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Abstract 

 

In this paper, we applied an incompressible Smoothed Particle Hydrodynamics (SPH) 

method to investigate the impact of solitary waves on seawalls, especially movable 

seawalls. The SPH method is a mesh-free numerical approach particularly suitable for 

dealing with large free surface deformations and complex fluid-structure interactions. 

The incompressible SPH (ISPH) method solves the pressure field using the pressure 

Poisson equation (PPE), rather than relying on the equation of state. It has the 

advantage of producing more stable and accurate pressure fields and impact forces on 

structures. We first applied the model to simulate the solitary wave propagation and 

runup against a fixed vertical wall. The computations compared well with previous 

experimental and numerical results. Then, the solitary wave impact on a movable 

structure was investigated by replacing the fixed wall with a spring-controlled seawall 

subject to different spring stiffness and mass settings. Particular attention was paid to 

the prediction of the seawall movement, wave runup height and hydrodynamic 

loading. The incident wave height was found to be the dominant factor for the 

movable seawall movement during and immediately after the wave crest arrival at the 

seawall. Other factors, such as the seawall mass and spring stiffness, become 

important to the seawall’s responses only after the maximum impact.  

 

 

Keywords: ISPH; solitary wave; seawall; spring-mass system; wave runup; wave-

structure interaction. 
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Introduction 

 

Free-surface flow problems in hydrodynamics are of great interest to engineers due to 

their industrial and environmental importance. Most of the free-surface flows involve 

strong dynamics and large surface deformations, which makes it more challenging in 

analysing these flows. Among the various free-surface flows, the interaction between 

waves and man-made structures are of particular interest to the designers of offshore 

structures and coastal defences. There are a large number of factors that contribute to 

the wave propagation and subsequent breaking and impact on the structures near-

shore. Analytical solutions may be available only for some simple geometries and 

idealized flow conditions. With the fast advancement of computer technology, it 

becomes increasingly crucial for numerical tools to efficiently and accurately model 

the behaviour of these flows. 

 

The Smoothed Particle Hydrodynamics (SPH) method, is an emerging computational 

tool for free-surface flows. Being a Lagrangian method, it naturally deals with the free 

surface breaking and water fragmentation. Monaghan (1994) first extended the SPH 

application from astrophysics to incompressible flows with a free surface. A weakly 

compressible assumption was made in modelling water flows to avoid any 

computational complication. It has since been used in a wide range of free-surface 

flow applications, such as dam-break flooding (Liang, 2010; Pu et al., 2013), wave 

propagating near shore (Dalrymple and Rogers, 2006), interfacial flows (Colagrossi 

and Landrini, 2003; Grenier et al., 2013) and fluid-solid interactions (Khayyer et al., 

2009; Liang et al., 2010; Canelas et al., 2016). 

 

The conventional weakly-compressible SPH (WCSPH) method has been found to 

suffer from nonphysical pressure fluctuations near solid boundaries which is mainly 

caused by the amplification of small density errors through the equation of state. A 

common practise for WCSPH users to palliate this drawback is to calculate forces 

based on acceleration instead of pressure. To fully overcome the aforementioned 

drawback, incompressible SPH (ISPH) models had been developed in the past decade, 

based on some early works on another popular mesh-free method, Moving Particle 

Semi-implicit (MPS), e.g. Koshizuka et al. (1998), Gotoh and Sakai (1999), and 
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Hwang et al. (2014). The basic principle of the ISPH approach is that the fluid 

pressure is solved by a pressure Poisson equation (PPE) based on a strict 

incompressibility condition. Some pioneering ISPH research had been carried out by 

Cummins and Rudman (1999) and Shao and Lo (2003). The computational cost for 

solving the PPE in ISPH is much larger than that of the WCSPH, but the ISPH model 

allows a time step much larger than the WCSPH method (Zheng et al., 2014).  

 

The SPH study on the wave interaction with offshore structures is a very active 

research area in hydrodynamics and coastal engineering. It has been heavily used in 

the field of wave propagation and wave-structure interactions (Gómez-Gesteira and 

Dalrymple, 2004; Crespo et al., 2007; Rogers et al., 2010; Barreiro et al, 2013; 

Altomare et al., 2014; Altomare et al., 2015; Ren et al., 2015; Lin et al., 2015). 

Readers are referred to Gómez-Gesteira et al. (2010) for an overview of the various 

research outcomes. So far, most of the coastal structures studied are fixed objects and 

very little research has been conducted on movable coastal structures. In engineering 

practice, allowing some degree of flexibility in structures could improve the 

performance of coastal defence and reduce the construction cost. For example, 

Pimanmas et al. (2010) proposed a conceptual design for tsunami shelters to be 

constructed with energy-absorbing connectors which can be modelled as spring 

elements to withstand large debris impact.  

 

In this paper, an extensive study on the solitary wave propagation and impact on a 

coastal seawall in both fixed and mobile conditions is carried out. The wave runup 

height and hydrodynamic loading on the vertical walls are examined in details. The 

ISPH model used in this study follows the divergence-free-velocity-field ISPH 

algorithm (Lee et al., 2008) with corrected formulation for the Laplacian operator 

proposed by Schwaiger (2008). The new formulation has been found to provide good 

pressure stability and accuracy near boundaries. The ISPH model is validated by 

simulating a solitary wave impact on a fixed vertical seawall, followed by 

applications on a passively moving seawall. The analysis concentrates on the 

dependence of wave runup height, seawall movement and hydrodynamic loading on 

the incident wave and seawall characteristics. 
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SPH Methodology and Implementation 

 

SPH principle and formulation 

 

The SPH formulations are based on the concept of integral interpolations. By using a 

kernel function to describe the connectivity of discrete particles, the differential 

operators in the Navier-Stokes equations can be approximated by the summations 

over particles. Each particle carries information about the velocity, density, mass, 

pressure and other flow variables.  

 

For a function )(rf  that represents a physical variable over a domain of interest, 

where r  is the position vector, its discrete notation is approximated by the values on 

particles within a compact support. The function )(rf  at particle i can be written as a 

summation over all its neighbouring particles j as follows,  


j

ijj
j

j
i Wf

m
f )()( rr


 (1) 

where jm , j  are the mass and density of particle j, respectively; and ijW  is the 

kernel function that  denotes ),( hW ji rr  , where h is the smoothing length related to 

the size of the compact support. The kernel function W  determines how the variables 

are interpolated and smoothed over the particles. The kernel function that has been 

widely used by SPH practitioners is the cubic spline kernel function. The smoothing 

length h determines the size of the stencil in spatial discretization. In practice, it is 

common to use a smoothing length h  = 1.0 ~ 1.3 r , where r  corresponds to the 

initial particle spacing. 

 

The particle approximation of the spatial derivative of a function, such as the pressure 

gradient, can be written as,  
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where P  is the pressure and ijiW  is the gradient of the kernel taken with respect to 

particle i . There are two approaches for calculating the viscosity. One is to introduce 

an artificial viscosity to provide necessary dissipations of the kinetic energy and 
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prevent unphysical particle penetrations. The other is to simulate the physical 

viscosity, which is used in the present paper as, 
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where   is the viscosity coefficient of the fluid, v  is the velocity vector, jiij rrr   

and jiij vvv   and   is a small value to prevent singularity.  

 

The second-order derivative of the kernel function is often used to model the 

Laplacian operator in the ISPH approach. The exact discretisation of the Laplacian 

operator may cause a distinct pressure decoupling pattern due to the double 

summations in the formulation (Cummins and Rudman, 1999). Similar to the 

treatment of viscosity in Eq. (3), an approximate projection method for the Laplacian 

operator has been adopted in the ISPH model,  
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where jiij PPP  . 

 
Governing equations and ISPH solution methods 
 

The governing equations for modelling an incompressible fluid in the discretised form 

are as follows,  

0v   (5) 

gv
v

 21 


P
dt

d

 
(6) 

where g  is the gravitational acceleration.  

 

The ISPH method couples the pressure and velocity fields implicitly, which is 

different from the conventional WCSPH approach. The momentum equation (Eq. (6)) 

is solved in two steps. In the predictor step, an intermediate velocity field *v  is 

calculated with only the viscous and gravitational terms. This step is explicit in time 

and the incompressibility requirement is not considered.  

  tn
i

n
i

*
i  gvvv 2    (7) 
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where t  is the time step. Superscripts n  and * represent the previous and 

intermediate time steps, respectively. The particle position at the intermediate time 

step is updated as 

ti
n
i

*
i  *vrr    (8) 

The incompressibility requirement is then enforced at the corrector step. The velocity 

at the next time step, 1n
iv , can be calculated from the intermediate velocity, *

iv , and 

the pressure field obtained from the pressure Poisson equation (PPE) as  
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The particle positions at the new time step (n+1) are updated as 
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The intermediate velocity *
iv  is projected onto a divergence-free velocity field. 

Taking the divergence of Eq. (9) and combining with Eq. (5) gives 
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where the source term on the right-hand side is the divergence of the intermediate 

velocity field. It can be written in the SPH form as, 
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Initial and boundary conditions 

 

The fluid particles are initially placed on an equidistant rectangular grid. The pressure 

and velocity are set to zero at t = 0.00 s. All particles have the same constant density 

and mass.  

 

The flow domain is bounded by two types of boundaries: solid boundaries and free 

surfaces. On the solid boundaries, the non-penetration condition is imposed. The 

dummy particle method (Koshizuka et al., 1998; Gotoh and Sakai, 1999) is used here 

due to its simple implementation and satisfactory performance. Two types of the 

boundary conditions also exist at the free surface, i.e. kinematic and dynamic 

boundary conditions. The kinematic boundary condition requires that the fluid 
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elements at the free surface remain on it throughout the flow movement. This is 

automatically satisfied by the Lagrangian nature of the SPH method. Assuming the 

surface tension is negligible and the viscous coefficient is very small, the dynamic 

boundary states the atmospheric pressure at the surface. The surface particles need to 

be identified, whose pressure is then set to zero before solving the PPE in the ISPH 

method. In this paper, the surface particles are identified by calculating the divergence 

of the particle positions at the intermediate time level (Lee et al., 2008):  

 
j

ijiij
j

j W
m

rr


  (13) 

For inner fluid particles with full kernel support, the position divergence should be 

equal to 2.0 in two-dimensional applications. The surface particles that have truncated 

kernel support will have a much smaller divergence values than those of inner 

particles. The common practice of using 1.5 as the threshold value is followed in this 

study. 

 

Application I - Solitary Wave Impact on Fixed Seawalls 

 

The aim of this section is to validate the ISPH model for its ability to simulate solitary 

wave runup and impact on a fixed vertical wall. The numerical examples considered 

in the study are idealised to be two-dimensional. The solitary waves are considered 

for its close resemblance to tsunami wave characteristics. This example was 

previously studied using the MAC method (Chan and Street, 1970), WCSPH method 

(Monaghan and Kos, 1999) and MPS method (Gotoh et al., 2005).  

 

Model setup 

 

The numerical water tank is 2.5 m long with a uniform mean water depth of 0.20 m. 

The solitary wave is generated by the paddle movement at the left-end of the tank. 

The piston-type wavemaker following Goring (1978) is adopted in generating solitary 

waves of different amplitudes. The main computational parameters used in the ISPH 

model are: particle spacing r  = 0.008 m and time step t  = 0.001 s. The generated 

solitary wave arrives at the fixed wall on the right-end of the tank and is subsequently 

reflected back within 4.0 s in all the cases conducted. 
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Results and discussions 

 

Surface profiles 

Several wave ratios have been considered to study the wavemaker movement and 

wave propagation over time. One simulation case with a large wave amplitude, A = 

0.10 m, is detailed herein to demonstrate the ability of ISPH model to study strong 

wave nonlinearity. Fig. 1 presents a series of particle configurations after the initiation 

of the paddle movement. The surface profile at t = 1.00 s shows that a water column 

of approximately 0.30 m high has already formed in front of the wave paddle. By t = 

1.30 s the established waveform has travelled to x = 0.80 m at a wave elevation of 

0.10 m. The maximum runup at the downstream seawall takes place at t = 2.40 s with 

a height of 0.27 m in front the wall. The pressure profiles demonstrate accurate 

incompressible enforcement as very little pressure fluctuation can be observed near 

the solid boundaries even with such a large incident wave height.  

 

 

 
 

 

 

Fig. 1. Snapshots of surface profiles with pressure contours at t = 1.00 s, 1.30 s, 1.90 s and 2.40 s 

for wave ratio H/h = 0.5. 

 

The wave surface profiles at time t = 1.60 s and 1.89 s are compared with the first-

order solitary wave solutions in Fig. 2. A good agreement in the free-surface profiles 
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has been found, especially at the wave front. The large discrepancy at the tail of the 

wave will gradually decrease as the wave propagates away from the wavemaker. Figs. 

1 and 2 also suggest that the pressure distributions generally follow the hydrostatic 

law, which is consistent with the long wave nature of the solitary wave.  

 

x (m)

z
(m

)

1.0 1.2 1.4 1.6
0.0

0.2

0.4

t = 1.60 s

x (m)

z
(m

)

1.4 1.6 1.8 2.0 2.2
0.0

0.2

0.4

t = 1.89 s

 

 

 

Fig. 2. Free-surface profiles comparing the ISPH results with solitary wave analytical solutions (in 

red solid line) at t = 1.60 s (left) and 1.89 s (right). 

 

Wave runup height 

The maximum wave runup height in front of the vertical wall has been examined for a 

number of height-to-depth ratios, H/h, ranging from 0.1 to 0.6. Fig. 3 compares the 

ISPH predictions with numerous published experimental and numerical data. The 

simulated results from the ISPH model are shown to agree well with the published 

data. It is shown that higher incident waves tend to generate a larger runup at the 

vertical wall. Owing to the wave nonlinearity, the correlation is not a straight line.  
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Fig. 3. Maximum wave runup for different height-to-depth ratios. 

 

Hydrodynamic loading on the wall 

The wave impact force exerted on the vertical seawall is investigated in this section. 

In the SPH model, the forces experienced by any solid bodies can be evaluated by 

integrating the surface stress over the volume of the boundary particle domain. Since 

the pressure component of the stress tensor always dominates the hydrodynamic 

loading for wave colliding with solid bodies, the following formulation is adopted to 

evaluate the impact force on vertical walls. The viscous component of the stress 

tensor is assumed to be negligible when compared with the pressure term. 
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j j
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 (14) 

To verify this equation, the pressure force acting on the vertical wall of the water tank 

is computed under hydrostatic condition using the ISPH formulation. Fig. 4 shows the 

non-dimensional force experienced by the wall computed by the ISPH model for 

water depths ranging from 0.2 m to 0.4 m over 1.0 s. The impact force computed by 

Eq. (14) is non-dimensionalized as follows, 

staticimpact FFF /*   (15) 

where F* is the non-dimensional impact force and Fstatic denotes the hydrostatic force 

on the wall. It can be seen that the force experienced by the solid wall can be correctly 

estimated. Some small oscillations can be observed before t = 0.30 s, which are 
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caused by the initial adjustment of fluid particles near solid boundaries. All particles 

were assigned zero velocity and zero pressure at t = 0.0 s, so it takes time to establish 

the correct hydrostatic condition. The intensity of the fluctuation increases with water 

depth, but these initial disturbances settle down very quickly as time elapses.  

 

 
Fig. 4. Non-dimensional impact force on the water tank wall by ISPH model at different water 

depths. 

 

After the hydrostatic test, we apply Eq. (14) to estimate the dynamic forces induced 

by the collision of solitary wave on a vertical wall. Cooker et al. (1997) used a 

boundary-integral method to study this phenomenon, which will be used as a 

reference in the comparison. Six wave height to water depth ratios have been studied, 

ranging from 0.1 to 0.6. The results are shown in Fig. 5(a) for smaller wave heights 

H/h = 0.1 to 0.3, and in Fig. 5(b) for larger wave heights H/h = 0.4 to 0.6. In the 

figure, 0t  denotes the instant of maximum wave runup and   2/1//1 gh  is used to 

normalize the time. The ISPH-computed magnitude of the force history shows a 

satisfactory agreement with the published numerical results. It can be seen that the 

forces experienced by the solid wall exhibit very different characteristics depending 

on the incident wave height. For H/h < 0.4, there exists only one single peak value, 

which takes place at approximately the same time as the maximum runup. This 

changes to a double maxima pattern at larger wave heights. The first peak occurs 

before the maximum runup and the second one takes place afterwards. The same 

observation has also been reported in Grilli and Svendsen (1990), Cooker et al. (1997) 

and Shao (2005).  
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Fig. 5. Solitary wave forces for different wave height-to-depth ratios computed by ISPH and 

Cooker et al. (1997). (a) H/h = 0.1 ~ 0.3; (b) H/h = 0.4 ~ 0.6.  

 

Application II - Solitary Wave Impact on Movable Seawalls 

 
Fixed seawalls tend to incur large impact forces and require expensive maintenance 

over time since they are not able to absorb wave energy. In this section, the wave-

structure interactions associated with a passively moving seawall are investigated 

using the ISPH model. The model of movable seawall is derived from the conceptual 

design of energy-absorbing tsunami shelters presented in Pimanmas et al. (2010). As a 

preliminary investigation, it is assumed that the energy-absorbing connectors behave 

like an ideal spring. In this simplified model, there are only two parameters to 

describe the properties of the movable structure: seawall mass and spring stiffness. A 

wide range of spring stiffness and seawall mass values were simulated to understand 

the behaviour of seawall under different properties. For each combination of the wave 

height and seawall mass, the value of the spring stiffness spans over a very large 

range, so that the seawall response becomes insensitive to the stiffness at two extreme 

situations (very soft spring and very stiff spring). The parametric studies provide a 

wide range of seawall responses, which is useful in identifying the desired behaviour 

for design purposes. 

 

Movable seawall model setup 

 

The passively moving seawall is idealized into a simple spring-mass system, which 
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consists of a spring attached to a vertical wall. Fig. 6 illustrates the numerical 

geometry of the vertical seawall and spring system. When subject to wave impact, the 

seawall is able to reduce the hydrodynamic loading by compressing the spring. The 

energy stored in the compressed spring can be gradually released back into the water 

by the release of the spring after the wave impact.  

 

The seawall is initially located at 0seawallx  = 2.50 m under hydrostatic condition, and the 

spring system is in its relaxed form. As the wave generated by the wavemaker 

propagates downstream, the seawall will become mobile once the impact force 

exceeds a specified threshold value. It is assumed that the spring cannot be stretched. 

As a result, the seawall cannot travel further upstream beyond its initial position.  

 

 

 

Fig. 6. Schematic sketch of the movable seawall model. 

 

To increase the computational stability, the spring-mass system is designed to sustain 

a certain amount of impact force before it can be compressed. The onset of motion for 

the system is determined by a threshold force ratio, defined as staticthreshold FF  10.1  

in this study. Fig. 7 illustrates how this threshold condition compares with the force 

experienced by the seawall under the impact from a wave height-to-depth ratio H/h = 

0.5.  
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Fig. 7. Illustration of onset motion for the spring-mass system. 

 

Once the seawall becomes mobile, its movement can be determined by a simple free-

body force analysis on the seawall. The acceleration, velocity and position of the 

seawall are calculated as follows, 
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where k is the spring stiffness coefficient, seawallm  is the mass of seawall, superscripts 

n and (n + 1) denote the current and next time step. 

 

Computational parameters 

 

The numerical setup in the fixed-wall study is adopted in this section, except that the 

vertical seawall on the right-hand side is movable. Based on the outcome of the fixed-

wall study, a total simulation time of 4.00 s is used. This is considered to be long 
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enough to capture the impact of the solitary wave and the subsequent response of the 

seawall. The ISPH model used a particle spacing of r  = 0.008 m and a time step t  

= 5.0 ×10-4 s.  

 

Several contributing factors that influence the seawall movement are examined to 

understand the underlying physics. It is expected that the seawall movement will be 

determined by the interaction of incident wave ratio H/h, the spring coefficient k and 

mass of the seawall seawallm . A number of simulations are conducted to investigate the 

influence of each parameter on the seawall response. Table 1 summarises the values 

used for the parametric study. Three key computational results are focused in the 

simulations: the seawall displacement, wave runup height in front of the seawall and 

the impact force experienced by the seawall.  

 

Table 1 List of values used for the parametric study of movable seawall. 

Parameters Values 

Wave height ratio, hH /  0.2, 0.3, 0.4, 0.5, 0.6 

Spring coefficient, k  (N/m) 0.01, 10, 50, 100, 500, 103, 104, 105, 106, 107 

Seawall mass, mseawall (kg/m) 50, 100, 175, 250, 375, 500 

 

Results and discussions 

 

In this section, we first illustrate the water surface evolution and the movement of the 

spring-mass system under the impact of a solitary wave. This is followed by an 

investigation of the individual influence of the three factors listed in Table 1. Lastly, a 

section summarising their comprehensive effects on the maximum impact force, 

seawall displacement and runup height measures is presented.  

 

Illustration of seawall responses 

The test case illustrated herein has the following wave condition and seawall 

properties: wave ratio H/h = 0.5, seawall mass mseawall = 250 kg/m and spring stiffness 

coefficients k = 10 N/m. Fig. 8 presents some snapshots of the surface profiles with 

pressure contours computed by the ISPH model. 
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It is observed that the seawall becomes mobile after t = 2.00 s as the wave crest 

arrives at approximately less than 0.50 m upstream. As the wave crest gradually 

arrives at the seawall, it pushes the seawall to move downstream, as show in the 

snapshot at t = 2.20 s. Upon the wave collision with the seawall at t = 2.40 s, it is 

expected that the spring-mass system will absorb some of the impact through the 

compression of spring. The residual impact that cannot be absorbed will be reflected 

by the seawall, sending a wave propagating upstream. This phenomenon is observed 

in snapshot at t = 2.80 s. Comparing the surface profiles t = 2.40 s and t = 2.80 s, the 

crest height of the reflected wave is approximately 0.1 m less than the impact wave 

experienced at the seawall. After the reflected wave crest moves further away from 

the seawall, it exerts less influence on its behaviour. In this case, due to the small 

stiffness coefficients, the spring system is not able to provide enough resistance to 

stop the seawall from moving further downstream. The seawall location is at about 

2.95 m at t = 4.00 s, with the reflected wave reaching the wavemaker and generating a 

runup of approximately 0.07 m in height. Fig. 9 compares the wave force, seawall 

displacement and wave runup at the seawall with the fixed seawall case. The seawall 

displacement and wave runup height are non-dimensionalized as follows, 

hXx /* 
 

(19) 

hRR /* 
 

 

where X denotes the seawall displacement and R the wave runup height.  
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Fig. 8. Wave surface profiles for wave ratio H/h = 0.5, spring stiffness k = 10 N/m and seawall 

mass mseawall = 250 kg/m. 
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Fig. 9. Comparison of the non-dimensional impact force (top), seawall displacement (middle) and 

wave runup height (bottom) for wave ratio H/h = 0.5, seawall mass mseawall = 250 kg/m and spring 

stiffness k = 10 N/m with fixed seawall scenario. 

 

Similar to the observation from the surface profiles, the impact force experienced by 

the seawall exceeds the threshold condition at t = 2.00 s and a gradual rise can be seen 

in the displacement profile after this instant. The force and runup profiles increase 

rapidly after t = 2.00 s, indicating the approaching of wave crest. The impact force 

reaches the maximum at t = 2.24 s with a magnitude of 2.73×Fstatic, which is 

approximately 8.72% less than the peak impact force experienced by the fixed seawall. 

This is followed by the peak runup occurrence at t = 2.40 s with a magnitude of 

1.04×h, again less than the maximum runup of 1.21×h under fixed scenario. By t = 

2.90 s, the impact force has dropped to below the static level for the flexible seawall, 

which explains the dominance of spring properties beyond this time instant. The 

seawall continues to move downstream at a constant speed after t = 2.90 s, further 
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compressing the spring system. This causes the impact force and runup at the seawall 

to decrease further. At t = 4.00 s, the seawall is at 2.16×h downstream of its original 

place. The water level in front of the seawall is 0.18×h below its initial mean water 

depth, which leads to a pressure force of 0.63×Fstatic. This test case demonstrates that 

by allowing some flexibility in the seawall, the peak force and runup experienced 

during the wave impact can be reduced accordingly. 

 

Spring stiffness effect 

To fully understand the seawall behaviour under different spring stiffness, Fig. 10 

compares the non-dimensional impact force, seawall displacement and runup height at 

the seawall from eight different stiffness coefficients for mseawall = 50 kg/m and H/h = 

0.3. It is obvious that the seawall response can be grouped into three categories. 

 

For very flexible spring system with k ≤ 10 N/m, the spring system gets compressed 

continuously throughout the computation and offers little or no resistance to slow 

down the seawall movement downstream. As a result, the impact force and runup 

height experienced by the seawall under this setting are much smaller, with the 

maximum impact force at 1.70×Fstatic and peak runup at 0.50×h upon wave impact. 

The total displacement of the seawalls at t = 4.00 s has increased the computational 

domain by one third of its original length, which leads to the impact force and runup 

height fall below the static condition.  
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Fig. 10. Time histories of impact force (top), seawall displacement (middle) and wave runup 

height (bottom) for different spring stiffness coefficients. 

 

On the other end of the stiffness spectrum, the seawalls behaved very similar to a 

fixed seawall for k ≥ 104 N/m. The displacement profiles remain zero or nearly zero 

for seawalls fall in this category. The maximum impact force is 2.40×Fstatic and the 

peak runup height is 0.75×h, both increased by approximately 50% from the seawalls 

with k ≤ 10 N/m. The force and runup height at t = 4.00 s returned to 1.0 and 0.0, 

respectively.  

 

The transition state ranges from k = 102 N/m to 104 N/m, where we see the seawall 

incurs some displacement downstream upon the first collision with wave crest arrival 

but the spring system manages to reverse the movement of seawall as time elapses. 

For the seawall with k = 102 N/m, it behaved very similar to seawalls with smaller 

stiffness values up until t = 2.80 s when the impact force experienced by the seawall 

falls back to the static condition. The force profile starts to deviate from the more 
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flexible seawalls and its displacement curve starts to slow down. A maximum 

displacement of 1.64×h takes place at approximately t = 3.50 s, after which the 

seawall gradually moves towards its original place, driving the force and runup 

profiles rise significantly during the slow-down and restoration process. At t = 4.00 s, 

the seawall is located at 1.36×h downstream from its initial position. Both force and 

runup height at the seawall are significantly larger than the static conditions. Whilst 

for the seawall with k = 103 N/m, the spring system managed to restore the seawall to 

its original place. The force and runup height profiles rise slightly higher at the initial 

impact, and the seawall exhibited more resistance towards the impact force. Twin 

peaks were observed in the corresponding force and runup height profiles, first peak 

corresponds to the collision with the wave crest arrival and second peak takes place 

when the seawall returns to its original place. A maximum displacement of 0.55×h 

occurs at t = 2.88 s, when the force and runup height are at their localized minima 

after the first peak. The seawall behaves like a fixed seawall after t = 3.50 s, soon after 

it returns to the original place.  

 

In general, the spring stiffness determines the seawall response during the wave crest 

arrival and after it moves away from the close proximity of the seawall. Very flexible 

spring system offers very little resistance towards the residual impact and by the 

continuous compression of spring it allows a significant reduction in the maximum 

force and runup height at the seawall at the time of impact. Whilst very stiff spring 

makes the seawall virtually a fixed object and no wave absorption takes place. The 

transition range (102 N/m ≤ k ≤ 104 N/m) is where the seawall behaviour is less 

predictable. Depending on the relative strength of the incident wave and spring 

system, the maximum impact force and runup height are reduced accordingly by 

allowing some seawall movement. However, some temporary rise in the impact force 

and runup height at the seawall will occur during the restoring movement of seawall. 

A seawall with spring stiffness close to the upper limit of the transition (k ~ 104 N/m) 

tends to cause a higher rise due to the quick release of the compressed spring within a 

short period of time. 

 

Seawall mass effect 

In addition to the spring stiffness, the self-weight of the seawall can also affect the 

response since mass is inversely proportional to the acceleration. In this section, six 
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different seawall mass values are assigned to the flexible seawall and studied under a 

spring stiffness k = 500 N/m and wave condition, H/h = 0.5. The comparison of the 

non-dimensional impact force, seawall displacement and wave runup height are 

shown in Fig. 11.  

 

As expected, the force and runup height profiles exhibit very similar trend among the 

seawall with different weights when the wave impact dominates the near-field 

interaction before t = 2.80 s. The maximum impact force and runup height due to the 

wave crest arrival increases with increasing mass values, since heavier seawalls are 

expected to offer more resistance to moving and behave more like fixed seawalls. It 

can be observed that there is very little to no difference in the response from seawalls 

with mseawall ≥ 375 kg/m. The maximum impact force is approximately 2.90×Fstatic. 

For seawalls with mseawall ≤ 250 kg/m, the force and runup profiles are more spread-

out and show varying degrees of absorption of impact wave upon encountering the 

incident wave crest. The maximum impact force ratios for mseawall = 50 – 250 kg/m are 

2.10, 2.40, 2.60 and 2.70, respectively. This suggests that there exists a threshold 

mass value beyond which the seawall resembles a fixed seawall.  
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Fig. 11. Time histories of wave force ratio (top), seawall displacement (middle) and wave runup 

height (bottom) for different seawall mass values. 

 

A second rise in the impact loading and runup height can be observed for seawalls 

with mseawall ≤ 250 kg/m, which is caused by the returning seawall. The magnitude and 

rate of this rise is inversely correlated to the seawall mass, heavier seawalls are less 

prone to generate a large water accumulation when subject to the release of the 

compressed spring. This is confirmed in the displacement profiles, in which as the 

seawall mass increases the displacement curve becomes more smoothed out. The 

energy stored in the compressed spring is released at a slower rate into the flow 

domain, causing a more subtle disturbance to the flow.  

 

In general, the impact loading and runup height at the seawall is positively correlated 

to the seawall mass upon the arrival of the incident wave crest. Heavier seawalls tend 

to generate a higher impact force and runup until a threshold mass value is reached 
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beyond which the seawall behaviour closely resembles a fixed one. When the near-

field interaction becomes dominated by the spring system, the impact loading and 

runup height caused by the restoring seawall is negatively correlated to the seawall 

mass. Lighter seawalls are more prone to cause a large amount of runup and impact 

loading due to larger acceleration.  

 
Wave height to water depth ratio effect  

The previous two sections examined the influence of seawall properties on the impact 

loading and runup height experience at the seawall, which is dominate at some time 

after the arrival of wave crest at the seawall. In this section, the strength of the 

incident wave is studied to understand its effect on the seawall response during the 

early stage of the impact. Five different wave ratios are simulated, ranging from H/h = 

0.2 to 0.6. Fig. 12 shows the impact force, seawall displacement and runup height for 

these wave ratios with a spring stiffness k = 500 N/m and seawall mass mseawall = 250 

kg/m. 

 

The profiles suggest that, under the same spring flexibility and seawall mass, the 

wave height determines both the arrival time of the incident wave at the seawall and 

the maximum impact force. The higher the wave ratio is, the earlier the force profile 

rises up to its maximum. This is also reflected in the wave runup and seawall 

displacement profiles, with respect to the time instant at which the water height rises 

and the seawall initiates its movement. The displacement profiles suggest that the 

onset of the seawall starts at approximately t = 2.00 s, 2.08 s, 2.12 s, 2.20 s and 2.32 s 

as the wave ratios decreases from 0.6 to 0.2. The wave impact force ratio reaches a 

maximum value of 3.21, 2.71, 2.38, 2.10 and 1.72 at t = 2.20 s, 2.30 s, 2.43 s, 2.48 s 

and 2.58 s for seawalls subject to decreasing wave ratios. This corresponds to the 

occurrence of peak runup at t = 2.35 s, 2.38 s, 2.43 s, 2.51 s and 2.62 s with a ratio of 

1.54, 1.12, 0.83, 0.60 and 0.38, respectively. Large wave impacts tend to generate a 

faster build-up of water in front of the seawall, which is shown in the steepness of the 

slopes in the force and runup profiles. Same trend is observed in the retreating stage 

of both profiles between t = 2.50 s and 3.00 s.  
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Fig. 12. Time histories of wave force ratio (top), seawall displacement (middle) and wave runup 

height (bottom) for different incident wave ratios. 

 

The impact force and runup height profiles after t = 3.00 s show very little difference 

in seawall response. This is expected since by this time the reflected wave has moved 

further away from the seawall, exerting less influence in the near-field interaction. 

The seawall response is mainly determined by the seawall property and its relative 
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strength to the residual wave loading near the seawall. It is noticed that seawalls under 

larger incident tend to generate a slightly higher runup upon its movement towards its 

original position. Since the seawall subject to larger wave impact stored more energy 

through the compressed spring at the encounter, it is expected to release more energy 

back into the flow domain upon the restoration of the seawall. The difference in the 

amount of this second rise in the impact force and runup height among different 

incident wave height is much smaller in scale when compared to the first rise.  

 

Collective effects 

In this section, the dependence of the maximum wave impact force, seawall 

displacement and wave runup height on the three key parameters, incident wave 

height, spring stiffness and seawall mass, is investigated and summarised. In order to 

generalize our findings, the following three groups of non-dimensional parameters are 

used to represent the incident wave characteristics and seawall properties. 

hH /
 

(20) 

ghkk 2/* 
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seawall
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Fig. 13 plots the maximum seawall displacements against the spring coefficients on a 

semi-logarithmic scale. Regardless of the incident wave ratio and seawall mass, the 

displacement decreases with the increasing spring stiffness. This decrease is more 

apparent for larger incident waves and lighter seawall. The curves generally 

demonstrate that for any given seawall mass and incident wave height, the seawall 

response shows very little variations when log(k*) < -1.59, where the spring system 

undergoes continuous compression under the dominance of wave impact loading. As 

the spring stiffness increases, the displacement decreases quite rapidly over the region 

-1.59 ≤ log(k* ) ≤ 1.41. Further increasing the stiffness reduces the magnitude of 

displacement and all curves virtually return to zero by log(k*) = 2.41. It is observed 

that the increment between each curve is almost evenly spaced for any given seawall 

mass setting, which suggests that the displacement is roughly linearly correlated to the 

wave ratios. Considering the effect of the seawall mass, it is evident that the 

maximum displacement at log(k*) ≤ -4.0 reduces with increasing seawall mass. Due 

to larger inertia and thus smaller seawall movement during the impact, the slopes in 
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the region between log(k*) = -1.59 and 1.41 are much milder for heavier seawalls.  

 

 

 

 

 

Fig. 13. Maximum seawall displacements versus spring stiffness coefficients for different wave 

ratios and seawall masses. 

 

Figs. 14 and 15 compare the maximum impact force and runup height against the 

spring stiffness on semi-logarithmic scales, respectively. Both figures consist of two 

relatively flat-line regions for log(k*) < 0.41 and log(k*) > 2.41 and an upward-sloped 

transition zone in between. Lighter seawalls with smaller stiffness coefficients tend to 

experience less impact force and smaller water runup upon the wave crest arrival. The 

upward slopes in the transition region steepen up with increasing wave ratio and 

decreasing seawall mass. For very flexible seawalls, the spring reaction is negligible 

in relation to the wave impact force. The incident wave intensity and seawall inertia 

alone determine the seawall reaction. Hence, both the impact force and runup height 
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are not affected by the spring stiffness for log(k*) < 0.41. Whilst for very large 

stiffness (log(k*) > 2.41), the seawall behaviour and wave impact phenomenon are 

similar to those for fixed seawalls. It is expected that when the spring stiffness is 

sufficiently large, the impact forces and the runup heights at the seawall are dependent 

on neither the spring stiffness nor the seawall mass; they are only functions of the 

solitary wave height. For light seawall (m*seawall = 1.25) under a relatively small wave 

(H/h = 0.2), the runup height increases by only approximately 37.2% from a free-

moving seawall (log(k*) < -4.0) to a fixed one (log(k*) > 4.0); whereas when subject 

to a large wave (H/h = 0.6), the change is around 43.2%. These measures reduce to 

6.9% and 7.4% for m*seawall = 12.5, respectively. It is expected that if the mass of the 

seawall is infinitely large, its own inertia will eventually resist any seawall movement 

during the impact. The impact force and the runup height profiles will simply be 

horizontal lines across the whole spring stiffness range. 
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Fig. 14. Maximum wave force ratios versus spring stiffness coefficients for different wave ratios 

and seawall masses. 

 

 

 

 

 

Fig. 15. Maximum wave runup heights versus spring stiffness coefficients for different wave 

ratios and seawall masses. 

 

Conclusions 

 

This paper explores the application of an incompressible SPH (ISPH) method to 

wave-structure interaction problems that contain free surfaces and moving solid/water 

interfaces. The ISPH model has demonstrated to be capable of producing stable and 

accurate pressure fields. The computed wave runup heights at a fixed vertical seawall 

agree well with published experimental and numerical results. The ability of the ISPH 

model in estimating pressure forces on solid boundaries has been examined under 
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both hydrostatic and hydrodynamic conditions. The estimated force compares well 

with the theoretical solutions, even for large-amplitude nonlinear waves.  

 

In the movable seawall applications, a spring-mass system subject to solitary wave 

impact is systematically studied. The movement of the spring-controlled seawall is 

analysed under the influence of three contributing parameters: incident wave intensity, 

seawall mass and spring stiffness. The simulation results concentrate on the 

evaluations of the peak impact force experienced by the seawall, wave runup height 

and maximum seawall displacement. It has been found that the incident wave 

amplitude generally dominates the seawall movement during the initial wave impact. 

It determines the timing and magnitude of the impact force and runup height. Large 

amplitude waves induce an early arrival of wave crest at the seawall and a large 

subsequent impact force. The seawall mass and spring stiffness play an important role 

in determining the seawall response at the stage immediately after the initial impact. 

Very light and flexible seawalls offer no resistance to the wave loading, which can 

reduce the collision force and runup heights by moving rapidly downstream upon 

impact. In practice, such structures can incur large maintenance expenses and prove to 

be undesirable due to the large seawall displacement and slow restoration phase. On 

the other hand, very heavy and stiff seawalls virtually behave like fixed seawalls. 

Between the two aforementioned extremes, the seawall can provide some resistance to 

the wave attack by incorporating a small degree of flexibility. The present study offers 

insights into the selection of optimal parameters in the design of movable seawalls 

and other offshore structures.  

 

The present study considers the seawall to be infinitely long, thus the problem is 

vertical two-dimensional. Future research may extend to the three-dimensional 

situation, in which the wave diffraction will be investigated by the movable seawall of 

a finite length.  
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