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2. Deformation can be identified automatically by cluster analysis of independent 11 

components 12 

3. Application of ICA demonstrated on Sentinel-1A imagery using contrasting volcanic 13 

examples 14 

 15 

Abstract  16 

A challenge in the analysis of multi-temporal Interferometric Synthetic Aperture Radar (InSAR) 17 

data is distinguishing and separating volcanic, tectonic and anthropogenic displacements from 18 

each other and from atmospheric or orbital noise. Independent Component Analysis (ICA) is a 19 

method for decomposing a mixed signal based on the assumption that the component sources are 20 

non-Gaussian and statistically independent. ICA has potential as a tool for exploratory analysis 21 

of InSAR data, and in particular for testing whether geophysical signals are related or 22 

independent.  This article presents tests of the applicability of ICA to InSAR using synthetic data 23 

and application to Sentinel-1A archive images from two contrasting examples of volcano 24 

deformation.  Co-eruptive subsidence associated with the April 2015 eruption of Calbuco (Chile) 25 

was identified in spatial patterns found by maximising both spatial and temporal independence. 26 
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Spatial patterns and rates of lava subsidence were retrieved using ICA analysis of interferograms 27 

from Parícutin lava fields (Mexico), and found to be consistent with previous observations.   28 

I demonstrate that ICA is an appropriate method for the analysis of volcanic signals in the 29 

presence of atmospheric noise, and propose a strategy for the automatic identification of 30 

geophysical displacements using cluster analysis of the spatial patterns of independent 31 

components.  This approach allows the detection of geophysical processes on a range of scales  32 

and provides a test of signal independence where multiple displacement sources are active.   33 

 34 
 35 

 36 

1.0 Introduction 37 

Interferometric Synthetic Aperture Radar (InSAR) allows centrimetric to millimetric movement 38 

of the ground to be measured on the scale of 10-100s of kilometres at a spatial resolution of <10s 39 

metres and temporal resolution of days to months (e.g., B̈rgmann et al, 2000; Simons & Rosen, 40 

2007).  InSAR measurements have been used to measure deformation during all stages of the 41 

earthquake cycle (Massonet et al., 1993; Elliott et al., 2016), and to observe a broad range of 42 

processes that cause deformation at volcanoes (Pinel et al., 2014; Biggs et al., 2014).   43 

Here, I present an application of a blind source separation method, Independent Component 44 

Analysis (ICA), for identifying and analysing displacement signals in InSAR data.  I describe the 45 

potential of the method, already widely used in other branches of remote sensing, medical 46 

physics and geophysics, for application to multi-temporal InSAR data (Section 2).    I 47 

demonstrate its application using sets of synthetic interferograms (Section 3.1) and analyze two 48 

contrasting styles of volcanic deformation using Sentinel-1 imagery acquired since the 49 

instrument’s launch in 2014 (Sections 3.2-3.3).   50 

1.2   Mixed signals: atmospheric and geophysical signals 51 

A major challenge for using InSAR for the measurement of geophysical signals is the separation 52 

of true surface displacements from atmospheric noise (e.g., Zebker et al., 1997; Beauducel et al., 53 

2000).  Atmospheric signals in interferograms are the consequence of differences in the 54 
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refractivity of the atmosphere between satellite acquisitions caused by variations in 55 

concentrations of water vapour (‘wet delay’) and hydrostatic pressure (‘dry delay’) (e.g., Hansen, 56 

2001).  Where the atmosphere is stratified, changes to water vapour concentration are correlated 57 

with topography and may mask deformation signals with similar or lower magnitude at high 58 

relief faults and at volcanoes (e.g., Doin et al., 2009; Poland & Lu, 2004; Ebmeier et al., 2013).  59 

Where turbulent mixing is dominant, atmospheric signals are spatially correlated on the scale of 60 

tens of kilometres (e.g., Lohman & Simons, 2005). 61 

Atmospheric signals can be mitigated in sets of interferograms by using approaches that increase 62 

the signal to noise ratio.  For example, stacking a set of m independent interferograms reduces 63 

the standard deviation of signals uncorrelated in time by a factor of √m (Emardson et al., 2003).  64 

This approach is very effective for estimating constant rates of deformation in the presence of 65 

turbulent atmospheric signals, but does not mitigate the effect of stratified water vapour signals, 66 

which are not random in space and may not be sampled evenly across the seasons (Doin et al., 67 

2009). Atmospheric signals are spatially but not temporally correlated, so can be estimated by 68 

high-pass filtering in time and low-pass filtering in space (Ferretti et al., 2001; Hooper et al., 69 

2007).  Both stacking of repeat acquisitions and spatiotemporal filtering are most effective where 70 

deformation is of much longer duration than the measurement interval (satellite repeat time), but 71 

less effective for deformation captured by only a few interferograms, such as some landslides or 72 

co-eruptive volcanic deformation.   73 

Atmospheric signals can be corrected in individual interferograms either empirically (e.g., Wicks 74 

et al., 2002) or using independent predictions or measurements of water vapour and hydrostatic 75 

pressure, and therefore atmospheric phase delays (e.g., Jolivet et al., 2011).  Empirical correction 76 

removes the part of the phase caused by stratified water vapour variation by characterising the 77 

relationship between phase delay and topographic height.  This may assume a linear (e.g., Elliott 78 

et al., 2008) or non-linear (e.g., Remy et al., 2003) relationship between phase and topography, 79 

which it may be necessary to characterize on different spatial scales across an interferogram 80 

(e.g., Bekaert et al., 2015).  Model predictions of atmospheric delay may be derived from 81 

regional atmospheric models (e.g., Parker et al., 2015) or nested models that allow higher 82 

resolution predictions at the site of interest (e.g., over Big Island, Hawai’i, Foster et al., 2006).  83 

Interpolated measurements of atmospheric parameters from GPS networks or multi-spectral 84 
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satellite data can be used to reduce the contribution of atmospheric delays by themselves or in 85 

combination with model predictions (e.g., Walters et al., 2013).  The success of such data and 86 

model-based correction depends on (1) the availability and relative spatial density of atmospheric 87 

data or model prediction grid spacing, (2) the relative timing of InSAR and atmospheric data 88 

acquisitions and (3) model initialisation conditions (Foster et al., 2013; Jolivet et al., 2014; 89 

Parker et al., 2015).  90 

The correction of atmospheric phase contributions is particularly difficult over rapidly changing 91 

topography, for example, in measuring the slip rate of major faults (e.g., Elliott et al., 2008; Doin 92 

et al., 2009).   Volcanic settings introduce additional challenges for both empirical and predictive 93 

atmospheric mitigation, as high topography can induce turbulence on the scale of kilometres, and 94 

volcanic plumes may also contain water vapour (e.g., Wadge et al., 2016).  95 

In some settings, it is common for multiple deformation processes to be superimposed in 96 

interferograms.  For example, interferograms spanning the period after a large earthquake are 97 

likely to capture displacements associated with large aftershocks, postseismic processes and 98 

landsliding. Variations in hydrological loading, fault creep and anthropogenic deformation may 99 

occur in the same area over longer timescales and mask the presence of lower magnitude 100 

processes.   At an active volcano, multiple related or independent processes often result in 101 

simultaneous surface displacements, including magma movement, magma phase changes, small 102 

earthquakes, and the post-emplacement adjustment of erupted pyroclastic flows, lahars and lavas 103 

(e.g., Jay et al., 2014; Caricchi et al, 2014, Ebmeier et al., 2014).   Where a deformation source 104 

has been well characterized, it can be subtracted before modelling (e.g., González et al, 2012).  If 105 

temporal and spatial characteristics of any of a set of superimposed sources are known, it may 106 

also be possible to separate signals empirically, in a similar manner to the methods for mitigating 107 

spatially correlated atmospheric noise.   108 

ICA provides a tool for exploratory analysis of mixed signals in interferograms and a robust test 109 

for signal independence.   It is complementary to mitigating atmospheric or deformation signals 110 

using modelling or empirical correction, and requires very limited a priori assumptions about 111 

signal characteristics.   112 

 113 
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1.2  Independent Component Analysis 114 

Independent Component Analysis (ICA) is a computational signal processing method that aims 115 

to describe random variables as a linear combination of statistically independent components 116 

(e.g, Comon, 1994; Hyvärinen & Oja., 1997; Stone, 2004).  This is achieved by the 117 

decomposition of a mixed signal using the assumption that each constituent component has a 118 

non-Gaussian probability distribution.  This assumption is based on the premise that the sum of a 119 

sufficient number of non-Gaussian probability distributions tends towards a Gaussian 120 

distribution (the central limit theorem), so that a strongly non-Gaussian component is unlikely to 121 

be produced by a combination of different sources.    122 

The assumption of statistical independence employed by ICA makes it possible to find a unique 123 

solution to the decomposition of a mixed signal, in a similar way that the assumption that sources 124 

are uncorrelated is the basis of Principal Component Analysis (PCA).  Because ICA retrieves 125 

sources by maximising statistical independence (rather than signal variance, as in PCA) it is 126 

appropriate for the extraction of low magnitude signals, even where noise is high, without a 127 

priori assumptions beyond the independence of the components (Hyvärinen et al., 2004). 128 

Statistical independence is assessed by non-Gaussianity.  This can be quantified using different 129 

properties of the random variables, of which kurtosis and negentropy are widely used.   Kurtosis 130 

describes the relative contribution of extreme deviations to a probability distribution 131 

(‘tailedness’) and is normally measured as the absolute value of the fourth standardized moment 132 

of the data, with a Gaussian distribution taking a value of 3.  The calculation of kurtosis is 133 

simple, but in practise it is more sensitive to outliers than negentropy, which is more widely used 134 

for ICA.  Negentropy is a concept from information theory that describes the difference in 135 

entropy - a measure of the unpredictability of information content -  relative to the Gaussian 136 

distribution of the same mean and variance.  This is based on the result that a Gaussian 137 

distribution has the highest value of entropy of all the possible random variables with the same 138 

variance. To avoid the challenging estimation of the probability density function, most 139 

algorithms use an approximation of negentropy to assess Gaussianity (e.g., Hyvärinen & Oja, 140 

2000).  141 
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Figure 1 illustrates the application of ICA and PCA to a simple one-dimensional example.  Three 142 

simple independent signals (Figure 1A) are combined in different ratios to produce signal 143 

mixtures (Figure 1B) that are more Gaussian than each of the individual input signals (and 144 

therefore have higher values of kurtosis).  The mixed signals are decomposed to find three 145 

Principal Components (PCs, Figure 1C), identified so that they account for as much of the 146 

variability of the mixed signals as possible, and three Independent Components (ICs, Figure 1D), 147 

that maximize the statistical independence of the components.  Although the PCs capture major 148 

features of the input signals (e.g., compare input ‘a’ to PC2), each PC contains contributions 149 

from all three input signals.  The ICs are successful in retrieving the structure of the original 150 

inputs, although they are not identical (e.g., compare IC1 to input ‘b’), and their signs and 151 

magnitudes are ambiguous (e.g., the sign of IC3 is the opposite of input ‘c’).    152 

ICA allows the decomposition of a mixed signal into a set of linear, additive components.  For a 153 

set of m scalar mixed signals (rows of data matrix, X), with n ( ≤ m ), unknown statistically 154 

independent components (rows of source matrix, S), the linear relationship between the two can 155 

be described as X = A S (1), where the rows of the unknown mixing matrix, A (m × n) are 156 

coefficients that describe the relative contribution of each source to a particular mixed signal 157 

(Figure 2).   Each independent component is then estimated by choosing unmixing vectors that 158 

maximize the non-Gaussianity of its product with the data, assessed using a property such as 159 

kurtosis or negentropy (the specific approach taken by the FastICA algorithm used in this study 160 

is described further in Section 2.1).  Because both A and S are unknown, a scaling factor in one 161 

of the components could always be cancelled out by its inverse factor in the mixing matrix, so 162 

the sign and the variance (and therefore the true magnitude) of independent components are 163 

ambiguous (Hyvärinen & Oja, 2000).  However, the part of the signal that is of interest (or the 164 

original mixed signal itself) can be reconstructed as the outer product of the relevant rows of A 165 

and S. 166 
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 167 
 168 
Figure 1:  One dimensional illustration of the application of PCA and ICA to mixed signals.   169 
Three simple input signals (A: a,b,c) are combined in different ratios to produce three mixed 170 
signals (B).  Histograms show the distribution of values for the whitened (zero mean, 171 
variance=1) inputs or signal mixtures. The mixed signals are decomposed into Principal 172 
Components (C) and Independent Components (D). 173 
 174 

  175 
ICA has been applied in medical physics, e.g. to blood oxygen level dependent signals in 176 

functional Magnetic Resonance Imaging (fMRI) used to identify connectivity in brain structures 177 

(Beckmann et al., 2004; Calhoun et al., 2006). For this application many specialized ICA tools 178 

have been developed.  Satellite remote sensing applications include hyperspectral unmixing 179 

(Bayliss et al., 1998), cloud masking (Amato et al., 2008) and thermal hotspot detection (Barnie 180 

& Oppenheimer, 2015).  ICA has also been used to analyze various geophysical and geochemical 181 

datasets including Global Positioning System time series (Liu et al., 2004), seismic data (De 182 
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Lauro et al., 2009) and isotopic data (Iwamori et al., 2008).  183 

 184 

 185 

Figure 2: Cartoon illustrating the geometry of decomposition for a multi-temporal InSAR 186 

dataset, X, with m interferograms, each made up of npixel pixels.  For sICA, rows of the mixing 187 

matrix, A, capture the relative contribution of each independent spatial component (rows of S).  188 

For tICA, spatial patterns are retrieved in the rows of A, while independent temporal components 189 

are retrieved in rows of S.  190 

2.0  Method 191 

2.1  Application of ICA to InSAR  192 

ICA can be used to decompose mixed signals that are a linear combination of statistically 193 

independent components.  As each pixel in an interferogram can be thought of as the sum of 194 

particular points in time series of various noise and deformation sources, the assumption of linear 195 

mixing is appropriate for InSAR data.  Interferograms are formed by multiplying a first SAR 196 

radar image ('master') point wise by the complex conjugate of a second image ('slave') to produce 197 

a map of phase change. If the phase backscattered from the Earth's surface is constant, then the 198 

interferogram phase (Ø) between two time-separated radar images consists of the linear 199 

combination of all of the differences in propagation phase from various temporally and spatially 200 

varying sources: Ø = Ødef + Øatm + Ønoise + ǻØorbit, where Ødef is the phase change due to the 201 

displacement of the Earth's surface in the direction of the satellite's line of sight, and other 202 

sources of phase change are normally treated as nuisance factors.  A geometric contribution to 203 
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phase change from the satellite's change in position is corrected from imperfect knowledge of 204 

satellite position and the Earth's topography, leaving just residual phase contributions from errors 205 

in knowledge of satellite position and look angle (ǻØorbit).   Thermal noise (Ønoise) is generally 206 

expected to be low magnitude and is neglected, while differences in atmospheric path delay 207 

between the two images (Øatm) may be of similar or equal magnitude to geophysical signals.  For 208 

much InSAR data these noise and deformation sources are expected to be statistically 209 

independent in space and/or time, although correlations between deformation and atmospheric 210 

signals may occur in some circumstances (Section 1.1). 211 

For a spatio-temporal dataset, ICA requires that sources are statistically independent in either 212 

space or in time (Figure 2).  For spatial ICA (sICA), spatial independence is maximized, and the 213 

number of mixed signals is the same as the number of interferograms (m), each sampled at many 214 

thousands of points (npixel).   Phase contributions from errors in the estimation of orbital 215 

contributions, instrument noise, turbulent atmospheric variation and displacement are all 216 

expected to be spatially independent.  Deformation caused by different stages of the earthquake 217 

cycle, anthropogenic, hydrological and various volcanic processes all have distinctive spatial 218 

distributions (e.g., Gonzalez et al., 2012, Pinel et al., 2014; Elliott et al., 2016).  However, both 219 

variations in a stratified atmosphere and deformation at volcanoes and major faults are often 220 

correlated with topography (e.g., Remy et al., 2003; Doin et al., 2009) and therefore each other.  221 

When tropospheric phase delay is limited to the part of an interferogram where deformation is 222 

occurring, the assumption that sources are spatially independent may be incorrect.   223 

Alternatively, one can assume that signal sources are statistically independent in time, so that 224 

each mixed signal is the time-series for one pixel (npixel mixed signals, sampled in each 225 

interferogram).  Temporal ICA (tICA) is intuitively appealing, because we expect the time series 226 

of atmospheric variation and deformation caused by different processes to be independent.  227 

However, for whole interferograms (e.g., 10-100 km footprint, pixel size ~10’s m) it is 228 

computationally much more challenging than sICA, because conditioning the mixed signals for 229 

analysis requires the computation of a covariance matrix of the order of npixel
2 , where  npixel may 230 

be 1000-10,000.   231 
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If a set of interferograms is used to estimate phase on m epochs, the matrix of observations, X, 232 

will have dimensions npixel × m, where npixel is the number of pixels with phase data for every 233 

epoch (Figure 2).  ICA decomposes the mixed signals into a set of ns statistically independent 234 

sources in the rows of source matrix, S (sICA: ns × npixel ; tICA:  ns ×  m) and mixing vectors in 235 

the rows of mixing matrix A (sICA: ns × m ; tICA: ns × npixel).  Here, this is achieved using a fast 236 

fixed-point algorithm for ICA (FastICA, Hyvärinen & Oja, 1997; Hyvärinen & Oja, 2000).  The 237 

first steps of this algorithm are the centring and whitening of observations before processing so 238 

that the mixing matrix is orthogonal, reducing the number of free parameters.   This is achieved 239 

by subtracting the mean from mixed signal matrix, X, so that the observations are zero mean 240 

variables.  The mixed signals are then transformed linearly to be expressed in terms of 241 

uncorrelated variables of variance equal to 1 (whitening or sphering).  The FastICA algorithm 242 

achieves this by preconditioning the centred observations using PCA, which can additionally be 243 

used to reduce noise in the data.  The number of principal components retained for the ICA 244 

analysis should be lower than the data dimensionality (which is unknown for most real data), so I 245 

use a trial and error approach to select an appropriate number (e.g., Barnie & Oppenheimer, 246 

2015).  A reasonable starting point can be found by making a rough estimation of the number of 247 

independent spatial or temporal sources expected for a particular number of interferograms.  For 248 

spatial ICA, a good starting point is one less than the dimension of the data (number of 249 

interferograms), since the spatially correlated atmosphere that appears in every interferogram is 250 

independent in time.  As orbital and turbulent atmospheric contributions are uncorrelated in time, 251 

these contribute only Gaussian noise in time and will not be extracted as independent 252 

components in temporal ICA (e.g., Hyvärinen & Oja, 2000).  The number of independent 253 

temporal sources is therefore likely to be much lower than the dimension of the data (number of 254 

pixels), and should be reduced to an estimation of the number of temporally correlated processes 255 

occurring in the area being analyzed.  This initial estimation can be iteratively increased so that 256 

as many PCs as possible are retained without introducing overfitting (identified by sources that 257 

are isolated peaks in the ICs retrieved, e.g., Hyvärinen, Särelä & Vigário, 1999). 258 

The whitened, (potentially reduced dimension) data matrix (Z), is found by multiplying X by a 259 

whitening matrix, V, so that Z=VX=VAS= ÃS, where Ã is an adjusted orthogonal mixing 260 

matrix. The problem is thus reframed in terms of the whitened data Z= ÃS, so that 261 
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approximation of Ã-1, is an unmixing matrix, W, which can be used to estimate the source 262 

matrix, S, from the whitened data, Z.  263 

The FastICA algorithm estimates unmixing matrix, W, using a fixed-point iteration  - where each 264 

point in a converging sequence is a function of the previous one.  Each row of W is an unmixing 265 

vector, w, that represents a projection of the centred and whitened data (Z) to maximize non-266 

Gausianity as measured using an approximation of negentropy (Hyvärinen & Oja, 2000).  For 267 

each unmixing vector, the iteration is initiated from a random value for w, and repeated until 268 

estimations converge (that is, wnew . wold  ~ 1).  Independent components are extracted one by 269 

one, with the projections of previously identified mixing vectors (w1 … wn) subtracted from the 270 

next mixing vector (wn+1), which is orthogonalized relative to all the mixing vectors identified so 271 

far.  If  the fixed-point iteration failed to converge, then the number of independent components 272 

extracted were reduced to be one less than the number of principal components.   273 

The source matrix, S, is then estimated from W Z, and the relative contributions of the source in 274 

S to each pixel  (tICA) or time point (sICA) is then V inv W-1 (~=A), where V inv is an approximate 275 

inverse of the whitening matrix.  Detailed explanations of the FastICA algorithm are provided by 276 

Hyvärinen & Oja, (1997) and Hyvärinen & Oja, (2000).   277 

 278 

2.2  Identifying and testing the significance of deformation signals 279 

If the spatial or temporal characteristics of a deformation sign are known, then the source can be 280 

identified by visual inspection of the independent components or mixing matrix.  However, 281 

because FastICA uses random starting points in the estimation of each row of the unmixing 282 

matrix, w, independent components are retrieved in different orders on different runs of the 283 

algorithm, so that it is difficult to extract the component of interest automatically.    This requires 284 

either a priori information about the location or timing of the target deformation signal, or a test 285 

of the statistical significance of the retrieved independent sources.   Testing the statistical 286 

significance of sources is important for exploratory analysis of InSAR data, and also provides 287 

greater flexibility for identifying undescribed or poorly constrained deformation signals. 288 



Confidential manuscript submitted to Journal of Geophysical Research 

 12 

Testing whether independent components capture real aspects of the data can be achieved by 289 

randomising input data in some way (e.g., bootstrapping) and repeating the retrieval of 290 

independent components from different starting points (e.g., FastICA’s initial guesses for each 291 

row of W).  Independent components that are retrieved by multiple runs are likely to represent a 292 

true property of the data (Hyvärinen, 2013).   A better alternative is to compare the spatial 293 

patterns in the independent components or mixing matrices retrieved from ICA of independent 294 

groups of data (e.g., Esposito et al., 2005).    In this study, I used the ISCTEST algorithm 295 

(Hyvärinen and Ramkumar, 2013), developed to examine inter-subject or inter-session 296 

consistency in a neuroimaging context.  ISCTEST uses an empirical model of the null 297 

distribution of independent components, that is, for the case where components of different 298 

groups of data are no more similar than would be expected by chance. Although the ISCTEST 299 

algorithm was developed for neuroimaging applications, the empirical model of the null 300 

distribution is based only on the assumption that independent components from the same datasets 301 

can be described as part of the same multivariate distribution that captures the spatial patterns of 302 

both signal and noise in the data, with parameters estimated from observations (the algorithm is 303 

explained in detail by Hyvärinen and Ramkumar, 2013).  The empirical estimation of the null 304 

distribution is used to estimate the probability that the inter-group similarity of two sources arises 305 

at random.  P-values for inter-group similarity can then be used to identify clusters of similar 306 

components.   307 

The division of InSAR datasets into independent groups can be conducted systematically or at 308 

random, depending on the characteristics of the source(s) of interest.  For example, if 309 

deformation is thought to persist throughout the whole period of observation, then the data set 310 

can be divided into two different blocks of interferograms spanning separate, sequential periods 311 

of time.  For short-lived deformation, it may be preferable to randomly divide all acquisition 312 

dates into two separate groups and construct two independent sets of interferograms spanning 313 

similar total time periods.   314 

 315 

3.0 Results   316 

3.1 Tests with synthetic data 317 
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I constructed sets of simple synthetic interferograms with similar average properties to those 318 

derived from Sentinel-1 SAR data (Figure 3).  These included an emulation of spatially 319 

correlated atmosphere (e.g., Hanssen, 2001; Lohman & Simons, 2005), tropospherically 320 

correlated atmospheric variations (e.g., Remy et al., 2003) and linear ramps (of the form ax + by 321 

+ c, where a~b~0.01 km-1) representing errors in the estimation of orbits).   I used central values 322 

of maximum variance = 20 mm2 and characteristic length scale exponent = 0.5, after Emardson 323 

et al., (2003), and assumed a normal distribution to randomly generate spatially correlated 324 

atmosphere for each synthetic image.  Sample SRTM topography of footprint 1600 km2, 325 

encompassing Osorno volcano (2652 m, Southern Chile), was used to generate stratified 326 

atmospheric signals with an average phase delay gradient of 1cm/km (e.g., Bekaert et al., 2015).  327 

Interferogram phase screens were then estimated by adding together the spatially and 328 

topographically correlated atmospheric phase for each image and differencing sequential images.  329 

Orbital contributions and a synthetic line-of-sight deformation signal were then added to each 330 

interferogram.   331 

Synthetic deformation patterns were constructed by evaluating a Mogi model at 5 km depth in an 332 

elastic half-space for (a) a linear increase in source volume over time, (b) sinusoidal variations in 333 

source volume (c) a ‘pulsed’ episode of source deflation spanning just a few interferograms (< 1 334 

month), and (d) a ‘step’ in deformation captured in just one interferogram.  A Mogi source 335 

(Mogi, 1958) was selected for simplicity, and because it provides a reasonable first order 336 

approximation of a variety of time-varying deformation sources including 337 

magmatic/hydrothermal reservoirs or the withdrawal of groundwater.  The deformation source 338 

was located beneath the topography for Osorno volcano, with a second deformation source 339 

located northwest of the volcano for some tests.    340 

The final synthetic data therefore consists of a set of 'daisy chain' interferograms of 40×40 km 341 

dimensions, ~500m pixel size (to limit computation time) and 12-day separation, referenced to 342 

the first image acquisition time (Figure 3).  These synthetic data are simpler than real 343 

interferograms and do not include, for example, non-linear phase-topography gradients, 344 

quadratic orbital ramps or any loss in image coherence.  However, they do capture the primary 345 

features of an InSAR dataset sufficiently well to test the applicability of ICA for source 346 

separation.   347 
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 348 

Figure 3:  The signals used to construct a set of synthetic interferograms. (A) Spatially 349 
correlated atmospheric phase contribution, (B) Topographically correlated atmospheric delay (C) 350 
Linear orbital ramps of the form Ø=ax + by + c, where a and b are normally distributed randomly 351 
generated numbers with central values of ~0.01. (D) Synthetic deformation – in this case a Mogi 352 
source at 5km depth, on short-lived episode of inflation starting on day 75.  (E) Synthetic 353 
interferograms, from the sum of signals A to D.  Histograms show the distribution of values for 354 
the last interferogram in the sequence (days 108-120).   355 

I applied the ICA methodology described above to examine the impact of varying (1) the number 356 

of synthetic interferograms used as input data (2) signal to noise ratio of the deformation source 357 

and (3) temporal characteristics of the deformation source.  Tests using temporal rather than 358 

spatial ICA were conducted on downsampled versions of the same synthetic data of 20 by 20 359 

pixels (size 2km), to reduce the size of the covariance matrix it was necessary to estimate.  To 360 

test the significance of the independent components retrieved using the clustering method 361 

described above (Section 2.2), synthetic datasets with the same deformation sources, but 362 

different random noise, were produced in pairs.   363 

The success of ICA in analysing the synthetic InSAR data can be assessed for two different aims.   364 

First, the ICs should capture the spatial and temporal characteristics of the input signals 365 

sufficiently well for them to be useful in exploring the development of and relationships between 366 

different deformation signals.   I use the clustering method for identifying real sources (described 367 

in Section 2.2) as a test for whether ICs contain useful information.  A second aim is the accurate 368 
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reconstruction of the original input deformation signal in a form suitable for modelling.  Such 369 

reconstruction will be most successful when input sources are very non-Gaussian. The presence 370 

of Gaussian noise and correlations between input signals in space (sICA) or time (tICA) result in 371 

signals caused by different processes being captured in the same independent components and 372 

introduce noise to any reconstructed interferograms.   373 

Clusters containing the ICs that captured the spatial pattern of input deformation were identified 374 

from sICA for even very small synthetic datasets (<5 interferograms). For tICA, clusters 375 

capturing input deformation patterns were most reliably identified for larger datasets (>20 376 

interferograms). For small sample sizes (i.e., 10s of interferograms, relative to 10,000s of pixels) 377 

ICA algorithms are less stable, and if too many principal components are retained, also prone to 378 

overfitting.   379 

For all the different input deformation styles, clusters of ICs were identified for signal to noise 380 

ratio (SNR)  > 0.1.  For lower signal to noise ratios, deformation was sometimes removed during 381 

dimension reduction before performing the ICA.   Deformation was only lost at very low SNR 382 

for sICA, where usually only the smallest eigenvector had been removed.  As dimension 383 

reduction is a more important prerequisite to tICA, the successful identification of clusters was 384 

more sensitive to SNR, and for the examples examined here, was more successful at SNR>0.5. 385 

The residuals between interferograms reconstructed from the clustered component and the 386 

original input deformation are also sensitive to SNR for some types of deformation.  Figure 4 387 

illustrates the variation of root mean square (RMS) residuals in relation to the SNR of the 388 

synthetic data for sICA (SNR is approximated as the ratio of maximum deformation to maximum 389 

noise). For a pulse of deformation, RMS residuals level out to a value of ~0.2 cm at SNR >1, but 390 

are three times higher where SNR <1.  For linear displacements, RMS residuals vary across a 391 

range of almost ~0.5 cm without obvious dependence on input SNR.  392 

Figure 4: Variation of root mean square (RMS) residuals 393 
(cm) in relation to the SNR of the input synthetic data for 394 
interferograms reconstructed from a single IC identified by 395 
sICA.   396 

 397 
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 398 

 399 

Identical deformation sources or those where the volume change of one source was a function of 400 

the other in time (i.e. coupled sources), were retrieved in the same independent component, 401 

provided episodes of deformation were sufficiently long relative to the satellite repeat time (e.g., 402 

appeared in >2 interferograms). Deformation events limited to just one interferogram always 403 

appear to be independent of other sources. Independent deformation sources, such as the 404 

example shown in Figure 5A, were retrieved as separate components (Figure 5B), making it 405 

possible to separate them into different sets of reconstructed interferograms (Figure 5D). 406 

For paired groups of synthetic interferograms (same deformation source characteristics with 407 

randomly generated atmospheric and orbital sources) inter-group clusters of components 408 

consistently retrieve the input deformation (e.g., clusters shown in Figure 5C).  However, when 409 

the look angle is changed for the two different groups to represent a comparison of ascending 410 

and descending data, then statistically significant inter-group clusters are only found for near 411 

vertical deformation, as the horizontal components of displacement seen by the satellite are more 412 

sensitive to look angle.  For the synthetic data used here, independent components containing 413 

atmospheric features were also assigned to clusters in about 10% of cases, normally where 414 

synthetic interferograms were dominated by topographically correlated atmospheric delay.   415 

These false positives present a challenge for automation, but were easily identified by eye and 416 

may be the result of the simple representation of atmospheric signals in the synthetic data.  417 
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 418 

Figure 5: Illustration of workflow for analysis of a synthetic set of interferograms capturing two 419 
independent deformation sources.  (A) Synthetic deformation for a Mogi-type source at 5km 420 
depth with sinusoidal variations in volume (lower source) and a second source at 7 km depth 421 
inflating for ~ one month (upper source in time steps 7-10).  Synthetic interferograms include 422 
atmospheric and orbital contributions as well as deformation, and are expressed in terms of 423 
satellite line-of-sight displacement.  (B) Independent spatial components of the set of 424 
interferograms, shown with letters to match the corresponding rows of the mixing matrix, which 425 
show the contribution of each spatial component to each interferogram in the synthetic data set.  426 
(C) Clusters of independent components from the analysis shown in (B) and a similar set of 427 
randomly generated interferograms.  The p-values for the components being parts of the same 428 
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cluster are 0.8 and 0.7 for sources 1 and 2, respectively. (D) Reconstruction of interferograms 429 
showing the two independent synthetic deformation sources identified from cluster analysis, 430 
calculated as the outer product of the relevant rows of the mixing and sources matrices. 431 

 432 

3.2  Application to Volcanic displacements with Sentinel-1 SAR data 433 

I used interferograms spanning two recent periods of contrasting volcanic deformation from the 434 

archive of Sentinel-1a imagery to investigate the applicability of ICA.  Given that Sentinel-1 will 435 

provide the largest, freely available SAR dataset over the coming decades, it provides the most 436 

useful test for the applicability of ICA to real data.  Volcanic deformation is a reasonable ‘proof-437 

of-concept’ test, because deformation rates were in both cases high enough to be detectable in 438 

the 18 months of imagery acquired since Sentinel-1A’s launch in 2014.  The two examples 439 

investigated represent end-members for temporal characteristics of volcano deformation 440 

detectable using InSAR.  The only deformation to have been detected at Calbuco volcano, Chile, 441 

was during an eruption in April 2015, while lava flows at Parícutin, Mexico have been subsiding 442 

steadily for decades.   Subsidence at Calbuco was high in magnitude (~12 cm), clearly 443 

identifiable in a single interferogram, and therefore provides a clear illustration of how ICs 444 

representing deformation can be identified.  In contrast, deformation is not immediately obvious 445 

in any one individual interferograms from Parícutin, but can be identified from the products of 446 

ICA.   447 

 448 

3.2.1  Data processing and preparation 449 

SAR images from the European Commission's Sentinel-1A satellite were used to construct a set 450 

of interferograms over two volcanoes (Parícutin, Mexico and Calbuco, Chile) and processed 451 

using GAMMA software (www.gamma-rs.ch).  Images were acquired in Terrain Observation by 452 

Progressive Scans (TOPS) mode and co-registration of master and slave single-look complex 453 

images was achieved by iterative estimation of constant range and azimuth offsets from cross-454 

correlation and then from Doppler variation in burst overlap regions (e.g., González et al., 2015).  455 

Topographic phase contributions were corrected using Shuttle Radar Topography (SRTM) 456 

mission 30 m data (Farr et al., 2007).  Interferograms were unwrapped using a minimum cost 457 
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flow method and were processed at 12 and 2 looks in range and azimuth respectively to give a 458 

pixel size of approximately 30 m.   459 

3.2.2  Co-eruptive subsidence at Calbuco, Chile 460 

Calbuco volcano in Southern Chile erupted on 22nd April 2015, 54 years after its last major 461 

eruption.  The ash plume reached heights of up to 18 km and ejected ~4.5±2.3 × 1011 kg tephra 462 

(Romero et al., 2016; Van Eaton et al., 2016).  No deformation was detected in the weeks before 463 

the onset of the eruption in Sentinel-1A InSAR data, or during regional InSAR surveys that 464 

covered the Southern Andes between 2006 and 2010 (Fournier et al., 2010; Pritchard et al., 465 

2013). Interferograms from three separate tracks do capture co-eruptive subsidence of ~12 cm, 466 

which appears to have occurred only during the first two phases of the eruption on the 22nd - 23rd 467 

April.   Here, I use daisy-chain Sentinel-1 interferograms from a single track (164) that spans the 468 

Calbuco eruption.  The timespan of most interferograms is 24 days, but there was a significant 469 

gap in acquisitions between June and November 2015 that resulted in one interferogram 470 

spanning 168 days.   471 

Spatial ICA was performed on a subset of the Sentinel-1A interferograms of dimensions ~ 50 × 472 

50 km.   Twelve interferograms (Supplementary Table 1) were used in the analysis and the data 473 

dimensions were reduced to ten during preparation and whitening.  No atmospheric corrections 474 

or temporal filtering was performed on the dataset before application of ICA.  To use tICA on 475 

the same data, I downsampled the same subset by a factor of ten to ease computation time and 476 

similarly reduced the dimension of the data to ten during whitening.   477 

A selection of independent spatial components and mixing matrix rows from the sICA analysis 478 

are shown in Figure 6, with the one associated with co-eruptive deformation marked by a red 479 

triangle. Note that this IC also captures an atmospheric feature at Osorno volcano. Other 480 

components are consistent with topographically correlated atmospheric signals, for example, the 481 

black circle or the white square on Figures 6 A and B, which show signals associated with both 482 

Osorno and Calbuco volcanoes and contribute to the phase observed in many of the 483 

interferograms.  The mixing matrix rows (Figure 6B) show the relative contributions of the 484 

spatial components to each interferogram in the analysis.   485 
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As deformation only appears in one of the sequential daisy-chain interferograms, the 486 

interferograms were reconstructed to create two independent groups without any acquisition 487 

dates in common, so that each group included one interferogram that spanned the eruption 488 

(group 1: 20150321-20150508 and group 2: 20150414-20150601).    The ICs containing the 489 

deformation from the two groups were identified as a cluster (p-value=0.76).   490 

Interferograms containing just the components associated with deformation were reconstructed 491 

by taking the outer product of the relevant mixing and source matrix rows. These reconstructed 492 

interferograms (Figure 6D), are dominated by the co-eruptive subsidence in the interferogram 493 

that spanned the 22nd - 23rd April eruption, although there is also some residual noise spread 494 

through the other reconstructed interferograms. This noise gives an indication of the expected 495 

level of uncertainty in the reconstruction of the co-eruptive deformation field (<2 cm), and is 496 

much lower than the variance of the interferograms reconstructed from the remaining 497 

components (Figure 6E, ~ 5.5cm).  The spatial patterns associated with co-eruptive deformation 498 

derived from sICA and tICA are compared in Figure 6F.  They are similar (but not identical) 499 

over Calbuco, but quite different over Osorno volcano.  500 
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 501 

Figure 6:  (A) Selection of independent components from ICA of a set of twelve interferograms 502 
spanning the time between 21st March 2015 and 6th August 2016 (505 days) over Calbuco 503 
volcano, Chile.  Colors are scaled between -1 and 1 for presentation. (B) Mixing matrix rows for 504 
the components shown in part A, plotted against the 'slave' date of each interferogram, and scaled 505 
between 0 and 1.  Each point shows the relative contribution of the corresponding spatial pattern 506 
shown in A to a single interferogram in the data set. (C) Interferograms used for the analysis 507 
(first nine of the full set of twelve). Numbers below show the date of the master image for the 508 
reconstructed interferogram to the right (dd.mm) (D) Interferograms reconstructed from the 509 
independent spatial components and mixing matrix rows identified as deformation. (E) 510 
Interferograms reconstructed from the independent spatial components and mixing matrix rows 511 
not associated with deformation, and instead considered to be dominated by atmospheric 512 
features. (F) Comparison of spatial patterns of the independent spatial component (from sICA) 513 
and the mixing matrix row (from tICA).   514 
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3.2.3  Lava subsidence of the Paricutin lava fields 515 

In 1943 a new monogenetic cone, Parícutin, appeared in a cornfield in the Michoacán-516 

Guanajuato volcanic field in central Mexico.  Over the next 9 years 1.9 km3 (Fries, 1953) of 517 

basaltic-andesitic lavas and pyroclastic products were deposited over an area of ~ 25 km2 in 518 

around 40 separate lava flows with a total thickness exceeding 200 m.  The Parícutin lava flows 519 

have now been subsiding for over 60 years and past InSAR observations up to 2011 detected 520 

linear subsidence at a rate of up to ~5 cm/yr (Fournier et al., 2010; Chaussard et al., 2016). Lavas 521 

were erupted from a cinder cone onto what had previously been gently sloping farmland, so in 522 

this case deformation signals are not expected to be strongly correlated with topography.   523 

I performed sICA on interferograms from both ascending and descending tracks of Sentinel-1A 524 

imagery (Supplementary Table 1) to test whether the already well-characterized spatial patterns 525 

of deformation are captured as an independent component.    For both data sets the number of 526 

dimensions were reduced during preconditioning to one less than the number of interferograms, 527 

and the same number of independent components were retrieved.  The usefulness of ICA was 528 

tested at two scales, first for a subset of the interferogram 40 x 40 km, and second for a smaller 529 

subset (~5 km x 5km) over the lavas themselves.   Although lava subsidence can be identified in 530 

one of the independent components estimated from the 40 x 40 km subset, their spatial patterns 531 

are seen more clearly in the 5 x 5 km extract shown in Figure 7.   Although lava subsidence is 532 

not clearly visible in many of the input interferograms due to the relatively low signal to noise 533 

ratio in any single time period (Figure 7A), both tracks of data are decomposed to produce an 534 

independent component with a spatial pattern that closely matches patterns of lava subsidence 535 

described by other authors (Figure 7B).  Specifically, the signal maximum appears in the same 536 

location (~-102.242°, 19.499°) in components from both ascending and descending datasets 537 

(Figure 7 C and D), and in the same location as where Chaussard (2016) measured maximum 538 

subsidence over the thickest part of the 1943-52 lava flow.  Furthermore, three distinct patches of 539 

subsidence are captured in the same independent component from the ascending (151) track of 540 

data, and are associated with a less distinct patch in the descending (114) data.  The three signal 541 

patches are caused by the same physical process (the cooling and compaction of lavas emplaced 542 

>60 years ago), which is consistent with them being retrieved within the same independent 543 

component.  The differences in the deformation retrieved from the two tracks are primarily due 544 
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to the differences in their total temporal coverage (i.e. lower magnitude deformation is detected 545 

only over a longer period).   546 

By separating the Paricutin data for each track into two independent groups, I tested whether the 547 

component containing the deformation could be identified automatically. As we can expect lava 548 

subsidence so long after emplacement to have a constant rate over the 1.5 years over which 549 

Sentinel-1A acquired data, I divided the interferograms into two sequential groups, removing the 550 

midpoint interferogram so that the groups did not hold any acquisition dates in common. The 551 

central long-period 168-day interferogram was also removed from the analysis of track 151 so 552 

that it did not dominate the independent components retrieved.  Although no clusters between the 553 

two independent groups were identified with the desired confidence (false positive rate for the 554 

existence of a cluster, and false discovery rate of an independent component belonging to a 555 

cluster set to <5 %, after Hyvärinen  & Ramkumar, 2013), the pair of components with the 556 

greatest probability (p=0.5) of capturing the same feature were those with the same spatial 557 

pattern as the lava subsidence (the two independent components identified as a cluster for track 558 

151 are shown in Supplementary Figure 1). Although the lava flow subsidence is not clear in any 559 

of the interferograms spanning < 100 days, ICA is able to retrieve the largest displacement signal 560 

from both tracks of images, and even the smaller, lower magnitude lobes of subsidence in the 561 

ascending track, which spanned a longer time period.     562 

I reconstructed interferograms from the ascending track IC that captures the lava subsidence field 563 

and estimated a linear subsidence rate from the total cumulative displacement over the whole 564 

time period.  Region 1 (Figure 7B) is subsiding at 5.3 cm/yr +/- 0.5 (in line-of-sight), with the 565 

uncertainty taken as the variance of the reconstructed interferograms in areas away from the lava 566 

fields.  This is close to the value of 5.5 cm/yr found by Chaussard et al., (2016) between 2007 567 

and 2011.  Estimations of the rate of subsidence for the two smaller patches are, however, slower 568 

than previous measurements, being 1.5+/-0.5 cm/yr 2014-2016 relative to 3.3cm/yr 2007-2011.   569 
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 570 

Figure 7: (A) Interferograms used in ICA analysis of InSAR signals over Parícutin lava fields 571 
from ascending and descending tracks of Sentinel-1A data (numbers in corners refer to number 572 
of days spanned by the interferogram).  (B) Spatial extent of Paricutin lava fields (in grey, after 573 
Chaussard, 2016) with the location of deformation measured in ALOS interferograms (2007-574 
2011) indicated by blue dashed outlines. The location of the cinder cone built up between 1943 575 
and 1952 is marked along with two secondary eruptive vents (black circles).  (C) Spatial pattern 576 
of an independent component capturing lava subsidence found from spatial ICA of 13 Sentinel 577 
interferograms (track 151, ascending) spanning the period between 27th December 2014 and 1st 578 
July 2016.  (D) Spatial pattern of an independent component capturing lava subsidence found 579 
from spatial ICA of 15 interferograms (track 114, descending) spanning the period between 29th 580 
May 2015 and 23rd May 2016.  As the magnitudes of independent components are arbitrary 581 
(e.g., Hyvärinen & Oja, 2000), they are scaled here between 1 and -1 for presentation purposes.   582 

 583 

 584 

 585 
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Discussion   586 

ICA has potential as a tool for exploratory analysis of InSAR datasets, automatically identifying 587 

displacements, assessing the relationships between deformation signals, and in some 588 

circumstances, for separating displacements from atmospheric noise.  It is likely to be 589 

particularly useful for interrogating the large volumes of satellite radar imagery now available 590 

for monitoring geophysical signals.   591 

As an analysis tool, ICA will be particularly useful, where a priori information about 592 

deformation location or temporal characteristics is limited.  Deformation sources that do not 593 

share a causal mechanism are likely to result in independent displacement patterns, and as such 594 

will be decomposed into separate ICs.  In contrast, deformation related to the same physical 595 

process will be captured by the same IC, as seen at the Parícutin lavas, where three separate 596 

patches of subsidence appear in the same independent component (Figure 7 C-D).   597 

Exploratory analysis requires a reliable method for assessing the statistical significance of the 598 

ICs.  I found that cluster analysis of ICs from different groups was reliable for automatically 599 

extracting the IC related to input deformation from tests with synthetic data at SNR > 0.1.  The 600 

ICs associated with lava subsidence at Parícutin had the highest probability (p=0.5) of being an 601 

inter-group cluster for two groups of 6-7 interferograms, as did the ICs that capture co-eruptive 602 

deformation at Calbuco (p=0.76).  Although the examples presented here are both volcanic, a 603 

very similar approach could be used to analyze deformation associated with tectonic or 604 

anthropogenic processes, landsliding or for searching for transient events, such as small 605 

earthquakes, or seasonal hydrological loading.  Separating otherwise similar interferograms into 606 

independent groups requires redundancy in the number of satellite acquisitions and will be most 607 

successful where either deformation is constant and long-lived relative to satellite repeat time (of 608 

days), or coherence is sufficiently good to allow multiple (probably longer time-span) 609 

interferograms to be formed over the period of interest.  An alternative method may be to look 610 

for correlations between independent components retrieved from recent interferograms and either 611 

past deformation signals or the a priori expected location of deformation.  Qualitative 612 

comparison of ICs retrieved from sICA and tICA of the same datasets may also be useful, 613 
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although the properties of ICs that are independent in space versus independent in time may be 614 

different (e.g., as at Calbuco, Figure 6F).   615 

For the mitigation of atmospheric artefacts, predictive methods are theoretically preferable to 616 

empirical approaches, such as ICA.  However, as their efficacy depends on the density and 617 

quality of independent atmospheric data available, or the resolution and initial conditions of an 618 

atmospheric model, there are some situations where an empirical approach is likely to provide 619 

better results.  ICA may also be suitable for initial ‘quick-look’ analyzes of large datasets before 620 

atmospheric data or higher resolution models can be prepared.  At Calbuco, for example, it was 621 

possible to remove much of the atmospheric signal from the time series with sICA without the 622 

use of any independent atmospheric data, although the discrepancy between spatial patterns 623 

extracted with sICA and tICA suggests that some contribution from topographically correlated 624 

atmosphere is likely to remain. An additional application of sICA could be the identification and 625 

removal of quasi-systematic features in phase, not directly correlated with topography, but 626 

associated with regular meterological patterns (e.g., as observed at Medicine Lake, Parker et al., 627 

2015).    ICA is a complementary approach to temporal filtering, which can be done as a 628 

preparatory step (e.g., Hyrärinen & Oja, 2000).  It is also more flexible than spatiotemporal 629 

filtering for the identification (and potentially extraction) of short-lived deformation signals 630 

captured in just a few interferograms (e.g., Section 3.2.2). 631 

Deformation that is spatially correlated with atmospheric signals, for example at steep, isolated 632 

volcanoes, could potentially result in both features being encompassed in the same spatial IC.  633 

However, stratified water vapour signals are normally spread throughout an interferogram rather 634 

than limited specifically to the location of deformation, and as such are part of a broad (if 635 

discontinuous) spatial pattern. For example, atmospheric signals at Calbuco are commonly 636 

accompanied by similar signals at neighbouring Osorno, and are decomposed into the same IC 637 

(Figure 6).  However, deformation captured by only a single interferogram in a time series (as at 638 

Calbuco) is particularly challenging to separate from tropospheric atmospheric features based on 639 

either spatial or temporal independence, and ICs from both approaches contain contributions 640 

from atmospheric signals (Figure 6F).     641 
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ICA generally requires the assumption that no more than one of the independent components can 642 

be Gaussian, because any orthogonal transformation of independent Gaussian variables will have 643 

the same multivariate distribution (e.g., Hyvärinen & Oja, 2000).  Where atmospheric signals are 644 

likely to have a Gaussian distribution in space or more likely in time, adaptations to the 645 

methodology presented here (e.g., Beckmann & Smith, 2004) could improve the quality of the 646 

results.  Further advances in ICA methodology that can be applied to InSAR data include the 647 

simultaneous maximization of spatial and temporal independence and the use of skewed rather 648 

than symmetrical probability density functions (e.g., Stone et al., 2002).   649 

 650 

Conclusions 651 

ICA is an appropriate and useful method for the analysis of multi-temporal InSAR data, and 652 

especially for the exploratory analysis of geophysical signals.   653 

Tests with synthetic interferograms indicate that the characteristics of input deformation sources 654 

can be retrieved by maximising either the spatial or temporal independence of source 655 

components, and that independent deformation sources are extracted into separate components.  656 

By splitting input data into two independent groups, the source component containing 657 

deformation can be identified automatically using cluster analysis.  This allows for the automatic 658 

identification, and potentially also reconstruction, of deformation.  659 

 Co-eruptive deformation over Calbuco (Chile) in April 2015 was identifiable in the spatial 660 

patterns derived from both spatial and temporal ICA of twelve Sentinel interferograms, although 661 

there were differences between the two approaches.   Atmospheric contributions were reduced in 662 

interferograms reconstructed from the spatial component containing deformation, but were not 663 

removed entirely.  In particular, the spatial component describing deformation probably 664 

encompassed some signals associated with topographically correlated atmosphere.   665 

 Analysis of 29 Sentinel-1A interferograms over Parícutin lava flows (Mexico) using sICA 666 

captures the shape of three distinct patches of lava subsidence as part of the same spatial 667 

component, consistent with deformation caused by a common process.  Lava subsidence rates 668 
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estimated from the reconstructed signal are consistent with previous InSAR measurements of 669 

deformation.   670 

These prototype examples demonstrate that the combination of ICA and cluster analysis is 671 

appropriate for the analysis of InSAR data and that it has potential for (1) identifying 672 

geophysical signals caused by tectonic, volcanic or anthropogenic processes and (2) testing the 673 

independence of geophysical signals.   674 

 675 
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