cost the operator (or Network Rail) around £70

(National Audit Office, 2008; ORR, 2013), and on this basis we estimate

the average annual delay charges between 1997 and 2009 to have been

in the region of £270,000 (e.g., multiplying the TRUST recorded delay

minutes by the estimated cost per minute) (ORR, 2013). Again under

a high sea-level rise scenario, by 2040, compensation payments could

rise to £1.1 million per year at current prices. To put this into perspec-

tive, passengers on the very busy Thameslink commuter network in

the south east of England received £722,000 in compensation in 2012/

13, and the operator (at the time, First Capital Connect) estimated that

more than half of the delays that triggered compensation payments

were the fault of Network Rail (BBC, 2013b).

Table 2

Predicted sea-level rise and estimated days with line restrictions for the 21st century.

Year Sea-level

rise

(cm)⁎

Average

days with

line

restrictions

Increase

in DLRs

(%)

Level

1

(L1)

Level2

(L2)

Level

3

(L3)

Annual

restriction

(%)

1997–2009 – 9.6 – 5.4 3.8 0.3 3

Low

emissions

2020 4.7 16 69 8.4 7.2 0.5 4

2040 15.1 30 220 16.0 13.6 0.9 8

2060 26.8 46 389 24.4 20.7 1.4 13

2080 40.0 64 581 34.0 28.8 1.9 18

2100 54.5 84 792 44.5 37.7 2.5 23

Medium

emissions

2020 5.7 17 83 9.1 7.8 0.5 5

2040 18.3 34 266 18.3 15.5 1.0 9

2060 32.6 54 474 28.6 24.3 1.6 15

2080 48.6 76 710 40.2 34.1 2.3 21

2100 66.4 100 964 53.1 45.1 3.0 27

High

emissions

2020 6.8 19 99 9.9 8.4 0.6 5

2040 22.0 40 320 20.9 17.8 1.2 11

2060 39.3 63 571 33.5 28.4 1.9 17

2080 58.9 90 856 47.6 40.4 2.7 25

2100 80.6 120 1170 63.3 53.8 3.6 33

H++

scenario

– 90 132 1290 70.1 59.6 4.0 36

– 110 160 1584 84.6 71.8 4.8 41

– 130 187 1868 99.1 84.1 5.6 51

– 150 214 2153 113.5 96.4 6.4 59

– 170 242 2447 128.0 108.7 7.2 66

– 190 269 2732 142.5 121.0 8.1 74

⁎ Sea-level predictions for the Dawlish area (relative to the present day 2010). Values

represent the 95th percentiles taken from UKCP09’s user interface (http://

ukclimateprojections.defra.gov.uk; grid: 25757) corrected for an error of 0.16 mm/yr.

H++ scenario is a high-impact estimate for the UK.
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Third, as highlighted in early 2014, are those costs associated with

extreme individual events that cause damage beyond usual ‘wear and

tear’. Network Rail estimated the cost of the February 2014 storms to

have been £50 m, and suggests that works to additionally protect the

existing railway alignment (as well as to improve its effectiveness

more generally) will cost between £398 million and £659 million over

a 20-year period. The company is of the view that retaining the existing

railway is better value for money than reopening an alternative line

across the north of Dartmoor (costing up to £875 million) or building

a brand new diversionary line between Exeter and Newton Abbot

(which could cost up to £3.1 billion) (Network Rail, 2014c). Whatever

the actual cost of the different options – these are contested as they con-

tain an over-estimation (the so-called ‘optimism bias’) required by the

UK government and a number of challengeable assumptions about op-

erational matters (see Burningham and Phillips, 2014; Clinnick, 2014)

– it is clear that running trains in Devon will cost the railway industry

(and ultimately the government), even in a ‘do nothing’ scenario, rather

more in the future than it has in the past.

The situation becomes more pronounced once ‘external’ costs are

taken into account. While the internal costs are substantial, they do

not include the wider socio-economic impacts of railway disruption to

the South West Peninsula. External costs of this nature are somewhat

difficult to calculate, but one favoured approach is based on the adapta-

tion of standard appraisal techniques for transport investment, as

outlined by the Department for Transport (DfT, 2014b). At the simplest

level, conventional appraisal techniques try to capture the economic im-

pacts of a given investment by examining two categories: costs and ben-

efits to users, which are most commonly attributed to changes in travel

time, and wider economic impacts that include agglomeration affects,

changes in transport costs and labour effects (DfT, 2014b). Reducing

users’ travel time is assumed to have direct benefit on GDP, and con-

versely, such as in episodes of disruption, increasing user travel time is

expected to have a similar, but negative, effect (Metroeconomica,

2004; Lakshmanan, 2011).

The issue is not thatwe are unaware of some of the basic numbers to

feed into the equation: in 2010, for example, four million passengers

travelled through the Dawlish to Teignmouth section of line, an average

of around 11,000 passengers per day, and trains are busier in the sum-

mer time, owing to increased tourist traffic. Patronage in the region

grew by more than 70% between 2004 and 2013, and a further near-

doubling is expected by the early 2040s (Network Rail, 2014c). Disrup-

tion events can also be extrapolated into the coming decades. The issue

is in determining what other inputs go into the equation and, indeed,

the equation itself. There are well-known problems with emphasising

the monetary value of travel time in benefit–cost ratio (BCR) calcula-

tions, not only because it is often difficult empirically to determine

that a reduction in travel time actually results in GDP growth

(Wenban-Smith, 2010). BCRs can also be susceptible to significant var-

iation (and, we would suggest, manipulation) depending on the under-

pinning assumptions made to the point that they can differ markedly

between originators (see Shaw and Docherty, 2014).

In the case of the 2014 blockade, this problem was exacerbated by

the fact that some local protagonists saw fit, putting it bluntly, to take

liberties with the methodology. A 75% drop in tourist bookings was re-

ported in onehastily assembled study, and PlymouthCity Council some-

how estimated the daily impact on the city’s economy in lost trade,

tourism and potential investment to be up to £4–5 million (Marsden,

2014). In reality, they could not have had any ideawhat the actualfigure

was: Marsden (2014, unpaginated) memorably commented that

“[w]ithin hours of the news [of the blockade], calculations adorned the

backs of hundreds of envelopes, producing seven, eight or even nine-

figure sums of economic turmoil.” More detailed and credible studies

will no doubt emerge in the fullness of time – indeed in October 2014

Plymouth City Council revised its estimate of losses down to around

£600,000 per day (House of Commons, 2014c) – but the point is that

the economic effects of transport disruption on this scale are not well

understood and will not necessarily be captured especially successfully

by variations of conventional appraisal processes.

Writing as part of a wider discussion about transport and travel time,

Metz (2008) suggests that an alternative means of deciding between in-

frastructure schemes – in this case, doing nothing, additionally protecting

the existing line, reopening one or building something new entirely –

might simply be to determine which interventions are most likely to

achieve the stated aims of transport policy. We can apply this logic to

the Dawlish example: if the decision is taken that it is not good for the

farwest of England to be cut off from the rest of the national rail network,

then the question shifts from ‘How much does it cost when the line is

closed?’ to ‘How can we best ensure that so far as is possible this does

not happen again?’ Such an approach is alreadyused in other government

departments, and internationally it is common to place less emphasis on

the BCR element of project appraisal than is routine at the DfT. In Italy, for

instance, engineering works costing around €2 billion have been made

along the Adriatic coast to improve passenger and freight travel in the

context of vulnerability of coastal sections to storms and future sea-level

rise (italferr, 2014). The secondary mainline along the Ligurian Sea from

Ventimiglia to Genoa has also beenmoved away from the coast into near-

by tunnels.

Of course, the DfT’s approach to transport investment appraisal may

well change over time, and since 2010 ministers certainly appear to

have recognisedmuchmore the need to pursue a larger-scale capital in-

vestment programme to address historic under-investment in the UK’s

transport infrastructure (HM Treasury, 2013). This may well have been

rather more by accident than design, but then there is nothing inherent-

ly predictable in the DfT’s approach in the sameway as there is nothing

set in stone about the future direction of society more broadly. Lowe

et al.’s (2009) range of sea-level scenarios in part reflect different

Fig. 8. Comparison of predicted increases in incidents from empirical trends (this study)

and the predicted increase in 1 in 1 year overtopping by the Rail Safety Standards Board.

Sources: Authors’ calculations and O'Breasail et al., 2007.
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assumptions about human development trajectories, and by the same

token any estimates of the likely impacts on the Dawlish–Teignmouth

railway line or indeed the region more broadly need to contain suffi-

cient flexibility to recognise the dynamism of economic, institutional

and political processes (Adger et al., 2005; Jaroszweski et al., 2010),

not to mention individual behaviour patterns. As Marsden and

Docherty (2013) point out, albeit in a slightly different context, there

is more and more evidence to show that travellers can adapt to a

major change in network conditions rather more readily than policy

makers currently assume; were such a major change the introduction

of a regime of road user charging, rail patronage may increase to the

point where such major disruption along the South Devon coast be-

comes a far greater test of public policy than it is today.

6. Conclusions and wider implications

We have investigated in this paper the likely impact of rising sea

levels on the Dawlish to Teignmouth stretch of the London to Penzance

railway line. We used a ‘semi-empirical’ modelling approach (see, for

example, Rahmstorf, 2007) that involved two stages. The first was to

establish an empirical relationship between sea-level rise and

overtopping events along the railway line, assuming decadal-scale

sea-level change to be the physical driver of such events. The post-

1975 relationship between sea-level rise and overtopping events was

then extrapolated to 2100 in accordance with modelled projections of

future sea-level rise (Lowe et al., 2009), to estimate the likely impact

of this trend on the functioning of the line. In all sea-level change sce-

narios, we expect the number of overtopping events to increase as the

century progresses, and these are likely to impinge upon the ability of

Network Rail and the train operating companies to run a reliable service

along the line within a couple of decades. Even in the event of a signifi-

cantly strengthened sea wall, it is reasonable to expect ongoing disrup-

tion because of continuing periodic overtopping of the sea defences.

Whatever the policy response – from ‘do nothing’ to building a

completely new diversionary route – there looks set to be a significant

cost increase, possibly running into the billions of pounds, associated

with running trains through Devon in the future.

In the context of all of this, the Dawlish to Teignmouth example poses

key policy challenges. We have already noted that in the UK the institu-

tional response to climate change adaptation has been relatively slow

off the mark. Even assuming this can be resolved at the strategic level

and sufficient funds are freed up to deal with emerging problems, there

will remain the issue of how to operationalise strategic policy direction

on the ground. Any successful response to the impact of sea-level rise

on the railway in south Devon requires a genuinely multi-agency re-

sponse on the basis that a range stakeholders is responsible for theprotec-

tion of different but self-evidently interconnected stretches of line.

Arranging such a response is by no means straightforward, in part be-

cause of the different spatial scales at which the agencies operate – na-

tional (DfT, Environment Agency), regional (Enterprise Partnerships and

erstwhile Regional Development Agencies) and local (county, city and

district councils) – but also because of the well-known problem that

coastalmanagement has been hindered by a lack of co-ordinated involve-

ment and communication between elected bodies and statutory agencies.

The politics of coastal management, in short, have become increasingly

fragmented, polarised and contested (Fletcher, 2003; O'Riordan et al.,

2006; Fletcher, 2007; Turner et al., 2007; de la Vega-Leinert and Nicholls,

2008).

More broadly, there are two aspects of our study that are of rele-

vance beyond the specific example of the Dawlish to Teignmouth

stretch of railway line. First, the findings confirm that there is merit in

investigating the likely nature, frequency and socio-economic implica-

tions of disruption to other stretches of railway line – or, for thatmatter,

any transport infrastructure – caused by sea-level rise in the future. In

the UK alone, there are several vulnerable stretches of railway track, in-

cluding the main lines in North and South Wales, the Cambrian Coast

line in Mid Wales, the Chatham main line in South East England, the

Cumbrian coast line in North West England and the Ayrshire line in

southwest Scotland. Internationally, we referred earlier to other studies

that identify vulnerabilities around the USA and northern Europe, but

the problem is obviously worldwide (see Koetse and Rietveld, 2009).

Being able to predict the likely frequency and severity of overtopping

(or more general flooding) events will help inform planning processes

designed to ‘future-proof’ important coastal infrastructure.

Second, and relatedly, themethodologywehave developed is applica-

ble to other stretches of coast, especially where necessary records are

available and empirical data exist or can bederived. Potentially vulnerable

transport infrastructure in, for example, Boston, New York, Miami, San

Francisco, Sydney, Manilla, Bangkok and Mumbai is situated nearby

some of the longest tide-gauge records in the world (Woodworth et al.,

2009). Our methodology is particularly useful because it allows the pre-

diction of disruption events and their frequency that are based on real

data and thus bypasses the uncertainty – and expense – that comes

with engineeringmodels. It also provides a yardstick againstwhich previ-

ousmodelling approaches (in this case O'Breasail et al., 2007) can be test-

ed or calibrated.

In utilising a semi-empirical approach, we should warn that care

must be taken to avoid producing ‘nonsense correlations’ and sufficient

evidence needs to be gathered to validate empirical trends. We also

lacked the spatial resolution of model-based approaches and our ability

to illustrate the impact of extreme events is limited to the extreme sea-

level scenario included in the analysis.We did, however, incorporate re-

gional socio-economic information into thefindings (see Bosello andDe

Cian, 2014, for a discussion of related methodologies) by using our ex-

trapolations of overtopping events to inform a discussion of policy im-

plications. We provided illustrative examples of how internal (to the

industry) and external (to society more generally) costs of predicted

disruption events can be established, where these are useful or neces-

sary. In the context of the UK, which relies heavily on a particular type

of marketised railway industry structure and the deployment of BCRs

as a means of justifying investment, developing an understanding of

such costs (and benefits) is especially important in order to allow differ-

ent engineering and other interventions to be compared. There is noth-

ing, however, to suggest that institutions operating in other countries

would be unable to generate something equivalent to address their

own local needs (in any event, other European railways such as

Deutsche Bahn and SNCF are already starting to develop internal mar-

kets with separate infrastructure and operating units). Finally, these es-

timated costs and benefits can easily be linked to scenario-planning

exercises intended to provide integrated and holistic insights for debate

and high-level guidance for policy makers concerned with addressing

long-term social, economic and environmental imperatives.
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