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Abstract: Building on the application of cuprite (Cu2O) in solar energy technologies and reports 

of increased optical absorption caused by metal-to-semiconductor energy transfer, a 

confinement-based strategy was developed to fabricate high aspect ratio, crystalline Cu2O 

nanorods containing entrapped gold nanoparticles (Au nps). Cu2O was crystallized within the 

confines of track-etch membrane pores, where this physical, assembly-based method 

eliminates the necessity of specific chemical interactions to achieve a well-defined metal-

semiconductor interface. With high-resolution scanning/transmission electron microscopy 

(S/TEM) and tomography, we demonstrate the encasement of the majority of Au nps by 

crystalline Cu2O and show that crystalline Au-Cu2O interfaces that are free of extended 

amorphous regions.  Such nanocrystal heterostructures are good candidates for studying the 

transport physics of metal/semiconductor hybrids for optoelectronic applications.  
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Introduction 

Cuprous oxide (Cu2O) is a promising material in next-generation photovoltaic devices due to its 

favorable optoelectronic properties, earth-abundance, and low cost.1-3 Integrating plasmonic 

assemblies into semiconducting materials can increase charge injection, optical path length, 

and enhance absorption of near IR light.4-11  A key challenge that dictates the performance of 

such metal-semiconductor hybrid materials is achieving a metal-oxide interface that is free of 

electrically insulating organic ligands.12-16 Methods to synthesize these materials generally 

require careful chemical design on a case-by-case basis.7-9, 17  By introducing a physical control 

parameter (e.g., confinement within pores of track-etched membranes) to the crystallization 

microenvironment we designed a reaction system to achieve the encapsulation of Au 

nanoparticles within Cu2O nanorods, regulating the assembly of a semiconductor-metal 

heterostructure without the introduction of organic structure-directing agents. 

 

Originally explored as a synthesis template for electrochemical growth of nanotubes or 

nanorods of conducting polymers and metals,18, 19 track-etched membranes have been used for 

the crystallization of transition metal oxides20 and as synthetic models for studying crystallization 

in confinement.21-29  Key outcomes of these works have included the ability to form high aspect 

ratio nanorods,23, 26 and a route to interface semiconducting transition metal oxide nanowire 

arrays into macroscale structures with spatial control.20  Up to this point, reports on 

electrochemical and solution-based crystallization within the pores of track-etched membranes 

have involved the formation of single phase or multilayered nanowires.30-33  However, these 

membranes also present a means to physically control the encapsulation of (metal) 

nanoparticles within the target (semiconducting) crystalline nanorods, forming a crystal-within-a-

crystal dual- (or multi-) phase material.   
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Within the (aqueous) crystallization microenvironment, the interaction between a host crystal 

and a guest material can be tuned by carefully controlling the crystallization kinetics (e.g., 

regulating the diffusion of reagents) and/or restricting the mobility of the guest materials.34  This 

approach has been widely demonstrated for single crystal carbonates, where the encapsulation 

of organic colloids,35 micelles,36, 37 and fibers38 has been achieved by the vapor diffusion of 

ammonium carbonate into an aqueous matrix (e.g., dispersion of particles or hydrogel) 

containing dissolved alkali metal salts.39, 40  As an extension of this approach, we hypothesized 

that a solution-vapor phase crystallization of an oxide (e.g., Cu2O) could be accomplished by the 

diffusion of a low vapor pressure basic species or reducing agent41 into a transition metal oxide 

salt solution with the application of heat to drive the system to the oxide phase.42 

 

Experimental Design. This article describes a new approach to synthesize metal-

semiconductor hybrid materials.  We crystallized cuprous oxide (Cu2O) from aqueous solution at 

near ambient temperatures with hydrazine vapor diffusion as the reducing agent to regulate the 

crystallization kinetics.  Growth within the confinement of track-etched membrane pores leads to 

the formation of high aspect ratio single crystal Cu2O nanorods.  We used this approach to 

entrap Au nps within the Cu2O nanorods, without the need for large organic ligands on the nps. 

The structure of these hybrid materials was determined using high resolution 

scanning/transmission electron microscopy and tomography to demonstrate the encapsulation 

of numerous Au nps by crystalline Cu2O and the crystalline nature of the Au-Cu2O interface.  

 

Results 

Synthesis of Cu2O Nanorods. Polycarbonate track-etched membranes (Fig. 1a) were used as 

crystallization templates for the formation of high aspect ratio Cu2O nanorods. Using a modified 

Fehling�s reaction, we induced the crystallization of Cu2O from a (bright blue) basic solution of 

copper citrate using the vapor diffusion of hydrazine as a reducing agent.43 Fehling�s reaction 
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uses the formation of a red precipitate (Cu2O) under heating of a basic copper citrate solution to 

indicate the presence of a reducing sugar (e.g., glucose).44  By complexing the copper (II) ions 

with citrate, the precipitation of copper (II) hydroxide species is suppressed. Mechanistically, a 

basic species	ሺܱିܪሻ initiates the oxidation of the open chain aldehyde ሺܴ െ  ሻ, forming aܪூܱܥ

carboxylic acid ሺܴ െ  .ሻ and liberating two free electrons ሺʹ݁ିሻ (Eq.1)ܪூூூܱܱܥ

 	ܴ െ ܪூܱܥ  ିܪܱʹ ՜ ܴ െ ܪூூூܱܱܥ  ଶܱܪ  ʹ݁ି     Eq. 1 

 

The free electrons can then reduce chelated copper ions from oxidation state II to I (Eq. 2).  

ଶାݑܥʹ   ʹ݁ି ՜  ା         Eq. 2ݑܥʹ

 

Subsequent interaction of the cuprous ሺݑܥଶାሻ ions with basic species leads to the crystallization 

of the mineral cuprite, Cu2O (Eq. 3).  

ାݑܥʹ   ିܪܱʹ ՜ ଶܱݑܥ   ଶܱ        Eq. 3ܪ

 

The overall reaction is shown in Eq. 4.  

 ܴ െ ܪூܱܥ  ଶାݑܥʹ  Ͷܱିܪ ՜ ܴ െ ܪூூூܱܱܥ  ଶܱݑܥ   ଶܱ    Eq. 4ܪʹ

For the present study, the key point of Fehling�s reagent is that crystallization of Cu2O can be 

induced by the introduction of a (vapor phase) reducing agent to a basic solution containing a 

copper citrate complex.    

  



5 
 

 

 
          

 

Figure 1.  a) An SEM image of the surface of a track-etched membrane showing the uniformity 

of the cylindrical channels. b) Schematic representation of the double-walled crystallization 

chamber used for the growth of Cu2O within the pores of track-etched membranes. The internal 

temperature of 65 ºC was accomplished by water circulation through the walls.  The membranes 

were immersed in vials containing a basic, copper citrate solution that was set atop a petri dish 

containing a dilute solution of hydrazine hydrate.  After sealing within the heated chamber, 

crystallization was induced by the vapor diffusion of hydrazine into the copper solution (denoted 

by curved red arrow). c) A graphical illustration of the post-crystallization state of the reaction 

solution and membrane.  The reddish color is consistent with the formation of Cu2O. The Cu2O 

nanorods were isolated by dissolving the membranes in dichloromethane. 

 

This reaction was carried out using a double-walled reaction chamber, and moderate heating 

(65 ºC) was achieved with circulating water (Fig. 1b).  After reaction, the solution was a pale 

yellow and the membrane was a rusty red (Fig. 1c).  The resulting crystalline nanorods (Fig. 2a) 

were extracted from the membrane channels by dissolving the membrane in dichloromethane. 

Individual rods exhibited selected area electron diffraction (SAED) patterns (Fig. 2b) that 

indexed to the cuprite (Cu2O) phase of copper oxide.   



6 
 

 
 

Figure 2.  Crystallographic rotation occurs along the length of the Cu2O nanorods grown within 

the track-etched membrane pores.  (a) Bright field TEM of a crystalline Cu2O nanorod showing 

dislocation lines (darker perpendicular lines) and highlighting the regions from which SAED 

patterns were taken.  (b) The nanorod is positioned perpendicular to the [111] zone at the left 

most end, and is seen to rotate off axis along the length of the rod (c) and (d).    

 

Uniformly straight nanorods (length=935±475 nm, width=112±13 nm, N=42, Fig. S1a,b) were 

seen under bright field TEM (Fig. 2a).  Curved lines were seen to bisect the rods many times 

along their lengths; these features are consistent with the existence of dislocations, which are 

associated with both nanowire structures44 and growth in confinement.23  By taking SAED 

patterns at various positions along the length of the rods, we were able to observe a rotation of 

the cuprite lattice (Fig. 2b-d).  No preferential crystallographic orientation of the rods with 

respect to their long axis was observed, where this observation is consistent with results from 

similar studies on calcite rods crystallized within the confines of track-etched membranes.45 In 

contrast with other Cu2O synthesis approaches which involve electrodeposition46 or high-

temperature vapor deposition,47 the nanorods reported here can be crystallized from aqueous 

solutions at near ambient temperatures without an applied potential. In addition, the track-
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etched membranes can be used as a vehicle to transfer spatially organized arrays of nanorods 

to various macroscale substrates.20  

 

Synthesis of Cu2O-Au Heterostructures. To achieve the formation of Cu2O-Au nanocrystal 

heterostructures within the confines of polycarbonate track-etched membranes pores, we first 

immobilized Au nanoparticles (d=16±1 nm, Fig. S2) in the membrane channels via vacuum 

filtration of citrate-stabilized Au nanoparticle solutions (dialyzed to pH 10, NaOH) (Fig. 3a).  With 

disordered arrays of gold nanoparticles entrapped within the membrane pores prior to 

crystallization, Cu2O encapsulated the Au nanoparticles during growth, forming high aspect 

ratio, metal-semiconductor heterostructures (length=997±393 nm, width=106±11 nm, N=52, Fig. 

S1c,d). After crystallization, the Cu2O-Au nanorods were isolated by washing with 

dichloromethane to remove the membrane (Fig. S3).  Formation of the Cu2O crystalline phase 

was confirmed by SAED (Fig. S4), and by electron energy loss spectroscopy (EELS, Fig. 4a-c), 

which showed the characteristic signature of Cu(I) oxidation state.48, 49 
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Figure 3.  (a) Cartoon of the method used to assemble Au np arrays within the pores (d = 0.05 

ȝm) of track-etched membranes prior to crystallization.  The citrate-stabilized Au nps (11 ± 1 

nm) were immobilized within the confines the cylindrical membrane channels by vacuum 

filtration. Subsequent crystallization (as described in text and Fig. 1) resulted in the 

encapsulation of the Au np array within the crystalline Cu2O nanorods.  (b) Bright field TEM 

image of a single Cu2O-Au nanorod formed by growth within the channels of track etched 

membrane pores that were preloaded with Au np. The darker central region is the encapsulated 

Au np array. (c) A higher magnification of a Cu2O-Au nanorod highlighting the defect features: i) 

Dislocations appear as the dark curved line at left of rod (white arrow); ii) Continuous Moiré 

fringes from the crystal were observed across the width of the Cu2O nanorod and extending 

down the length of much of the rod. The directions of the fringes are marked with arrows. A 

progressive rotation in the fringe angle can be seen along the length of the rod, amounting to a 

rotation of ~12.5° over roughly 200 nm. A surface discontinuity (notch) in the rod is highlighted 

with a vertical (red) arrow. (Note: the nanorod shown in panel c is different than the one featured 

in panel b.) 

12.5°
25#nm

a b

c
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Figure 4.  (a) Bright-field STEM image of the analysis region selected from a Cu2O-Au nanorod. 

(b) Elemental map derived from electron energy loss spectra (EELS) chemically verifying that a 

copper oxide surrounds the Au nanoparticle. (c) EELS fine structure, acquired along the red line 

denoted in panel (a), confirming the Cu(I) oxidation state. (d) High-resolution BF-STEM of the 

Cu2O-Au interface, illustrating lattice fringes (highlighted with arrows) of the crystalline Cu2O 

nanorod surrounding the edge of crystalline Au nanoparticle. The Au and Cu2O interface 

appears without any extended amorphous region or phase change of materials. (e) Overview of 

multiple Au np within the crystalline Cu2O rod, showing continuous Cu2O lattice fringes across 

multiple Au nps. 

 

Under bright field (BF) S/TEM, the Au nanoparticle array appeared to be completely 

encapsulated within the high aspect ratio crystalline Cu2O rod (Fig. 3b,c). In common with the 
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single-phase Cu2O nanorods, dislocations are visible in the Cu2O-Au nanocrystal 

heterostructures (Fig. 3c). Likewise, the lattice rotations seen in the single-phase Cu2O 

nanorods (Fig. 2) are also observed in the SAED patterns of the nanocomposite Cu2O-Au 

architectures; the SAED patterns (Fig. S4) show off axis tilting and high magnification TEM 

imaging reveals Moiré fringes that rotate ~12.5º over 200 nm (Fig. 3c).  In addition to the linear 

defects, surface discontinuities were seen in the Cu2O-Au crystals (notch in Fig. 3c).  Further 

examination of the single-phase Cu2O and the Cu2O-Au nanorods (Fig. S5) revealed that both 

contain dislocations and surface discontinuities.  These defects are not specifically caused by 

the presence of the Au nanoparticle array, but rather seem to be a signature of the high aspect 

ratio structure and/or growth conditions.44, 45, 50, 51 

 

High-resolution Characterization of Cu2O-Au Heterostructures.  The uniqueness of our 

Cu2O-Au heterostructures in the field of metal-semiconductor hybrid nanostructures,10 and the 

potential generalizability of this synthesis approach to a range of crystalline materials, prompted 

us to interrogate structural characteristics of the interface between the Cu2O host crystal and the 

encapsulated Au nanocrystals.   As both Cu2O and Au are stable under electron beam 

exposure, we were able to perform detailed structural analyses to determine whether the Cu2O 

crystal was continuous throughout the Au nanoparticle array and to characterize the Cu2O-Au 

interface to look for amorphous regions or extended defects, which may affect electrical 

transport between the two materials.   

 

STEM tomography was performed on an individual Cu2O-Au nanorod to probe the entire 3D 

structure (Movie S1).  Single projection images (Fig. 5a) and slices through the 3D tomographic 

reconstruction (Fig. 5b,d) confirm the encapsulation of the Au nps within the Cu2O nanorods. 

The contrast difference between the two materials was used to generate an isosurface 

rendering of both the Au nps (green) and the Cu2O matrix (purple) (Fig. 5c). By combining 
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individual tomographic slices with the corresponding slices through the isosurface rendering, the 

continuity of the Cu2O crystal through the encapsulated Au np array was studied. Visible as a 

pale blue matrix surrounding the orange particles (Fig. 5d), Cu2O encapsulates the Au nps 

without obvious discontinuities within the nanoparticle array.  Three dimensional imaging also 

reveals notches and voids within the Cu2O nanorod, though not associated with the Au nps.  In 

particular, discontinuous voids within the nanorod center are clearly visualized in the 

tomographic slices (Fig. 5b).  

Figure 5. Tomographic reconstruction of the 3D structure of a Cu2O-Au nanorod taken with 

STEM: (a) Single projection slice from the original tilt series. (b) The tomographic orthoslice 

confirms the encapsulation of the Au np (orange) within the Cu2O nanorods (pale blue). Defects 

are indicated by arrows in the image.  (c) The isosurface rendering of the structure shows the 

encapsulation of the Au np (green) by the Cu2O nanorod (purple). Opacity of the nanorod 

isosurface in (c) is reduced to reveal interior nanoparticles. (d) Subtomograms (Z = 6 slices, ~3 

nm) of the nanocomposite system and their corresponding isosurfaces (Au np = green 

isosurface; Cu2O nanorod = purple isosurface) as indicated in (c), showing encapsulation of the 

Au np array within the Cu2O crystal. Some nanoparticles, such as those demarcated by the 

yellow arrow, are shallowly encapsulated. Most nanoparticles are well included by the Cu2O 

crystal, such as those indicated by the red arrow. Scale bars = 50 nm. 
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To further understand the interface between the Cu2O crystal and the encapsulated Au nps, we 

also performed high-resolution STEM imaging (Fig. 4d,e).  Looking closely at the interface 

between a single Au nanoparticle and the encapsulating Cu2O crystal (Fig. 4d) we see that 

fringes from each lattice meet directly at the boundary between the two crystals.  While here the 

images were obtained in projection through the nanorod and the atomic lattice from the Cu2O 

above and below the Au nps have to be taken into account, there is no evidence for extensive 

amorphous regions or planar lattice defects at the Cu2O-Au interface.    In addition, we find 

continuous Cu2O lattice fringes that extend over numerous particles (Fig. 4e). This continuity 

suggests the complete encapsulation of multiple Au nps within a single crystalline Cu2O domain.   

Discussion 

Encapsulation of Particles in Single Crystals. The confinement-based approach introduced 

here provides a novel route to creating hybrid nanostructures with control over the interface 

between the host crystal and encapsulated nanoparticles. The entrapment of guest materials, 

which are larger than small molecules, within a host crystal is well-recognized in certain 

geologic minerals, such as �rutile-in-quartz�,52, 53 and also in biominerals.34, 54, 55  The successful 

entrapment of polymeric guests within single crystals, primarily of calcite, has been widely 

demonstrated,34, 35, 55, 56  relying either on the chemical functionality of the polymers, or in some 

cases, on the restricted mobility of the guest species.34, 35, 57  The encapsulation of inorganic and 

metallic guest particles has only been achieved by functionalizing the nanoparticles with diblock 

copolymers,58, 59 or immobilizing them within hydrogel matrices.39, 40 In all of these cases, the 

encapsulated nanoparticles are surrounded by an insulating organic layer at the interface 

between the guest nanoparticle and the host crystalline material.  In electronic materials, such 

an insulating layer would be a barrier to the transport of carriers between the two crystalline 

materials.   
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In contrast to carbonate materials, very few oxide compounds have been demonstrated to 

encapsulate guest particles while remaining as single crystals.60-62  Most work has focused on 

the occlusion of polymeric colloids (100�s of nm) within zinc and copper oxides, where occlusion 

was achieved by tuning the surface chemistry of the particles.  Carboxylate functionality has 

been associated with the successful encapsulation of polystyrene spheres,56, 63 while amine 

surface moieties have directed the interaction of copper oxide with surfaces.43, 64  Such findings 

complicate the development of new multi-functional materials as it is challenging to predict 

which chemical functionality is needed on a (nanoparticle) surface to favor its 

encapsulation/interaction with/in a single crystal host.   

 

As an alternative to surface functionalization, colloidal crystal templates have been used to 

physically entrap guest particles within host crystals.  Electrochemical methods have been used 

to grow Cu2O around a template of polystyrene spheres, embedding the colloids within the 

single crystal host.65, 66  In addition, the confinement provided by a wedge was used to 

precipitate calcite single crystals within colloidal crystals of polystyrene spheres.35  The method 

described here is an extension of this approach, where we have demonstrated that by 

performing crystallization within a confined volume, the interaction of two dissimilar crystals can 

be controlled without high demands on the surface chemistry.  In addition, our current work with 

track-etched membranes has allowed us to regulate the interaction between two crystalline 

materials at much smaller length scales than previously reported. 

 

Characterization of the Host-Guest Interface. Our metal oxide/metal nanoparticle system 

also provided us with an opportunity to characterize the interface between the two phases.  

While polymeric spheres have been incorporated into inorganic crystals, attempts to study the 

interfaces have been limited by the amorphous structure of the polymer spheres and the low 

atomic numbers of their constituents.  Further, although a range of calcite/inorganic nanoparticle 
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single crystal nanocomposites have been synthesized, the interface between the two materials 

cannot be readily studied using TEM-based techniques due to the beam-sensitivity of CaCO3. 

As a consequence, we still have a relatively poor understanding of the structural relationships 

between the guest particles and the host crystal phases, and the structure of the interface 

between these components.  

 

The nanocrystal heterostructures synthesized here were both stable to the electronic beam and 

of nanoscale dimensions. Their structure can therefore be directly studied using high resolution 

electron microscopy without the introduction of preparation artifacts. Our results show that there 

is a high degree of crystallographic order at the boundary between the two different crystalline 

materials (Fig. 4d,e), but no epitaxial relationship between the Au and Cu2O lattices. This 

interface structure, and the continuous intergrowth of Cu2O throughout the Au np array (Fig. 5), 

suggest that the growth of the cuprite rods is independent of the Au nps, and does not originate 

from them.  This growth mechanism is in contrast to reports of nanorods grown epitaxially from 

single nanoparticles or nanoparticles that are epitaxially nucleated on the surfaces of 

nanorods.67-70 Recent in situ AFM studies of the entrapment of polymeric micelles within calcite 

crystals has shown that the micelles bind preferentially to the step edges, which then 

experience little or no inhibition as the calcite lattice grows around the adsorbed micelles.71 

Further, the relatively compliant micelles experience lateral compression as they are occluded in 

the crystal, where this distortion gives rise to a cavity within the calcite.  Although elegant, these 

AFM studies could not demonstrate whether the observed cavities are ultimately retained or 

lost, after nanoparticle occlusion. The continuous interface observed between the Au np and 

Cu2O observed here suggests that with stiff �guests� no such cavity forms and the crystal grows 

around the obstacle, creating �tight fit� (Fig. 4).  Finally, the observation of multiple Au nps within 

a single Cu2O coherent domain (Fig. 4e) indicates that the cuprite crystal is able to grow around 
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the particles without significant disruption to its lattice, in agreement with similar reports for 

particle and fiber encapsulation within calcite.36, 38 

 

Optoelectronic Properties of Metal-Semiconductor Heterostructures. The metal-

semiconductor heterostructures synthesized in this work represent an example of a new 

geometrical configuration: an array of plasmonic nanoparticles encased within a crystalline 

semiconductor, with interfaces free of insulating organic material.  Interest in these types of 

heterostructures primarily relates to changes in the localized surface plasmon resonance 

(LSPR) of the metal nanoparticles in the presence of the semiconductor and changes in 

electron transfer from the metal into the semiconductor.10  Based on the plasmon hybridization 

model for assemblies of nps, we expect the plasmonic properties to be retained in our Au-Cu2O 

heterostructures, and to potentially become more complex, resulting in splitting of the single 

plasmon peak into low and high energy coupled (hybridized) modes.72, 73  As compared to 

discrete core-shell architectures, the Au nps in our rods have varying lengths of contact 

between them.  For example, some nps appear to exist as isolated individuals (Fig. 5d1), while 

others are present as dimers (Fig. 5d3), or have contacts with multiple Au nps (Fig. 5d2).  These 

features could give rise to diverse splitting, and thus broadening, of the plasmon peak in these 

materials. Chains of plasmonic particles have also been associated with the emergence of Fano 

resonance, and the electric field enhancements are observed in both linear and kinked chains.5  

 

Conclusions 

In this work, we have demonstrated that crystallization in confinement provides a promising 

route for generating nanocrystal heterostructures comprising Au nps embedded within a 

crystalline Cu2O host.  Importantly, this strategy leads to a clean interface between the host 

crystal and occluded nanoparticles.  We report high-resolution, 3-D structural characterization 

that shows that the Cu2O crystal is continuous throughout the Au nanoparticle array and that the 
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interface between the two crystals is highly ordered.  Our approach is envisaged to be quite 

general, where the ability to make metal-semiconductor hybrid nanostructures, or even 

heterostructures from two different semiconductors, without complex chemical considerations, 

presents new opportunities to the field of advanced materials.  Hybrid crystalline materials, 

which are predicted to have emergent properties, can now be accessed and studied for a wide 

range of optoelectronic applications.  
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