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(Dated: November 30, 2009)

In this paper we conduct an analysis of the geometrical and vortical statistics in

the small scales of helical and non-helical turbulence generated with direct numerical

simulations. Using a filtering approach, the helicity flux from large scales to small

scales is represented by the subgrid-scale (SGS) helicity dissipation. The SGS helic-

ity dissipation is proportional to the product between the SGS stress tensor and the

symmetric part of the filtered vorticity gradient, a tensor we refer to as the vorticity

strain rate. We document the statistics of the vorticity strain rate, the vorticity gra-

dient, and the dual vector corresponding to the anti-symmetric part of the vorticity

gradient. These results provide new insights into the local structures of the vorticity

field. We also study the relations between these quantities and vorticity, SGS helicity

dissipation, SGS stress tensor, and other quantities. We observe that in both helical

and non-helical turbulence: (1) there is a high probability to find the dual vector

aligned with the intermediate eigenvector of the vorticity strain rate tensor; (2) vor-

ticity tends to make an angle of 45 degrees with both the most contractive and the

most extensive eigen-directions of the vorticity strain rate tensor; (3) the vorticity

strain rate shows a preferred alignment configuration with the SGS stress tensor; (4)

in regions with strong straining of the vortex lines, there is a negative correlation

between the third order invariant of the vorticity gradient tensor and SGS helicity

dissipation fluctuations. The correlation is qualitatively explained in terms of the

self-induced motions of local vortex structures, which tend to wind up the vortex

lines and generate SGS helicity dissipation. In helical turbulence, we observe that

the joint probability density function of the second and third tensor invariants of

the vorticity gradient displays skewed distributions, with the direction of skewness

depending on the sign of helicity input. We also observe that the intermediate eigen-

value of the vorticity strain rate tensor is more probable to take negative values.

These interesting observations, reported for the first time, call for further studies

into their dynamical origins and implications.



2

I. INTRODUCTION

Helicity is the scalar product between velocity and vorticity, integrated over the space.

It is an invariant of the Euler equations [1–3]. It measures the alignment between velocity

and vorticity and is related to the magnitude of the nonlinear term in the Navier-Stokes

(NS) equations [4, 5]. Geometrically it characterizes the knottedness of vortex lines [1, 6, 7].

In turbulence with non-zero mean helicity, namely helical turbulence, it has been observed

that helicity cascades from the input scales to small scales and a Kolmogorov-type helicity

spectrum in the inertial range is generated [8–11]. Various aspects of helical turbulence

have been studied. Examples include the geometrical properties [12], the details of helicity

cascade [9–11, 13–15], the effects of helicity on energy cascade [16], the interaction between

helicity and energy dissipation [17, 18], intermittency in helicity cascade [19], the correlation

between helicity and enstrophy fluctuation[20], etc. Helicity plays an important role in the

dynamo theory of magnetohydrodynamical flows [6, 21]. Its effects in geophysical flows are

observed in[22, 23]. The combined effects of rotation and helicity are investigated in [24].

The roles of helicity in the formation of turbulence are studied in [25, 26]. The implication

of helicity on the regularity of Euler equations and Navier-Stokes equations is also a subject

of recent research [27–30]. For a review on various aspects of helicity and its implications,

see [21].

Helicity cascade can be studied with a filtering approach [11, 31], an approach that forms

the basis of large eddy simulation (LES) (see, e.g., [32] for a review of LES and related

issues). In this formalism, the helicity flux from large scales to small scales is represented as

the subgrid-scale (SGS) helicity dissipation rate. By deriving the equation of the resolved

helicity (see Section II), it can be shown that the SGS helicity dissipation rate is given as

[11]:

ΠH ≡ −2R̃ijτij (1)

where τij ≡ ũiuj− ũiũj is the SGS stress tensor, with the tilde representing filtered quantities

and ui being the velocity. R̃ij ≡ (∂iω̃j + ∂jω̃i)/2 is the symmetric part of the gradient of

the filtered vorticity ω̃ ≡ ∇ × ũ. According to Eq. (1), the SGS helicity dissipation is

the product of tensors R̃ij and τij . It shows that the local structure of the vorticity field,

represented by R̃ij , has close relation with the rate of helicity transfer across scales. The

magnitudes of R̃ij and τij , as well as their relative alignment, determine the value of SGS

helicity dissipation.

The relative alignment between the tensors is defined in terms of their eigenvectors. There-

fore, an analysis of their eigenvectors and eigenvalues is expected to be useful in revealing

the mechanisms of SGS helicity dissipation. In the related problem of energy cascade, such
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a geometrical point of view has proven valuable. The energy flux from large scales to small

scales can be represented by the SGS energy dissipation (see, e.g., [32]):

ΠE ≡ −S̃ijτij , (2)

where S̃ij ≡ (∂j ũi + ∂iũj)/2 is the filtered strain rate tensor. Thus, the value of ΠE is con-

trolled by the alignment between S̃ij and τij . Analyses of the latter have been conducted in

[33, 34], which provide not only useful information for model development, but also consid-

erable insight into the mechanisms of SGS energy dissipation and the evolution of vortical

structures. More generally, people have also looked into other geometrical statistics, such as

the alignment between the strain rate tensor S̃ij, vorticity ω̃, passive scalar gradient, pres-

sure Hessian etc [35–44]. Among others, these statistics have implications on understanding

the regularity of the Euler and the NS equations (see, e.g., [45–47]). In helical turbulence,

however, an analysis based on a geometrical point of view is still lacking.

Furthermore, statistics of R̃ij carry useful information of the local structures of the vortic-

ity field, which is of interests in both helical and non-helical turbulence. Related quantities,

such as the gradient of vorticity, have appeared in several situations. In 2D turbulence, the

gradient of vorticity controls the direct enstrophy cascade [48]. [49] shows that the spatial

gradient of the direction of vorticity is intimately related to the regularity of the NS equa-

tions. The gradient of the direction of vorticity is analyzed theoretically and numerically in

[50, 51]. Therefore, one expects that an analysis of R̃ij and related quantities will also be

beneficial.

Given the potential effects of helicity, a better understanding of the mechanisms of SGS

helicity dissipation is desirable, in order to facilitate the modeling of helical turbulent flows.

The knowledge of the geometry of helical turbulence also has wider implications, especially

when interactions with other physical processes are involved. Thus, in this paper we adopt

a filtering approach and present a geometrical analysis of helical turbulence. The purpose

is three-fold. First, we aim at identifying the unique geometrical features of helical turbu-

lence. To this end, we contrast the statistics obtained in helical turbulence with non-helical

turbulence, even though some statistics (the mean SGS helicity dissipation, for example)

are not particularly relevant in non-helical turbulence. Also, in addition to R̃ij , we search

for the signature of helicity in the gradient of vortiticy and other quantities. Second, we

look to elucidate the dynamical mechanisms of helicity cascade, by examining the relation

between local vortical structures and SGS helicity dissipation rate. Third, we intend to

document some of the statistics characterizing the gradient of vorticity, which are useful for

both helical and non-helical turbulence, as explained above. For this reason, apart from

the statistics mentioned above, we also consider the dual vector corresponding to the anti-
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symmetric part of the vorticity gradient, its alignment with R̃ij , as well as the alignment

between the vorticity and R̃ij etc.

The paper is organized as follows. In section 2, the definitions, basic theories, and the

numerical simulations are summarized. The analysis of DNS data is presented in section 3.

Conclusions are summarized in section 4.

II. BASIC THEORIES

We use ui(x, t) to denote the ith component of the velocity vector u(x, t). ω(x, t) = ∇×u

is the vorticity vector. We consider the helicity density, defined as h(x, t) ≡ u · ω = uiωi.

As is conjectured in [8] and observed in simulations [10, 11], in the inertial range of helical

turbulence, a −5/3 helicity spectrum is established:

H(k) = cHǫHǫ−1/3k−5/3 (3)

in which

H(k) ≡
∑

k≤|k|≤k+1

û∗(k) · ω̂(k) (4)

is the helicity spectrum, and û and ω̂ are, respectively, the Fourier transforms of velocity

and vorticity. ǫH is the helicity dissipation rate, ǫ the energy dissipation rate, and cH a

constant found numerically to be about 1.0 [10, 52]. The helicity spectrum is established

through a helicity cascade process, which has been studied in [10, 11] using DNS data.

To investigate the interscale interactions, we use a filtering approach [11, 32]. Given a

filter kernel G∆(r) with length scale ∆, the filtered velocity ũ is defined as the convolution

between the filter kernel and the velocity u, i.e.,

ũ(x, t) ≡
∫

G∆(r)u(x + r, t)d3
r. (5)

Correspondingly, the filtered vorticity is defined as ω̃ = ∇× ũ, as mentioned in Section I.

We then define the resolved helicity density as h∆(x, t) = ũ · ω̃.

From the NS equations, it is not difficult to derive the equation for h∆. The filtered NS

equations read:

Dtũi = −∂ip̃ + ∂j(−τij) + ν∇2ũi + f̃i, (6)

where Dt ≡ ∂t + ũk∂k is the Lagragian derivative following the filtered velocity. τij is the

SGS stress, already given in section I. p̃ is the filtered pressure (divided by density). ν is

the kinematic viscosity, and f̃i is the filtered forcing term. As the trace of τij can always

be absorbed into a suitably defined modified pressure, we will assume τij is traceless. Or
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equivalently τij will represent the anisotropic part of the SGS stress tensor. Taking the

curl of the above equation, one finds the equation for the filtered vorticity ω̃. To simplify

notations, we denote the SGS force −∂jτij by Ti. Thus the equation for ω̃ can be written as:

Dtω̃ = S̃ ω̃ + ∇×T + ν∂2ω̃ + ∇× f̃ . (7)

The equation for h∆, after some algebra, can then be derived as follows:

Dth∆ = ∂jQ̃j − ΠH − 4νS̃ijR̃ij + 2f̃iω̃i. (8)

As defined in Eq. (1), ΠH ≡ −2τijR̃ij on the right-hand side (RHS) of the equation is the

SGS helicity dissipation rate. Q̃j is the spatial flux vector, with its expression shown as

follows:

Q̃j≡−2ω̃iτij − ǫijkũi∂lτkl − ω̃j
p̃

ρ
+ ω̃j

ũiũi

2

+2νR̃ij ũi + 2νS̃ijω̃i − ǫjkmũkf̃m. (9)

In Eq. (8), the SGS helicity dissipation ΠH represents the helicity flux across the scale ∆

in the spectral space. As is shown in [52], in stationary turbulence with infinite Reynolds

number, the ensemble average of Eq. (8) reduces to 〈ΠH〉 = ǫH when the filter scale falls in

the inertial range. That is, ΠH controls the global balance of helicity in helical turbulence.

The behaviors of ΠH have been investigated in [11, 19]. The scaling properties of ΠH are

documented. It is observed that the mean SGS helicity dissipation 〈ΠH〉 is approximately

constant in the inertial range, corresponding to a constant helicity flux across the spectrum

(see also [52]). Also, it is found that reflectional symmetry in helical turbulence is asymptot-

ically restored at small scales, due to helicity fluxes exchanging negative and positive helicity

between the negative and positive helical wave components [11].

ΠH is the tensor product of the two tensors τij and R̃ij . Apart from the correlation between

them, the relative orientation of the two tensors is another factor that controls the value of

ΠH . The relative orientation of the two tensors can be characterized by the orientation of

the eigen-frames associated with them. As τij and R̃ij are both symmetric, they have each

three real eigenvalues. The corresponding eigenvectors constitute two Cartesian coordinate

frames. In what follows, we denote the eigenvalues of −τ ij by (−τ)α, (−τ)β , and (−τ)γ , and

they are ordered so that (−τ )α ≥ (−τ )β ≥ (−τ )γ. By definition τkk = 0. The eigenvalues

are thus related by (−τ )α + (−τ )β + (−τ )γ = 0, and as a result (−τ )α ≥ 0 and (−τ )γ ≤ 0.

The eigenvalues of R̃ij are denoted similarly as Rα ≥ Rβ ≥ Rγ . Since vorticity is solenoidal,

we also have Rα + Rβ + Rγ = 0 and Rα ≥ 0 ≥ Rγ. Corresponding to the eigenvalues, we use

(−τ )α, (−τ )β, and (−τ )γ to denote the eigenvectors of −τij , and Rα, Rβ, and Rγ those of
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R̃ij . The eigenvectors are normalized so that they have unit length. With these definitions,

one can write the SGS helicity dissipation in terms of the eigenvalues and eigenvectors:

ΠH = 2{(−τ)αRα[(−τ )α · Rα]2 + (−τ )αRβ[(−τ )α · Rβ]2 + (−τ )αRγ[(−τ )α · Rγ ]
2

+(−τ)βRα[(−τ )β · Rα]2 + (−τ )βRβ [(−τ )β · Rβ]2 + (−τ )βRγ [(−τ )β · Rγ]
2

+(−τ)γRα[(−τ )γ · Rα]2 + (−τ )γRβ[(−τ )γ · Rβ]2 + (−τ )γRγ[(−τ )γ · Rγ ]
2}. (10)

A similar expression for the SGS energy dissipation can be found in, e.g., [53]. In Eq. (10),

(−τ )i ·Rj ≡ cos θij , where θij is the angle between the vectors (−τ )i and Rj (i, j = α, β, γ).

Eq. (10) thus shows that the SGS helicity dissipation depends on both the eigenvalues of

the tensors R̃ij and τij , and the relative orientation of the eigenvectors. Note, however, the

nine inner products that appear in the above equation are not independent to each other.

To fully characterize the relative orientation of the two eigen-frames, only three angles are

needed, as will be introduced in next section.

One may attempt to understand the evolution of the eigenvalues and eigenvectors of R̃ij

from its dynamic equations. Tensor R̃ij is the symmetric part of the vorticity gradient.

Denoting the vorticity gradient ∂jω̃i by G̃ij , the equation for G̃ij can be found by taking the

gradient of Eq. (7):

DtG̃ = ÃG̃ − G̃Ã + ω̃ · ∇Ã + ∇(∇×T)

+ ν∇2
G̃ + ∇(∇× f̃ ), (11)

where Ã is the filtered velocity gradient, with components Ãij = ∂j ũi. The last three terms

in Eq. (11) come from the effects of SGS motion, viscous diffusion, and external forces,

respectively, while the first three represent the nonlinear self-stretching effects. The first and

the third terms originate from the gradient of the vortex-stretching term S̃ ω̃ in the vorticity

equation (note that S̃ ω̃ = Ã ω̃). The first term represents the contributions from the spatial

variation in ω̃, while the third represents those from the spatial variation in Ã. The second

term, on the other hand, is due to the stretching of material lines accompanying that of the

vortex lines, which tends to reduce the growth of vorticity gradients.

G̃ij can be decomposed into the sum of its symmetric part R̃ij and the anti-symmetric

tensor Ξ̃ij ≡ (G̃ij − G̃ji)/2. For the convenience of exposition, we will call R̃ij the vorticity

strain rate tensor. From Ξ̃ij , one can define the dual vector ξ̃ = ∇ × ω̃ through Ξ̃ij =

−ǫijkξ̃k/2 [31]. It is well-known that ξ̃ = −∇2u and as such is proportional to the viscous

diffusion term in the NS equations. Thus these quantities, apart from characterizing the

local topology of the vorticity field, also have dynamical significance. The equations for R̃ij
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and ξ̃i can be derived easily from the equation for G̃ij. After some algebra, one finds

DtR̃ = [S̃ × ξ̃ − R̃ × ω̃]S + [∇(∇× (T + f̃))]S

+ω̃ · ∇R̃ + ν∇2
R̃, (12)

where superscript S denotes the symmetric part of the tensor. (S̃ × ξ̃)ij = ǫikmS̃kjξm and

R̃ × ω̃ is similarly defined. For ξ̃i, the equation reads:

Dtξ̃i = 2ǫijkS̃jlR̃lk +
1

2
(ω̃ × ξ̃)i + ω̃ · ∇ω̃i + ν∇2ξ̃i

+∂2
ijTj −∇2(Ti + f̃i). (13)

Use has been made of the fact that f̃i has to be divergence-free.

The eigenvalues of G̃ij and R̃ij are fully characterized by their tensorial invariants. Be-

cause vorticity is solenoidal, the traces of R̃ij and G̃ij are both zero. Thus they each have

only two independent invariants. We define the following tensor invariants for G̃ij :

I
G
2 ≡ −TrG̃2/2, I

G
3 ≡ −TrG̃3/3, (14)

and similarly for R̃ij:

I
R
2 ≡ −TrR̃2/2, I

R
3 ≡ −TrR̃3/3. (15)

Note that these invariants correspond to the Q and R used in, e.g., [37]. The eigenvalues of

R̃ij are related to its invariants by

I
R
2 = −1

2
(R2

α + R2
β + R2

γ), I
R
3 = −RαRβRγ . (16)

There are similar relations for I
G
2 and I

G
3 . But as the eigenvalues of G̃ij may not be real

numbers, we will not study the eigenvalues of G̃ij directly.

The evolution of the eigenvalues of G̃ij and R̃ij can be inferred from the dynamics of

the invariants, the so-called trace dynamics. The trace dynamics of the velocity gradient

Ãij has been used extensively in the study of the local geometry of the velocity field (see

e.g., [37, 40, 41, 54–57]). Its usefulness comes in part from the so-called restricted Euler

(RE) model [37, 54, 58]. In the RE model, the Euler equation is truncated to retain only

the nonlinear self-interaction of the velocity gradient and the isotropic part of the pressure

Hessian tensor, so that the invariants of Ãij form a closed 2-dimensional dynamical system.

The model is shown to reproduce a number of dynamical features of turbulence, and has

been subjected to various studies and extensions. For G̃ij and R̃ij , it is tempting to also look

into the trace dynamics, and the RE-type approximations. A truncation of the equation

of G̃ij [Eq. (11)] in the spirit of RE approximation retains only the first two terms on the
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RHS. However, it is not difficult to find that, this truncated system leads to a trivial trace

dynamics, in which the rates of changes of the invariants are zero. In other words, the

straightforward generalization of the RE approximation to model G̃ij does not yield useful

results. Therefore, we will not continue to write down the equations for the invariants. In

this paper we will focus on the analysis of the tensors and related quantities, and leave the

analysis and modelling of the equations for future research.

A brief description of the simulations follows. We perform forced three dimensional

pseudo-spectral DNS of isotropic turbulence in a [0, 2π]3 domain with periodic boundary

conditions. Helicity and energy are injected into the flow field at constant rates, by the

forcing term in the NS equations. The force is applied only to the low wavenumber modes

|k| ≤ kf ≡ 2. The details of the forcing term, in particular the method to inject helicity,

are explained in our previous work [52]. The constant energy and helicity injection rates

are ǫf = 0.1 and ǫH,f = 0.3, respectively. Note that the helicity injection rate is limited

by the inequality |ǫH,f | ≤ 2kfǫf [10]. Thus the current value is close to the maximum.

The statistics are calculated after the flow has achieved stationary state after a few eddy

turn-over time-scales. For all simulations, the number of grid points is N3 = 2563 with

kinematic viscosity ν = 0.0015. At stationary state the Taylor micro-scale Reynolds number

is estimated as Reλ ≈ 190. The Kolmogorov length scale, denoted by ηK , is approximately

0.0136, so that ηKkmax ≈ 1.7. Thus the simulations are well-resolved [59]. The aliasing

error is negligible for the statistics of the filtered data. Therefore we have not dealiased the

simulations. The maximum resolved wavenumber is thus kmax = N/2 = 128, and the grid

size is δx = 2π/N = π/128. The time step size δt is adaptively chosen at each step to ensure

β ≡ δtumax/δx ≤ 0.15, where β is the Courant number and umax is the maximal velocity in

the flow field at the given time step.

To compare the differences between helical and non-helical turbulence, simulations with-

out helicity input are also conducted. The non-helical simulations are exactly the same as

the helical ones apart from ǫH,f = 0. Some of the results are also cross-checked with data

obtained from simulations with negative helicity input, in which the helicity injection rate

ǫH,f = −0.3. In the analyses that follow, results for filter scales ∆ = 8δx and 16δx will

be documented, corresponding to ∆x ≈ 14.5ηK and 30ηK , respectively. Throughout the

analyses, the Gaussian filter is used [59].
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FIG. 1: Helicity and energy spectra. Solid line: helicity spectrum; dashed line: energy spectrum;

symbols: energy spectrum in non-helical data; dotted line has a slope −5/3.

III. ANALYSIS OF DNS DATA

A. Basic statistics

Some basic statistics are presented first. The energy and helicity spectra in the data sets

are shown in Figure 1, which confirms the −5/3 spectrum for helicity. The energy spectra

in both helical and non-helical turbulence are plotted and they are nearly the same. The

vertical lines mark the two filter scales 8δx and 16δx used in our analyses.

A so-called relative helicity can be used to characterize the degree of alignment between

u and ω (see, e.g. [12]). The relative helicity is defined as

h′ ≡ h/(|u| |ω|) = u · ω/(|u| |ω|). (17)

The PDF of h′ in our current data set is shown in Figure 2. As comparison, the PDF is

also calculated in a data set with the low wave number Fourier modes |k| ≤ kf removed by

high-pass filtering. The result is shown with dashed line in same figure. The results given

in Figure 2 are consistent with previous research such as [12], i.e., the alignment between

u and ω comes predominantly from large-scale motions. The mean helicity is 0.69 in the

filtered data, whereas it is 1.60 in the original DNS data. Thus the first two shells in the

Fourier space contain more than 50% of the total helicity.

Figure 3 plots the mean SGS helicity and energy dissipations as functions of filter scale
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FIG. 2: Solid line: PDF of the relative helicity h′; dashed line: PDF of h′ obtained from the

high-pass data with modes |k| ≤ kf removed.
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FIG. 3: Mean SGS helicity (solid line) and energy (dash-double-dotted line) dissipations at different

filter scales.

∆. The horizontal dashed lines denote the levels of helicity and energy injection rates. In

the limit of infinite Reynolds number, the mean SGS dissipations should equal the injection

rates when ∆ falls in the inertial range. In our results we observe plateaus for the two curves

that are somewhat lower than the injection values. The discrepancy is likely due to viscous
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FIG. 4: PDFs of normalized SGS helicity (lines) and energy (symbols) dissipations. ∆ = 8δx: solid

line and squares; ∆ = 16δx: dashed line and circles. σE and σH stand for the root-mean-square

values of ΠE and ΠH , respectively.

effects. The PDFs of the normalized SGS dissipations, at ∆ = 8δx and 16δx, are plotted

in Figure 4. One can observe that the distributions are all skewed towards the positive

axis direction. The PDFs for the SGS helicity dissipation have wider tails than those for

the SGS energy dissipation, especially for the left tails. These features are consistent with

the observations made in [19], where the intermittency of helicity cascade is investigated in

detail.

B. Tensor invariants of the vorticity gradient

Although the vorticity gradient G̃ij does not appear explicitly in the expression of SGS

helicity dissipation, it contains the complete information needed to infer the local structures

of the vorticity field, whereas R̃ij characterizes only the straining of the vortex lines. Thus we

present first the results of the invariants of G̃ij , I
G
2 and I

G
3 . To begin with, we briefly explain

the relation between the local structures of the vorticity field and the values of I
G
2 and I

G
3 .

Given the values of I
G
3 and I

G
2 at a given spatial location, say x

0, one can deduce the local

topology of the vortex lines around x
0, in the same way as one infers the local streamline

patterns from the values of the invariants of the velocity gradient Ã. The local streamline

patterns in different regions in the phase plane of the invariants of Ã have been revealingly

illustrated in, e.g., [37, 41]. The diagram, adapted to our problem, is shown in Figure 5.
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FIG. 5: The local topology of the vortex lines in different regions of the phase plane (IG
3 , IG

2 ) based

on ‘relative vorticity’ (see text).

The two curves in the third and fourth quadrants are the so-called Vieillefosse tails, defined

as I
G
3 = ±(2

√
3/9)(−I

G
2 )3/2. The Vieillefosse tails, together with the I

G
2 axis, divide the

phase plane into four parts with distinct local vortex line patterns, as illustrated in Figure

5. Around point x
0, locally the vorticity field can be approximated by linear approximation

ω̃i(x) ≈ ω̃i(x
0) + G̃ij(x

0)(xj − x0
j ). Sketched in Figure 5 are vortex lines calculated from the

‘relative’ vorticity ω̃∗
i defined as

ω̃∗
i (x) ≡ ω̃i(x) − ω̃i(x

0) ≈ G̃ij(x
0)(xj − x0

j), (18)
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which is specified by G̃ij(x
0). Under linear approximation, the actually vortex line patterns

(i.e., those calculated from ω̃i) are the same as the ones shown in Figure 5, except being

translated uniformly by a displacement proportional to the local vorticity ω̃i(x
0).
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IG 2
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0

1

2
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0.01

0.001

0.0001

FIG. 6: The joint PDF of the invariants IG
3 and IG

2 . Contours in grey-scales: helical turbulence;

dashed lines: non-helical, ∆ = 16δx. The two solid lines correspond to the Vieillefosse tails.

Figure 6 plots the joint PDF of I
G
2 and I

G
3 , for ∆ = 16δx. The invariants are normalized

by σ2
G and σ3

G, respectively, where σG ≡ 〈G̃ijG̃ij〉1/2. The two Vieillefosse tails are also drawn

with solid lines. The PDF for helical turbulence is shown in grey scales, and that for non-

helical turbulence is shown with dashed lines. For the PDF in non-helical turbulence, the

shapes of the contours are similar to those of a Gaussian field (not shown), although for the

former there is a much higher peak at the origin. The PDF is symmetric with respect to the

I
G
2 -axis. The symmetry of the non-helical result is a consequence of the reflectional symmetry

of the flow field. As I
G
3 is a pseudo-scalar, it takes the opposite sign in the reflection of the

flow field. In other words, wherever it is positive (negative) in the original flow field, it is

negative (positive) in the image flow field. As a consequence, the joint PDF is mapped onto
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its mirror image with respect to the I
G
2 axis. However, in non-helical turbulence, the joint

PDF should not change under a reflection transformation. Thus the joint PDF has to be

symmetric with respect to the I
G
2 axis. On the other hand, the PDF in helical turbulence

is not bounded by the constraint of reflectional invariance. Figure 6 shows indeed that the

joint PDF develops a skewed distribution. The probabilities for the events in the first and

the third quadrants are increased compared with non-helical data. In the third quadrant, the

biggest difference is observed around the Vieillefosse tail. Referring to Figure 5, we find that,

in helical turbulence, it is more probable to observe two types of local vortex structures. The

first one corresponds to the structures around the left Vieillefosse tail, where the vortex lines

converge from two directions and are extended along the third direction. The second one

corresponds to the structures on the upper-right part of the phase plane, where the vortex

lines form spirals around a direction along which the vorticity decreases.
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FIG. 7: Same as Figure 6, but for ∆ = 8δx.

Figure 7 shows the same results as in Figure 6 but for filter scale ∆ = 8δx. At smaller

scales, we observe that the distribution of the invariants in helical turbulence becomes more
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FIG. 8: Same as Figure 6, but for data with negative helicity injection rate ǫH,f = −0.3.

intermittent than in non-helical turbulence. For helical turbulence, it is again more probable

to observe vortex structures near the left Vieillefosse tail and the upper-right quadrant, even

though the asymmetry in the distribution appears to slightly decrease.

We note that the probabilities of observing different local vortical structures depend on

the sign of the helicity injection rate. To illustrate this point, we conduct simulations with

negative helicity injection rate ǫH,f = −0.3, as mentioned previously. The joint PDF of I
G
3

and I
G
2 calculated from this dataset is presented in Figure 8 for ∆ = 16δx. With the sign

of helicity reversed, the distribution skews towards the opposite direction, compared with

Figure 6. It becomes more probable to observe local vortex structures with vortex lines

expanding in two directions and contracting along the third direction, and those with vortex

lines winding around a direction along which the vorticity increases (c.f. Figure 5).

We now return to the analysis of helical data with positive helicity input. The above

results focus on the difference in local vortical structures between helical and non-helical

turbulence. The next question is how the difference correlates with helicity cascade. To
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FIG. 9: The averaged SGS helicity dissipation rate conditioned on values of IG
3 and IG

2 , nor-

malized by the mean SGS helicity dissipation and weighted with the joint PDF of IG
3 and IG

2 :

P (IG
3 , IG

2 )〈ΠH |IG
3 , IG

2 〉/〈ΠH〉. ∆ = 16δx. Positive contours are shown with solid lines, negative with

dashed lines.

shed light on this question, we examine the SGS helicity dissipation rate conditioned on the

values of I
G
3 and I

G
2 . Figure 9 and 10 show the results for helical and non-helical turbulence

at ∆ = 16δx, respectively. Results at ∆ = 8δx (not shown) are similar. For non-helical

turbulence, we observe that the conditional dissipation is positive in both the first and

the third quadrants, and is negative in the second and the fourth ones. In particular, the

conditional dissipation tends to be positive around the left Vieillefosse tail, and negative

around the right one. The distribution is approximately anti-symmetric with respect to

both coordinate axes. In helical turbulence, the symmetry in the distribution is broken. The

dissipation in the first and third quadrants is much stronger, while the magnitudes of the

negative values in the second and fourth quadrants are significantly reduced. The comparison

indicates that local vortical structures in the first and third quadrants are responsible for
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FIG. 10: Same as Figure 9 but for non-helical data. The distribution is normalized by the same

〈ΠH〉 used in Figure 9.

generating positive SGS helicity dissipation, while those in the second and fourth are for

negative one. This correspondence holds in both helical and non-helical turbulence. In helical

turbulence, the positive fluctuations in SGS helicity dissipation become stronger. Together

with Figure 6, we see that in helical turbulence it is more probable to observe stronger

positive fluctuations in the SGS helicity dissipation, compared with non-helical turbulence.

This difference is consistent with the need to generate a positive mean dissipation.

Figure 11 and 12 show the joint PDFs of I
G
3 and I

G
2 in helical turbulence conditioned on

positive and negative SGS helicity dissipations, respectively. When conditioned on positive

SGS helicity dissipation, i.e., ΠH > 0, the asymmetry observed in the unconditional PDF

(Figure 6) is further increased. That is, the events around the left Vieillefosse tail and

in the upper-right quadrant now happen more frequently. When conditioned on ΠH < 0,

asymmetry of the PDF switches towards the other direction. It becomes more probable

to observe events around the right Vieillefosse tail and in the upper-left part of the phase
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FIG. 11: The joint PDF of IG
3 and IG

2 conditioned on positive SGS helicity dissipation rate for the

helical data. ∆ = 16δx.

plane. These results further confirm the correlation between the local vortex structures and

the values of the SGS helicity dissipation observed in Figures 9 and 10. For non-helical

turbulence, the conditional PDFs (not shown here) also display skewed distributions, even

though the unconditional PDF is symmetric. The PDF conditioned on ΠH > 0 also shows

higher probabilities in the first and the third quadrants. However, compared with helical

turbulence, the asymmetry is weaker. On the other hand, the PDF conditioned on ΠH < 0

also shows a skewed distribution, with higher probabilities for the events in the second and

the fourth quadrants. Compared with the conditional PDF for helical turbulence shown

in Figure 12, the skewness is stronger. The average of the two conditional PDFs is the

same as the unconditional PDF shown by the dashed lines in Figure 6, which is expected,

since in non-helical turbulence the probabilities to observe positive and negative SGS helicity

dissipation are equal.

The picture emerging from the above analyses is that the local structures of the vorticity
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FIG. 12: Same as Figure 11 but conditioned on negative SGS helicity dissipation.

field and the SGS helicity dissipation fluctuations are correlated. The correlation is observed

in both helical and non-helical turbulence. In helical turbulence with positive helicity input,

it is more probable to observe positive SGS helicity dissipation (see Fig. 4). Due to the

correlation, it is thus also more probable to observe certain vortical structures (those in the

first and the third quadrants of the (IG
2 , IG

3 ) plane). This in turn leads to asymmetry in a

number of statistics. In other words, the asymmetry in helical turbulence originates from

the imbalance of positive and negative SGS helicity dissipation.

It appears not yet possible to obtain a dynamical explanation for the correlation starting

from first principles. Here, we provide a qualitative explanation for a certain part of the

correlation, based on a simple dynamical model. We focus on the events around the Vieille-

fosse tails. As one has seen in both Figure 9 and 10, the SGS helicity dissipation tends to

be positive around the left Vieillefosse tail and be negative round the right one. On the left

tail, and the region between it and the I
G
2 -axis, the gradient of vorticity G̃ij has one positive

and two negative eigenvalues. Therefore, around a point in this region, the vortex lines
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FIG. 13: Illustration of a converging vortex tube and its induced velocity (top). The vortex tube

will be twisted by its induced velocity, and hence generates SGS helicity dissipation (bottom).

form a converging vortex tube, as illustrated in the top part of Figure 13. The magnitude

of vorticity, then, has to increase along the tube. As a consequence, the induced velocity

around the tube also increases along the tube, which thus stretches and twists the vortex

lines so that they form a right-handed screw around the tube, as sketched in the bottom

part of Figure 13. The vorticity on the twisted vortex lines has a component along the

circumferential direction of the vortex tube, which then induces velocity fluctuations along

the direction of the vortex tube. As the direction of the induced velocity is the same as the

vorticity, it means that positive helicity fluctuations at smaller scales, and hence positive

SGS helicity dissipation, have been generated. Therefore, converging vortex tubes tend to

produce positive SGS helicity dissipation through their self-induced motions, which in turn
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generates the correlation we observe around the left Vieillefosse tail.

Note that, the observation that twisted vortex tubes can generate small-scale helicity

fluctuations has been made in [31]. Here, by looking into the eigenvalues of the vorticity

gradient, we further elucidate how the twisted vortex tubes emerge from their self-induced

motions. The correlation between negative SGS helicity dissipation and the right Vieillefosse

tail can be explained in the same way.

C. Invariants and eigenvalues of the vorticity strain rate tensor
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FIG. 14: PDF of the eigenvalues of R̃ij at filter scale ∆ = 16δx and ∆ = 8δx (inset), normalized

by Rrms defined in text. Solid line: Rβ; dashed: Rα; dash-double-dotted: Rγ .

The analysis of the vorticity gradient G̃ij is now extended to consider R̃ij , the vorticity

strain rate tensor. As R̃ij is a symmetric tensor, its eigenvalues are real numbers. Figure

14 plots the PDFs of the normalized eigenvalues, calculated at filtered scale ∆ = 16δx. The

normalization factor Rrms for the three eigenvalues is defined as:

Rrms ≡ 〈R̃ijR̃ij〉1/2 = 〈(R2
α + R2

β + R2
γ)〉

1/2
. (19)

The inset shows the corresponding results at ∆ = 8δx. By definition Rα ≥ 0 and Rγ ≤ 0.
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∆/δx 16 8 0

Case 1: -0.26 -0.30 -0.25

Case 2: 0.017 0.019 0.013

Case 3: -0.18 -0.26 -0.27

TABLE I: The mean Rβ at different scales for different data sets. Case 1: Helical data; Case 2:

Non-helical data; Case 3: High-pass filtered helical data with modes |k| ≤ kf = 2 removed.

On the other hand, Rβ can take both positive and negative values. The results for ∆ = 8δx

is similar to those for ∆ = 16δx, with slightly more spiky distributions.
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FIG. 15: Antisymmetric part of the PDF of Rβ defined as Rrms|[P (Rβ) − P (−Rβ)]/2. Lines:

helical turbulence; symbols: non-helical turbulence. Solid line and deltas: ∆ = 16δx, dashed line

and gradients: ∆ = 8δx; dash-double-dotted line and squares : unfiltered data.

Note that R̃ij is a pseudo-tensor. Thus, in turbulence with reflectional symmetry, the

distribution of Rβ should be symmetric, whereas in helical turbulence Rβ is allowed to

develop asymmetric distribution. Therefore, it is interesting to check if there is indeed

asymmetry in the distribution of Rβ. Figure 15 plots the anti-symmetric part of the PDFs

of the normalized Rβ, i.e. Rrms[P (Rβ)−P (−Rβ)]/2, at several filter scales. The distributions

in both helical and non-helical turbulence are compared. The figure indeed shows that the

PDFs of Rβ are not symmetric. Instead, Rβ is more probable to take negative values. On
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the other hand, the results in non-helical turbulence, shown by symbols, are essentially zero,

implying no deviation from reflectional symmetry.

The mean value of Rβ, denoted as 〈Rβ〉 are given in Table I. Consistent with Figure 15,

〈Rβ〉 are negative in helical turbulence (Case 1), and are an order of magnitude bigger than

the values in non-helical turbulence (Case 2). Interestingly, the values are nearly the same

at three different scales, implying that the effects of helicity are felt down to the smallest

scales. The last row shows 〈Rβ〉 calculated from a high-pass filtered data set, where the

Fourier modes |k| ≤ kf are removed (c.f. Figure 2). As has been shown in Figure 2, a large

portion of helicity is contained in the forcing scales, and the alignment between u and ω

is significantly reduced when the forcing scales are removed. On the other hand, the same

filtering leaves 〈Rβ〉 nearly unchanged. Thus, we conclude that the skewed PDFs of Rβ come

from small-scale motions in helical turbulence.

In regions where the vortex lines are dominantly strained, the eigenvalues of R̃ij can be

approximately related to the shapes of the vortex lines. That R̃ij has two negative eigenvalues

implies that the vortex lines tend to converge from two directions. The results in Figure

15 and Table I thus show that in these regions the vortex lines are more probable to form

converging vortex tubes (see Figure 13). This is consistent with results obtained from the

vorticity gradient G̃ij .

Figure 16 plots the joint PDF of I
R
2 and I

R
3 for both helical and non-helical turbulence,

shown in grey scales and dashed lines, respectively. The two invariants are related by in-

equality 3
√

6|IR
3 | ≤ (−2IR

2 )3/2 [60, 61], therefore the distribution is non-zero only in the

wedge bounded by the Vieillefosse tails. Similar to the joint PDF of I
G
3 and I

G
2 , Figure 16

shows that the joint PDF of I
R
3 and I

R
2 is also asymmetric in helical turbulence. Higher

probabilities are observed for events near the left Vieillefosse tail. It is more probable to

observe negative I
R
3 , implying that Rβ is more likely to be negative, consistent with our

previous results in terms of the PDFs of Rβ. For non-helical turbulence the distribution is

symmetric.

The SGS helicity dissipation conditioned on I
R
3 and I

R
2 is shown in Figure 17 for helical

turbulence, and in Figure 18 for non-helical turbulence. In both cases, positive values are

observed mostly in the left half of the plane with I
R
3 < 0, while negative values are observed

in the right half. Thus, there exists negative correlation between the SGS helicity dissipation

and I
R
3 (and hence Rβ). The result for non-helical turbulence is anti-symmetric with respect

to the I
R
2 -axis. In helical turbulence positive dissipation is observed in a larger domain and

with higher magnitudes.

The geometry of the tensor R̃ij can be studied with a nondimensional parameter R∗,
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FIG. 16: The joint PDF of the invariants of R̃ij , IR
2 and IR

3 . ∆ = 16δx. Grey-scales: helical

turbulence; dashed lines: non-helical turbulence.

defined as [61]

R∗ =
−3

√
6RαRβRγ

(R2
α + R2

β + R2
γ)

3/2
=

3
√

6IR
3

(−2IR
2 )3/2

. (20)

Similar parameters have already been used to investigate the geometry of the strain rate

tensor and the SGS stress tensor [33, 61]. R∗ is bounded between −1 and 1, i.e., R∗ ∈ [−1, 1].

When R∗ = 1, the ratio between the eigenvalues is Rα : Rβ : Rγ = 1 : 1 : −2, corresponding

to axisymmetric expansion of the vortex lines, and also to the right Vieillefosse tail in the

(IR
3 , IR

2 ) plane. On the other hand, R∗ = −1 corresponds to axisymmetric contraction and

the left Vieillefosse tail. In a Gaussian field, the PDF of R∗ is uniform. Thus deviation from

a uniform distribution comes from the dynamics of turbulence.

Figure 19 plots the joint PDF of R∗ and ΠH , the SGS helicity dissipation. The result

from helical turbulence is shown with grey scales while non-helical result is plotted with

dashed lines. The first observation is that the distribution of ΠH shifts towards the negative

direction when R∗ is increases, in both datasets. That is, there exists negative correlation
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FIG. 17: The weighted conditional average of the SGS helicity dissipation in helical turbulence:

P (IR
3 , IR

2 )〈ΠH |IR
3 , IR

2 〉/〈ΠH 〉. Solid lines are for positive contours and dashed for negative.

between R∗ and ΠH in both helical and non-helical data. Second, in helical turbulence, it

has higher probabilities to observe positive fluctuations in ΠH , compared with non-helical

turbulence. It appears that when R∗ decreases, ΠH becomes more intermittent, with wider

probability distributions, but the variation is small.

Figure 20 shows the averages of ΠH conditioned on values of R∗, weighted with the PDF

of R∗. The inset shows the same conditional averages without weighting. One can see that,

interestingly, the conditional mean dissipation tends to be positive when R∗ < 0, and negative

when R∗ > 0, in both helical and non-helical turbulence. For non-helical turbulence, the

curves are symmetric with respect to the origin. For helical turbulence, the curves are shifted

upwards, so as to generate a mean positive SGS helicity dissipation. When ∆ = 16δx, the

curve has a maximum at R∗ = −1. Thus the axisymmetric straining structure (of the vortex

lines) produces strongest positive SGS helicity dissipation. Strongest negative SGS helicity

dissipation comes from structures with R∗ = 1. For ∆ = 8δx, the conditional dissipation
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FIG. 18: Same as Figure 17, but for non-helical turbulence.

rate still takes maximum at R∗ = −1, as shown by the dashed line in the inset. But the

contribution to the total dissipation is maximum at R∗ ≈ −0.5, due to higher probability to

observe this value of R∗.

To summarize the results on the invariants and eigenvalues of R̃ij, we observe that, in

helical turbulence with positive helicity injection rate, it is more probable to observe negative

Rβ and events with negative I
R
3 , especially those around the left Vieillefosse tail. The SGS

helicity dissipation fluctuations are negatively correlated with R∗ in both helical and non-

helical turbulence. The structures around the Vieillefosse tails in the (IR
3 , IR

2 ) phase plane

with R∗ = ±1 contribute important parts to the total SGS helicity dissipation.

D. Alignment between tensors and vectors

Past studies on turbulence have found different preferential alignment trends between

various tensors and vectors. Examples include the well-known alignment between ω̃ and
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FIG. 19: The joint PDF of R∗ and SGS helicity dissipation ΠH . Gray-scales: helical turbulence;

dashed lines: non-helical. ∆ = 16δx. 〈ΠH〉 is the mean SGS helicity dissipation in helical turbu-

lence.

the intermediate eigenvector of the strain rate tensor [35, 36, 62], the alignment between the

SGS stress tensor and the vorticity vector [33, 34], and the alignment between the strain rate

tensor and the SGS stress tensor [33]. These geometrical structures are related to the various

dynamical processes of turbulence, such as vortex stretching etc [33]. In this section, we will

study the alignment between the vorticity strain rate R̃ij and the vorticity vector ω̃ and

vector ξ̃. The results will provide useful insight into the local structure of the vorticity field.

In the results to be presented in the rest of this paper, we often observe only small differences

between helical and non-helical turbulence. Therefore only results in helical turbulence will

be presented unless stated otherwise.

The alignment between R̃ij and ξ̃ is characterized by the relative angles between the

eigenvectors Ri(i = α, β, γ) and ξ̃, denoted as θi. Figure 21 plots the PDFs of | cos θi| ≡
|ξ̃ · Ri|/|ξ̃| at several different filter scales. Interestingly, we observe that the PDFs for Rβ

show a very strong peak at | cos θi| = 1, implying that there is a high probability for ξ̃ to

align with the intermediate eigenvector Rβ. The peaks are reduced only slightly when ∆

increases. The distributions for Rα and Rγ are very close to each other. At small scales,

both have peaks at | cos θi| = 0, showing that ξ̃ tends to be perpendicular to both Rα and

Rγ. When the filter scale increases, the peaks weaken. Note that, the same PDFs in a
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FIG. 20: The conditional averages of the SGS helicity dissipation, weighted by the PDF of R∗, as

functions of R∗. Lines: helical turbulence; symbols with lines: non-helical turbulence. Solid line

and squares: ∆ = 16δx; dashed line and triangles: ∆ = 8δx. Inset shows the conditional averages

without weighting.

Gaussian field with same energy and helicity spectra are uniform for all the eigenvectors.

Thus, the peaks observed in the Figure 21 are the consequence of the non-trivial vortex

structures in turbulence.

The origin of the preferred ξ̃ − R̃ij alignment and its dynamical consequences are not

yet clear. Here we only comment that, the closeness between the results for Rα and Rγ,

observed in Figure 21, is a consequence of reflectional symmetry. As R̃ij is a pseudo-tensor,

its eigenvalues are pseudo-scalars, and have opposite signs in the mirror image of the flow

field. By the ordering of the eigenvalues, the largest eigenvalue in the mirror flow field is

thus −Rγ , the smallest one is −Rα. In a reflectionally symmetric flow field, the statistics

is invariant upon a reflectional transformation. In particular, the statistics of the largest

eigenvalue should stay the same. Therefore, the PDF of |ξ̃ · Rα|/|ξ̃| should be the same as

that of |ξ̃ · (−Rγ)|/|ξ̃| = |ξ̃ · Rγ|/|ξ̃| in a reflectionally symmetric flow field. In non-helical

turbulence we indeed find that the PDFs for Rα and Rγ are the same (not shown). In helical

turbulence, there is also only small difference between the two PDFs, as is seen in Figure 21.

The PDFs for the alignment between R̃ij and ω̃ in helical turbulence are presented in

Figure 22. The lines are for ∆ = 16δx and the symbols are for ∆ = 8δx. For ∆ = 16δx,
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FIG. 21: PDFs of | cos θi| ≡ |ξ̃ · Ri|/|ξ̃|, where Ri (i = α, β, γ) is the eigenvector of R̃ij , at

∆ = 16δx, 8δx, 0δx. Dashed lines: i = α; solid: β; dash-double-dotted: γ. ∆ increases along the

directions of the arrows.

we observe that the PDFs for Rα and Rγ are almost the same. Both peak at cos θ ≈ 0.71

corresponding to θ ≈ 45◦. Thus, the vorticity vector tends to take approximately 45◦ angles

with Rα and Rγ and tilts slightly towards the former. On the other hand, the PDF of Rβ

reaches maximum at zero, although the peak is not sharp. In other words, ω̃ and Rβ prefer

to be perpendicular to each other, but with high probabilities to make other angles. When

∆ = 8δx, the peaks in the PDFs for Rα and Rγ become stronger, and are also reached at

θ ≈ 45◦.

The 45◦ angle observed in Figure 22, which is also observed in non-helical turbulence,

suggests that it may come from some simple flow structures. Recall that in a uniform two-

dimensional shear layer (see Figure 23(a)), the eigenvectors corresponding to the two non-zero

eigenvalues of the strain rate tensor will make 45◦ with the velocity vector. Similarly, for a

two-dimensional vortex layer with uniform transverse gradient, as illustrated in Figure 23(b),

the two eigenvectors Rα and Rγ make 45◦ with the vorticity vector itself. This observation

suggests that the preferred angle of 45◦ observed in Figure 22 may be related to such layer-

like structures. More generally, one expects to observe preferential 45◦ alignments between

ω̃ and Rα and Rγ as long as the gradient of vorticity along a perpendicular direction is

much stronger than the gradient along other directions. In particular, this may include both
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α, β, γ). Lines: ∆ = 16δx; symbols: ∆ = 8δx. Solid line and squares: Rα; dashed line and deltas:

Rβ; dash-double-dotted line and gradients: Rγ .

vortex tubes and vortex sheets (see, e.g., [34, 63]).

The alignment between ω̃ and the eigenvectors of R̃ij is correlated with the SGS helicity

dissipation. Figure 24 plots the PDFs of | cos θi| conditioned on ΠH > 0 (lines) and ΠH < 0

(symbols), i.e., P (| cos θi| | ΠH > 0) and P (| cos θi| | ΠH < 0) (i = α, β, γ). Comparing

with Figure 22, one can find that, when conditioned on positive ΠH , the differences between

the curves for Rα and Rγ are amplified. P (| cos θα| | ΠH > 0) is shifted to the right with

a peak at cos θα ≈ 0.77, while P (| cos θγ | | ΠH > 0) is shifted to the left and peaks at

cos θγ ≈ 0.52. The results imply that ω̃ becomes more aligned with Rα in regions with

higher SGS helicity dissipation. When conditioned on negative ΠH , the trends reverse. That

is, the peak of P (| cos θα| | ΠH < 0) now moves to the left. The whole curve is close to

P (| cos θγ | | ΠH > 0). The curve for Rγ moves to the right and peaks at approximately the

same location as P (| cos θα| | ΠH > 0), whilst the peak value is a bit higher. The PDFs

corresponding to Rβ show only small changes upon the conditioning.
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FIG. 23: Alignment trends in (a) a homogeneous shear flow, and (b) a vortext sheet with uni-

directional vorticity and uniform transverse gradient.

E. Alignment trends between tensors

In this subsection, we consider the alignment trends between R̃ij and the (minus) SGS

stress tensor −τij and other related tensors. As is shown by Eq. (10), nine inner products

can be defined out of the six eigenvectors of the two tensors. However, they are not all

independent and only three angles are needed to specify the relative orientation of the two

eigen-frames. We use the three angles (θ, φ, ζ) defined in [33], also illustrated in Figure 25.

Specifically, θ is defined as the angle between Rα and (−τ )α. φ is the angle between Rβ

and the projection of (−τ )α on the Rβ − Rγ plane. ζ is the angle between the projection

of Rγ on the (−τ )β − (−τ )γ plane, denoted by RP
γ , and (−τ )γ . Because the eigenvectors

are determined only up to an arbitrary constant, which can be either positive or negative,

the range of each angle is [0, 90◦]. In a Gaussian velocity field, the joint PDF P (cos θ, φ, ζ)

is approximately uniform.

We first consider the alignment between R̃ij and −τij . Figure 26 shows several slices

cutting through the 3-dimensional (3D) joint PDF P (cos θ, φ, ζ), evaluated at filter scale

∆ = 16δx. As one can see, the distribution has a peak with approximate value 1.37,

approximately located at (cos θ, φ, ζ) = (0.71, 1.55, 1.55), corresponding to angles (θ, φ, ζ) ≈
(45◦, 90◦, 90◦). The same PDF calculated from the non-helical turbulence data is plotted in
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ΠH ; symbols: conditioned on negative ΠH . Solid line and squares: i = α; dashed line and deltas:

i = β; dash-double-dotted line and gradients: i = γ. ∆ = 16δx.

Figure 27. Interestingly, we again observe a peak at approximately the same location, but

slightly shifted towards smaller values of cos θ. The peak value is about 1.35. Thus, the peak

configuration is a trend existing in both helical and non-helical turbulence.

We will make a connection between this alignment trend with the ω̃ − R̃ij alignment we

presented above, and the ω̃− τij alignment reported in [34]. First, the peak configuration in

the above distributions is graphically illustrated in Figure 28. In this configuration (−τ )γ

aligns with Rβ, while (−τ )α and (−τ )β both make an angle of 45◦ with Rα. Second, let

us recall the results concerning the alignment between ω̃ and τij . As is shown in [34], there

are high probabilities for ω̃ to align with (−τ )α and (−τ )β. These alignment trends are

reproduced in our helical turbulence data, given in Figure 29. Plotted in Figure 29 are the

PDFs of | cos θi| ≡ |ω̃ · (−τ )i|/|ω̃| (i = α, β, γ), where θi is the angle between ω̃ and the

ith eigenvector of −τij . One indeed finds sharp peaks at 1 for (−τ )α and (−τ )β, which are

plotted with solid and dashed lines. For (−τ )γ, the PDF also has a rather strong maximum

at the origin, implying that ω̃ tends to be perpendicular to (−τ )γ. Finally, the ω̃ − R̃ij

alignment trends have been shown in Figure 22, in which we find ω̃ tends to make 45◦ with

both Rα and Rγ , and be perpendicular to Rβ. Therefore, it is not difficult to see that, if

the two most probable ω̃ − R̃ij and ω̃ − τij alignments take place at the same time, one
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FIG. 25: The angles (θ, φ, ζ) defining the relative orientation between the eigen-frames of tensors

R̃ij and −τij.

would observe the peak R̃ij − τij alignment shown in Figure 28. Thus, the observed R̃ij − τij

alignment is consistent with previous results. The argument suggests the pivotal role of

vorticity in inducing various geometrical alignments in turbulence.

As already noted, there are some differences between helical and non-helical turbulence

in the three-dimensional joint PDF distributions of (cos θ, φ, ζ). To get a clear look at the

differences, we consider the marginal distributions P (cos θ), P (φ), and P (ζ). Figure 30 shows

the marginal distributions for both helical and non-helical data, with solid and open symbols,

respectively. For comparison, the same results for a Gaussian velocity field with same energy

and helicity spectra are also shown with lines. The first observation is that the biggest

difference between helical and non-helical turbulence is observed in P (cos θ) (squares). In

helical turbulence, the probability to observe larger values for cos θ is substantially higher

than in non-helical turbulence, implying that (−τ )α tends to align with Rα closer in helical

turbulence. We can qualitatively understand the effects of this difference on the magnitude

of SGS helicity dissipation via Eq. (10). Let’s focus on the first term in the equation. By

definition Rα and (−τ )α are positive. Also, Rα · (−τ )α ≡ cos θ according to our definition

of angle θ. As a result, the first term in Eq. (10) is positive and increases with cos θ. Thus,

Figure 30 implies that, in helical turbulence, this term tends to generate larger values of

positive helicity dissipation. For the distribution of φ, both helical and non-helical turbulence
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FIG. 26: Joint PDF P (cos θ, φ, ζ) in helical DNS for R̃ij and τij. ∆ = 16δx.

show higher probabilities to observe larger values (values close to π/2), compared with the

Gaussian field. The probability to find φ near π/2 is slightly higher in non-helical data than

in the helical one. Finally, the distributions of ζ in either helical or non-helical turbulence

are quite close to that in the Gaussian field, and is nearly uniform over the interval [0, π/2].

We next consider the dependence of the R̃ij − τij alignment on SGS helicity dissipation

ΠH , in terms of the PDFs of the angles conditioned on the values of ΠH . The conditional

PDFs of cos θ are plotted in Figure 31, with the unconditional one shown with a dotted

line for comparison. Four different conditions are considered: ΠH > 2〈ΠH〉, ΠH > 0,

ΠH < 0, and ΠH < −2〈ΠH〉. It can be seen that the probabilities for larger values of cos θ

are increased dramatically when conditioned on positive ΠH (solid squares), and decreased



35

cos θ

0

0.5

1

φ
0

0.5

1

1.5

ζ

0

0.5

1

1.5

Y

Z

X

1.3
1.2
1
0.8
0.6
0.4
0.3
0.2

FIG. 27: Joint PDF P (cos θ, φ, ζ) in non-helical DNS for R̃ij and τij. ∆ = 16δx.

when conditioned on negative ones (open squares). The changes are further enhanced when

conditioned on large magnitude fluctuations ΠH > 2〈ΠH〉 and ΠH < −2〈ΠH〉 (circles). Thus,

it is more probable to observe closer alignment between Rα and (−τ )α in regions with larger

ΠH , and vice versa.

The amplitude of the changes indicates the sensitiveness of the sign of ΠH on Rα− (−τ )α

alignment, which suggests the dominant role of the latter in determining the value of ΠH . If

we examine the figure further, we notice that the curves cross over each other at cos θ ≈ 0.7,

corresponding approximately to θ = 45◦. Simple calculation shows that, when ΠH < 0, the

probability for cos θ > 0.7 equals approximately 0.15 and that for cos θ < 0.7 is 0.85. When

ΠH > 0, the probability to find cos θ > 0.7 is about 0.53. The latter can be compared with
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FIG. 28: The configuration of eigenframes for R̃ij and τij corrsponding to the peak probability

density.

the probability 0.42 calculated from the unconditional PDF and 0.33 from the Gaussian

field. Thus, regions with negative SGS helicity dissipation are mostly contained in regions

with θ > 45◦. Regions with positive dissipation is more probable to have an angle θ < 45◦,

but configurations with θ > 45◦ also happen rather frequently.

The PDFs for φ and ζ , plotted in Figures 32 and 33, also show rather strong dependence

on SGS helicity dissipation. The PDFs for φ become nearly uniform when conditioned on

positive ΠH . Recall that (−τ )α tends to align more closely with Rα when conditioned on

larger ΠH (see Figure 31), therefore small fluctuations in the direction of (−τ )α can generate

large fluctuations in φ. This may explain the changes in the PDF of φ. On the other hand,

when conditioned on ΠH < 0 or ΠH < −2〈ΠH〉, the probability for φ ≈ 90◦ increase

significantly, implying that (−τ )α is more likely to be perpendicular to Rβ in the regions

with negative SGS helicity dissipation. For ζ , when conditioned on ΠH > 0, smaller values

become more probable, and when conditioned on negative ΠH , it becomes more probable to

take larger values.

The SGS helicity dissipation conditioned on the alignment (cos θ, φ, ζ) is plotted in Figure

34 for helical data. The distributions are weighted by the joint PDF of cos θ, φ, and ζ ,

and normalized by the mean SGS helicity dissipation in helical turbulence. In Figure 34,

the largest values are observed mostly around cos θ = 1, and rather evenly distributed for
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FIG. 29: PDFs of | cos θi| ≡ |ω̃ · (−τ )i|/|ω̃|, where θi is the angle between ω̃ and the ith eigenvector

(−τ )i of −τij. Solid line: (−τ )α; dashed: (−τ )β ; dash-double-dotted: (−τ )γ .

different values of φ and ζ . Large negative values are found in the region where θ . 45◦ with φ

near π/2. For smaller φ, negative values are only observed for larger ζ . In general, the figure

again shows strong dependence on the Rα − (−τ )α alignment. Same PDF calculated from

non-helical turbulence (not shown) displays similar dependence on the alignment angles, but

the magnitudes of positive values are significantly smaller, while the magnitudes of negative

values are larger.

Overall, the results show that the value of ΠH depends strongly on cos θ. For example,

when φ ≈ π/2, Figure 34 shows that the conditional average changes from positive to

negative when cos θ decreases crossing a value around 0.69, corresponding to θ ≈ 46◦. This

observation can be partially understood from Eq. (10). Let us focus on the contributions

involving the orientation of (−τ )α, consisting of the first three terms in the equation, and

denote this part by ΠH,α. When φ = π/2, the expression for ΠH,α is reduced to

ΠH,α = (−τ )αRα cos2 θ + (−τ )αRγ sin2 θ (21)

With Rγ = −Rα − Rβ, it becomes

ΠH,α = (−τ )αRα cos 2θ − (−τ )αRβ sin2 θ. (22)

Since Rα > Rβ, the first term is more important. As both (−τ )α and Rα are positive by

definition, the first term increases with cos 2θ, or when θ decreases. It is positive when

θ < 45◦ and becomes negative when θ > 45◦. Among the other terms in Eq. (10), it can be
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FIG. 30: The marginal PDFs for cos θ, φ, and ζ, in helical (solid symbols), non-helical (open

symbols) turbulence, and a Gaussian (lines) field. Squares and solid line: P (cos θ); deltas and

dashed line: P (φ); circles and dash-double-dotted line: P (ζ). ∆ = 16δx.

shown that the dominant terms also contain the factor cos 2θ. This result thus qualitatively

explains the strong dependence on cos θ we see in Figure 34 when φ = π/2.

For an arbitrary φ, the expressions appear too complex for the above analysis to derive

meaningful results.

IV. CONCLUSIONS

In this paper, we present a study of the geometrical and vortical statistics in the small

scales of both helical and non-helical turbulence. We use a filtering approach, in which the

helicity flux across different scales is represented by the SGS helicity dissipation. The SGS

helicity dissipation is proportional to the product of the SGS stress and the symmetric part

of the gradient of the filtered vorticity. Therefore, it is important for the understanding of

helicity cascade to examine the local structures of the vorticity field. We thus have focused

on the vorticity gradient, the symmetric part of the vorticity gradient, referred to as vorticity

strain rate, and the dual vector corresponding to the anti-symmetric part of the vorticity
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FIG. 31: Conditional PDFs of cos θ in helical turbulence. Solid squares: ΠH > 0; solid circles:

ΠH > 2〈ΠH〉; open squares: ΠH < 0; open circles: ΠH < −2〈ΠH〉. Dotted line is the unconditional

PDF shown for comparison. ∆ = 16δx.

gradient. We document the geometrical statistics of these quantities, and their correlation

with vorticity, SGS stress, SGS helicity dissipation. Our results can be summarized as

follows.

First, a number of geometrical features common to both helical and non-helical turbulence

are observed, including the preferred alignment between the dual vector and the interme-

diate eigenvector of the vorticity strain rate tensor; the preferred 45◦ alignment between

the vorticity vector and both the most contractive and the most extensive eigen-directions

of the vorticity strain rate tensor; and the preferred alignment configuration between the

vorticity strain rate tensor and the SGS stress tensor. We have shown that, in regions with

strong straining of the vortex lines, there is a negative correlation between the fluctuations

of the SGS helicity dissipation and the third order tensor invariant of the vorticity gradient

tensor. We explain the origin of the correlation as a consequence of the self-induced motions

of converging or diverging vortex tubes, which wind up the vortex lines and generate SGS

helicity dissipation.

Second, several features unique in helical turbulence are identified. It is found that the

joint PDF of the second and third order tensor invariants of the vorticity gradient has an

asymmetric distribution, with the direction of skewness depending on the sign of helicity
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FIG. 32: Same as Figure 31, but for φ.

input. Also, we observe that the intermediate eigenvalue of the vorticity strain rate tensor

is more probable to take negative values when the helicity injection rate is positive, and vice

versa. These features are the main differences between helical and nonhelical turbulence,

as far as the geometrical statistics of the vorticity field is concerned. Based on the model

of twisted vortex tubes, we show that the asymmetry is dynamically linked to the non-zero

mean SGS helicity dissipation in helical turbulence.

In summary, we have observed for the first time a number of interesting geometrical fea-

tures of the vorticity field in both helical and non-helical turbulence, by looking into the

statistics of the gradient of the vorticity. Some of these features have admitted simple dy-

namical explanations. More work is needed to understand fully the dynamics that generates

these features, and to explore their implications. These questions will be the topics of further

research.
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