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Abstract: A modification to the contransverse mass (MCT ) technique for measuring the

masses of pair-produced semi-invisibly decaying heavy particles is proposed in which MCT

is corrected for non-zero boosts of the centre-of-momentum (CoM) frame of the heavy

states in the laboratory transverse plane. Lack of knowledge of the mass of the CoM frame

prevents exact correction for this boost, however it is shown that a conservative correction

can nevertheless be derived which always generates an MCT value which is less than or

equal to the true value of MCT in the CoM frame. The new technique is demonstrated

with case studies of mass measurement with fully leptonic tt̄ events and with SUSY events

possessing a similar final state.
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1. Introduction

Techniques for measuring the masses of pair-produced particles decaying semi-invisibly

through short decay chains at hadron colliders have attracted considerable interest. The

principle motivation for the development of such techniques is the measurement of the

masses of supersymmetric particles (‘sparticles’) at the Large Hadron Collider [1, 2, 3, 4, 5,

6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], however they may be applied more widely to measure

the mass of the top quark at the Tevatron [17] or LHC [18], or to identify fully leptonic

WW events [19].

Recently [9] a straightforward new variable, the ‘contransverse mass’ (MCT ), was pro-

posed which enables the measurement of a simple analytical combination of the masses of

the pair-produced heavy states δi (i = 1, 2) and their invisible decay products αi. The

contransverse mass is defined by

M2
CT (v1, v2) ≡ [ET (v1) + ET (v2)]

2 − [pT(v1)− pT(v2)]
2
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= m2(v1) +m2(v2) + 2[ET (v1)ET (v2) + pT(v1) · pT(v2)], (1.1)

where vi are the visible products of each decay chain, pT(vi) is the tranverse momentum

vector of vi and

ET (vi) ≡
√

p2T (vi) +m2(vi). (1.2)

It can be shown [9] that MCT is in general bounded from above by a quantity dependent

upon the masses m(δ) and m(α). If m(v1) = m(v2) ≡ m(v) then the distribution of event

MCT values possesses an end-point at:

Mmax
CT [m2(v)] =

m2(v)

m(δ)
+

m2(δ)−m2(α)

m(δ)
. (1.3)

Consequently a measurement of the gradient and intercept of the linear function describing

the dependence of Mmax
CT on m2(v) allows both m(δ) and m(α) to be measured indepen-

dently.

Despite the simplicity and ease-of-use of the contransverse mass technique, it suffers

from two principle draw-backs [9]. The first is that MCT is not invariant under Lorentz

boosts of the δ1δ2 centre-of-momentum (CoM) frame in the laboratory transverse plane.

Consequently if the δ1δ2 system recoils in the transverse plane against upstream object(s)

such as ISR jets then the value of MCT calculated in the laboratory frame is not in general

equal to that calculated in the δ1δ2 CoM frame. MCT values can be generated which are

greater than Mmax
CT and as a result the MCT end-point can be smeared (see e.g. Figure 2 in

Ref. [9]). The second draw-back is apparent when attempting to measure m(δ) and m(α)

independently in events with non-zero visible masses m(vi) using Eqn. (1.3). The require-

ment m(v1) = m(v2) can significantly reduce the available event statistics and require the

accumulation of very large integrated luminosity, even for channels with relatively large

σ.BR. This problem is illustrated clearly in Figure 3 in Ref. [9]. This paper will seek to

address these two problems and demonstrate the utility of the MCT technique through two

case-studies. In the process we shall identify a further problem with using Eqn. (1.3) to

measure masses independently, but develop an alternative strategy for two-step sequential

two-body decay chains combining MCT end-point measurements with conventional invari-

ant mass end-point constraints. We shall also investigate the use of the transverse boost

dependence of Mmax
CT to measure masses independently, but find that this technique suffers

from similar problems.

The structure of the paper is as follows. Section 2 will study the transformation

properties of MCT under contra-linear and co-linear Lorentz boosts of δi, leading to the

development of a procedure for correcting MCT for co-linear boosts. Section 3 will discuss

the shape of the resulting MCT distributions. Section 4 will propose a new method for

maximising the available event statistics when measuring m(δ) and m(α) independently

with Eqn. (1.3) by removing the m(v1) = m(v2) requirement. This section will also develop

a technique through which m(δ) and m(α) can in principle be measured independently by

using the transverse boost dependence of Mmax
CT . Section 5 will investigate these techniques

with LHC case studies measuring the masses of the top quark, W and neutrino with fully-

leptonic tt̄ events, and the masses of SUSY particles decaying to a similar final state.

Section 6 will conclude.
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2. Transformation properties of MCT

2.1 Equal magnitude contra-linear boosts

It is instructive to consider first the transformation properties of MCT under contra-linear

equal magnitude boosts, in which δ1 and δ2 move in opposite directions with equal mo-

mentum. MCT is derived from the quantity MC given by

M2
C(v1, v2) ≡ [E(v1) + E(v2)]

2 − [p(v1)− p(v2)]
2

= m2(v1) +m2(v2) + 2[E(v1)E(v2) + p(v1) · p(v2)], (2.1)

and this was shown in Ref. [9] to be invariant under such boosts. By contrast MCT is not

in general invariant under such boosts, however the position of the MCT end-point, Mmax
CT ,

is. The reason for this can be understood by observing that one can rewrite Eqn. (2.1) in

the following form in the δ1δ2 CoM frame:

M2
C(v1, v2) = m2(v1) +m2(v2) + 2[ET (v1)ET (v2) cosh Ση(vi) + pT(v1) · pT(v2)]. (2.2)

Comparing with Eqn. (1.1) and noting that coshΣη(vi) ≥ 1 this shows that MCT ≤ MC ,

with equality when Ση(vi) = 0. Now MC , like MCT , is bounded from above by Mmax
CT and

so one finds finally that MCT ≤ MC ≤ Mmax
CT . It is interesting to note additionally that

MC equals Mmax
CT when v1 and v2 are co-linear in the δi rest frames and hence the necessary

and sufficient criteria for MCT = Mmax
CT are that ∆η(v1, v2) = 0 and ∆φ(v1, v2) = 0 in the

δi rest frames while Ση(vi) = 0 in the δ1δ2 CoM frame.

A similar argument applies when the transverse mass MT undergoes co-linear equal

magnitude boosts, and the result is similar, namely thatMT is not invariant under arbitrary

transverse boosts but nevertheless possesses a boost-invariant end-point. It is interesting

to note that in this case the necessary and sufficient conditions for MT = Mmax
T are in

some sense the complement of those in the MCT case: here Ση(vi) = 0 and ∆φ(v1, v2) = π

in the rest frame(s) of the parent particle(s) while ∆η(v1, v2) = 0 in the event CoM frame.

Of course if v1 and v2 are the sole products of the decay of the same parent then the first

and second criteria are generally satisfied through conservation of momentum.

2.2 Equal magnitude co-linear boosts

The contransverse mass is invariant by construction under co-linear equal magnitude boosts

of δ1 and δ2 in the beam (ẑ) direction, by virtue of its dependence purely on transverse

quantities. Consequently Mmax
CT is similarly invariant. In the presence of co-linear equal

magnitude boosts in the CoM transverse plane however, equivalent to a single global trans-

verse boost, the values of both MCT and Mmax
CT can depend on the magnitude and direction

of the boost. For instance, when m(v1) = m(v2) = m(v) Eqn. (1.3) becomes:

Mmax
CT [m2(v), pb] = 2

(
rp0 + E0

√
1 + r2

)
, (2.3)

where r ≡ pb/2m(δ), pb is the net transverse momentum of upstream objects (ISR jets

etc.) generating the boost,

E0 ≡
m2(δ) −m2(α) +m2(v)

2m(δ)
, (2.4)
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and p0 ≡
√

E2
0 −m2(v).

With sufficient statistics one might hope to use Eqn. (2.3) to measure m(δ) and m(α)

separately by measuring Mmax
CT as a function of pb. This possibility is considered further in

Section 4. With limited statistics however it would be useful to be able to transform MCT

such that its value always lies below the MCT end-point given by Eqn. (1.3). In this case

one sacrifices the ability to measure m(δ) and m(α) independently using the pb dependence

of Mmax
CT in order to maximise statistics near the pb = 0 MCT end-point, while limiting

smearing beyond the end-point due to integration over pb.

The approach we shall take will involve boosting the four-momenta of the visible decay

products vi back into the δ1δ2 CoM frame with boost factor β, prior to calculating MCT .

If we know neither the sign nor the magnitude of β then the minimum value of MCT that

we can obtain by varying the assumed value of β is the one-dimensional analogue of MCT

given by MCy defined by

M2
Cy(v1, v2) ≡ [Ey(v1) +Ey(v2)]

2 − [py(v1)− py(v2)]
2

= m2(v1) +m2(v2) + 2[Ey(v1)Ey(v2) + py(v1)py(v2)], (2.5)

where E2
y(vi) ≡ p2y(vi)+m2(vi) and we have assumed that the boost lies in the ±x̂ direction.

MCy is invariant under arbitrary boosts in the x̂− ẑ plane for the same reason that MCT

is invariant under boosts in the ẑ direction. It represents a conservative lower bound on

the value MCT (CoM) of MCT measured in the δ1δ2 CoM frame. The criterion for MCT to

equal MCy in any given frame, and hence for MCT to be minimised in that frame, is that

Ax = 0, where Ax is defined by

Ax ≡ px(v1)Ey(v2) + px(v2)Ey(v1). (2.6)

As an aside, it is interesting to consider at this point the possibility of usingMC defined

by Eqn. (2.1), rather than MCT , and attempting to perform a correction for longitudinal

boosts along the beam direction. In this case we know neither the sign nor the magnitude

of the z-boost and so by the above argument the appropriate quantity to use is the two-

dimensional analogue of MC , which is just MCT as we have been using already. The

criterion for MC to equal MCT is by analogy with Eqn. (2.6)

pz(v1)ET (v2) + pz(v2)ET (v1) = 0, (2.7)

which is equivalent to setting Ση(vi) = 0 as required by Eqn. (2.2).

Now in fact we do know the sign of the required boost, because we know the direction

in the transverse plane of the upstream momentum. Defining this direction to be the +x̂

direction we need to boost v1 and v2 in this same direction (i.e. use β ≥ 0) to correct

for the original boost of the δ1δ2 CoM frame, which must have been in the −x̂ direction.

Such a +x̂ boost monotonically increases px(vi) and hence monotonically increases the

transformed value of Ax towards +∞ as β → +1. Let us define now Ax(lab) and MCT (lab)

to be the values of Ax and MCT measured in the lab frame and A′
x and MCT (corr) to be

the equivalent values obtained after boosting v1 and v2. If Ax(lab) ≥ 0 then MCT (corr)

increases monotonically from MCT (lab) towards +∞ as β → +1 (see Figures 1 and 2).
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Figure 1: Schematic diagram showing the dependence of MCT (corr) on the boost factor β used

in the boost correction. Cases with Ax(lab) > 0 and Ax(lab) < 0 are shown. When β ≥ 0 and

Ax(lab) ≥ 0 the minimum value of MCT (corr) occurs when β = 0 and hence MCT (corr) = MCT (lab).

If β ≥ 0 and Ax(lab) < 0 the minimum value of MCT (corr) is MCy.

Consequently in this case the least conservative lower bound on MCT (CoM) we can obtain

is MCT (corr) = MCT (lab). If on the other hand Ax(lab) is negative then as β and A′
x increase

MCT (corr) first decreases from MCT (lab) towards its minimum value of MCy (at A′
x = 0)

before increasing again towards +∞ (see Figures 1 and 2). In this case, without further

information, the best we can do is set MCT (corr) = MCy.

Fortunately however we have not yet exhausted the possibilities for boost correction.

Observe first that when boosting v1 and v2 the boost factor is given by β = pb/E
est
δδ where

Eest
δδ is the assumed value of the energy Eδδ of the δ1δ2 CoM frame in the lab frame.

Consequently increasing the value of β is equivalent to decreasing Eest
δδ , and vice versa.

Hence if MCT (corr) increases (decreases) monotonically with increasing Eest
δδ and we set

Eest
δδ to a value less than (greater than) Eδδ , the value of MCT (corr) we obtain provides a

conservative lower bound on MCT (CoM). Now if Ax(lab) ≥ 0 then MCT (corr) always increases

with increasing β (see Figure 1) and hence it decreases with increasing Eest
δδ (see Figure 3

– upper curve). In this case we should set Eest
δδ to the upper bound on Eδδ, boost v1 and

v2, and obtain a conservative lower bound on MCT (CoM) from the value of MCT (corr) in this

frame. If Ax(lab) < 0 the situation is more complicated (see Figure 3 – lower curve). In this

case, if A′
x < 0 after boosting with Eest

δδ set to both the upper and lower bounds on Eδδ

then the least conservative lower bound on MCT (CoM) is given by the value of MCT (corr)

– 5 –
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Figure 2: Schematic diagram showing the dependence of MCT (corr) on A′

x. If Ax(lab) < 0 (left-

hand figure) then as A′

x increases from Ax(lab), MCT (corr) passes through its minimum at A′

x = 0,

while if Ax(lab) > 0 (right-hand figure) it does not.

with Eest
δδ set to the lower bound on Eδδ . Conversely if A′

x ≥ 0 in both these cases then the

least conservative lower bound on MCT (CoM) is given by the value of MCT (corr) with Eest
δδ

set to the upper bound on Eδδ. If A′
x ≥ 0 with Eest

δδ set to the lower bound on Eδδ but

A′
x < 0 with Eest

δδ set to the upper bound on Eδδ then MCT (CoM) could be as low as MCy

and so this should be used as the least conservative lower bound on MCT (CoM).

In fact we can indeed obtain both upper and lower bounds on Eδδ . An upper bound

is provided by the proton-proton centre of mass energy Ecm while the total visible energy

Ê of the decay products provides a lower bound. This latter quantity is calculated by

summing the energies of the visible decay products with the net transverse momentum of

the invisible decay products1 given by Emiss
T . Emiss

T equals the total energy of the invisible

decay products only when these are massless, co-linear, and moving in the transverse plane,

and so in general Ê ≤ Eδδ . Below we shall denote values of A′
x obtained with Eest

δδ set to

Ecm or Ê as respectively A′

x(lo) and A′

x(hi).

Let us now summarise the procedure we have developed for correcting MCT for the

effects of co-linear equal magnitude boosts of δ1 and δ2 in the transverse plane2. First

calculate Ax(lab) and A′

x(lo) using Eqn. (2.6), the latter by boosting v1 and v2 with β =

pb/Ecm. If Ax(lab) ≥ 0 or A′

x(lo) ≥ 0 then one should set MCT (corr) to the boosted value of

MCT obtained with β = pb/Ecm. If neither of these criteria are satisfied then one should

next evaluate Ê and boost v1 and v2 with β = pb/Ê. Now evaluate A′

x(hi) using Eqn. (2.6).

1If a lower bound mlo(α) on the masses of the individual invisible decay products can be assumed then

conservatively one can use
√

(Emiss
T

)2 + 4m2
lo(α) in Ê instead of Emiss

T to obtain an improved bound on Eδδ.
2f77, C++ and ROOT code implementing this boost-correction procedure can be downloaded from

http://projects.hepforge.org/mctlib.
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Figure 3: Schematic diagram showing the dependence of MCT (corr) on Eest
δδ , the estimated value

of Eδδ used in the boost. Cases with Ax(lab) > 0 and Ax(lab) < 0 are shown. When Ax(lab) ≥ 0 or

A′

x > 0 MCT (lab) decreases with increasing Eest
δδ . If however Ax(lab) < 0 and A′

x < 0 then MCT (lab)

increases with increasing Eest
δδ .

If A′

x(hi) < 0 then one should set MCT (corr) to the value of MCT in this boosted frame. If

however A′

x(hi) ≥ 0 then one should set MCT (corr) = MCy. An example of the effect of this

boost correction procedure is shown in Fig. 4 for the SUSY events considered in Ref. [9].

3. The shape of the MCT distribution

The differences between MT and MCT identified in Section 2.1 affect the shapes of the

distributions of these quantities. As is well-known, MT possesses a Jacobian peak at

MT = Mmax
T when v1 and v2 are the sole products of the decay of the same parent.

Physically this peak arises because near the end-point all kinematic configurations with

different η(vi) generate the same value of MT , in other words MT becomes independent of

the kinematics of v1 and v2.

Turning now to MCT , let us consider first the special case where the δ1δ2 system is not

boosted in the laboratory transverse plane and no boost correction is applied. When MCT

is calculated for the visible decay products of the δ1δ2 system the extra degrees of freedom

resulting from the independent motion of v1 and v2 generate a significantly different shape

of distribution. Near the end-point at Mmax
CT only events in which both v1 and v2 move

in the transverse plane can contribute to the distribution. The small probability of this
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Figure 4: MCT distributions of SUSY events containing at least two jets for the SPS1a benchmark

SUSY model considered in Ref. [9]. In the left-hand figure the open histogram shows the MCT

distribution with no pb cut and no correction applied. This diagram should be compared with

Figure 2 of Ref. [9] showing the evolution of the uncorrected MCT end-point as a function of the

cut on pb. The light (yellow) histogram shows the MCT distribution of the same events after the co-

linear boost correction described in the text has been applied to the MCT values, assuming that all

additional jets contribute to the upstream momentum pb. The medium (cyan) histogram shows the

same distribution for q̃Rq̃R pair-production events. In the right-hand figure the latter distribution

is plotted on an expanded scale. The open histogram shows the parton-level MCT distribution for

the same events. The end-point from q̃Rq̃R pair-production is expected at 531 GeV (denoted by a

vertical dashed line in both figures).

configuration (because v1 and v2 are uncorrelated) cancels the large probability generated

by the Jacobian transformation, resulting in an end-point which tends asymptotically in

the absence of boosts to

P(MCT ) dMCT = A
√

(Mmax
CT )2 −M2

CT dMCT , (3.1)

where A is a constant. Typical MCT distributions in the absence of boosts, displaying this

end-point, are shown in Figure 5.

Despite this cancellation of the peak at Mmax
CT the MCT distribution can still possess

a Jacobian peak. The peak occurs however at the lower limit of the distribution, where

MCT = m(v1) +m(v2) ≡ Mmin
CT (see Eqn. (1.1)). The distribution tends asymptotically in

the absence of boosts to

P(MCT ) dMCT = B
MCT√

M2
CT − (Mmin

CT )2
dMCT , (3.2)

where B is a constant. This is very similar to the functional form of the MT Jacobian

peak, although in this case it is reversed such that the distribution is real above the peak

– 8 –
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Figure 5: Typical MCT distributions in the absence of boosts for massless visible particles (full

histogram) and massive visible particles of total mass 0.13Mmax
CT (dashed histogram). The x-axis

has been scaled such that the end-point lies at MCT /M
max
CT = 1.

rather than below it. Physically the peak occurs because when MCT ∼ Mmin
CT the value

of MCT becomes independent of the kinematics of v1 and v2, because the m(vi) terms in

Eqn. (1.1) dominate. Hence all kinematic configurations generate similar values of MCT .

An example of such a peak can be seen in the dashed histogram in Figure 5. Note that

when Mmin
CT = 0 the numerator and denominator in Eqn. (3.2) cancel leaving a uniform

distribution (see e.g. full histogram in Figure 5).

Consider now the general case where the δ1δ2 system has been boosted in the laboratory

transverse plane, and the boost correction procedure discussed in Section 2.2 has been

applied. In this case there can be a further enhancement of the population of events at

MCT = Mmin
CT . If Ax(lab) < 0 and A′

x(hi) > 0 then the boost-corrected value of MCT is

given by MCy from Eqn. (2.5). If the tranverse momenta of the two visible particles under

consideration are bisected by the boost direction however, then MCy can take very small

values, even if the transverse momenta of the vi particles are relatively large. This effect

is particularly striking when m(v1) = m(v2) = Mmin
CT = 0, in which case it is straight-

forward to see from Eqn. (2.5) that MCy = 0. We shall refer below to the resulting peak

at MCT = Mmin
CT as the ‘MCT = MCy’ peak.

Specific examples of the peaks and end-points discussed in this section can be seen in

Section 5 below.
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4. Measuring m(δ) and m(α) independently

The dependence of Mmax
CT on m(vi), noted in Ref. [9], and on pb, noted in Section 2.2,

provides potential techniques for measuring m(δ) and m(α) independently. In this section

we develop these techniques in more detail.

4.1 Using the m(vi) dependence of Mmax
CT

As remarked in Section 1, when attempting to measure m(δ) and m(α) independently

using Eqn. (1.3) the requirement m(v1) = m(v2) = m(v) reduces significantly the event

selection efficiency. One can consider ameliorating this problem by removing this mass

equality requirement and considering the dependence of the resulting MCT end-point on

both m2(v1) and m2(v2). This is given by

(
Mmax

CT [m2(v1),m
2(v2)]

)2
= m2(v1) +m2(v2) + 2

(
E0(v1)E0(v2)

+
√[

E2
0(v1)−m2(v1)

][
E2

0(v2)−m2(v2)
])

, (4.1)

where

E0(vi) ≡
m2(δ) −m2(α) +m2(vi)

2m(δ)
. (4.2)

In this case all events passing background rejection cuts are used, however the implicit

requirement of binning in both m2(v1) and m2(v2) to measure Mmax
CT [m2(v1),m

2(v2)] still

limits the available event statistics in each end-point measurement (modulo the symmetry

under interchange of v1 and v2 of Mmax
CT [m2(v1),m

2(v2)]). As an aside, Eqn. (4.1) provides

a link between the ‘stransverse mass’ MT2(χ) [1] and MCT . This is discussed in more detail

in Appendix A.

An alternative to using Eqn. (4.1) for measuringm(δ) andm(α) independently involves

observing that Mmax
CT [m2(v)] is linearly dependent on m2(v) in Eqn. (1.3) and hence that

Mmax
CT [m2

max] = max
(
Mmax

CT [m2(v1)],M
max
CT [m2(v2)]

)
, (4.3)

where,

mmax ≡ max (m(v1),m(v2)) . (4.4)

Then we can make use of the following inequality:

Mmax
CT [m2(v1),m

2(v2)] ≤ Mmax
CT [m2

max], (4.5)

to find that

MCT (v1, v2) ≤ Mmax
CT [m2(v1),m

2(v2)] ≤ Mmax
CT [m2

max]. (4.6)

Consequently if the two-dimensional distribution of event MCT (v1, v2) values versus event

m2
max values is plotted, for all events passing background rejection cuts, the distribution

will display an MCT end-point dependence on m2
max given by:

Mmax
CT [m2

max] =
m2

max

m(δ)
+

m2(δ)−m2(α)

m(δ)
. (4.7)
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Hence m(δ) and m(α) may be obtained by measuring the gradient and intercept of the end-

point dependence on m2
max in a similar manner to the existing technique using Eqn. (1.3).

Now however all events passing the background rejection cuts can be used rather than just

a small subset.

It should be noted here that although this technique is sound from a theoretical point-

of-view, the uneven distribution of events in the MCT (v1, v2) versus m
2
max plane can cause

difficulty when attempting to use it in practice. This is discussed further in Section 5.

4.2 Using the pb dependence of Mmax
CT

In Section 2.2 we developed a procedure for correcting MCT (v1, v2) such that it is always

bounded from above by the expression for Mmax
CT obtained when the upstream momentum

pb = 0. Given sufficient statistics however an alternative procedure would involve binning

the non-boost-corrected value of MCT (v1, v2) in pb and measuring m(δ) and m(α) indepen-

dently from the dependence of Mmax
CT on pb. When m(v1) = m(v2) = m(v) this dependence

is given by Eqn. (2.3), however we can also obtain a general expression valid even when

m(v1) 6= m(v2), which is

(
Mmax

CT [m2(v1),m
2(v2), pb]

)2
=

(
Mmax

CT [m2(v1),m
2(v2)]

)2
+

4r2
(
E0(v1)E0(v2) + p0(v1)p0(v2) +

1

r

√
1 + r2

[
p0(v1)E0(v2) + p0(v2)E0(v1)

])
, (4.8)

where Mmax
CT [m2(v1),m

2(v2)] is obtained from Eqn. (4.1), r ≡ pb/2m(δ), E0(vi) is given by

Eqn. (4.2) and p0(vi) ≡
√

E2
0(vi)−m2(vi). In principle the additional dependence of Mmax

CT

on the angle between the pb vector and the net momentum of v1 and v2 in the transverse

plane could also be exploited, although this is not considered further here.

The advantage of using the pb dependence of M
max
CT rather than the m(vi) dependence

discussed in Section 4.1 is that m(δ) and m(α) can in principle be measured independently

even when m(v1) = m(v2) = m(v) ≃ 0, for instance when the vi particles are jets or

leptons. This avoids potential combinatorial problems inherent in the latter technique. In

this special case the expression for Mmax
CT becomes

Mmax
CT [0, 0, pb] = Mmax

CT [0, 0, 0]
(
r +

√
1 + r2

)
. (4.9)

A toy Monte Carlo example MCT (v1, v2) versus pb distribution for massless vi particles is

shown in Figure 6 together with the theoretical bound from Eqn. 4.9.

As with the use of the m(vi) dependence of M
max
CT in Section 4.1 the above technique is

sound from a theoretical perspective, however as we shall see in Section 5 the uneven dis-

tribution of events in the MCT (v1, v2) versus pb plane can cause difficulty when attempting

to use it in practice.

5. Mass measurement for two-step decay chains

5.1 Generic strategy

We shall now investigate the use of the boost-corrected contransverse mass discussed in

Section 2.2 (hereafter referred to simply as MCT ) to measure the masses of pair-produced
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Figure 6: Example MCT (v1, v2) versus pb distribution generated with a toy Monte Carlo showing

the dependence of Mmax
CT on pb given by Eqn. (4.9). The simulated events consist of pair-produced

δ particles of mass 200 GeV, each decaying into a massless visible particle and an invisible particle

α of mass 100 GeV. pb is evenly distributed in the range 0–300 GeV. The MCT (v1, v2) axis has

been normalised to Mmax
CT obtained when pb = 0.

heavy particles decaying via symmetric two-step sequential two-body decay chains. As

discussed in Ref. [14] mass measurement with such chains is non-trivial because they are

too short to solve fully for the masses using invariant mass end-point techniques [20, 21,

22, 23, 24] or the ‘mass relation’ method [25]. The decay chains considered can be written

in the form:

δ → Pβ → PQα, (5.1)

where δ, β and α are generic massive particles, P and Q are generic visible particles (here

assumed massless) and α is invisible. The two chains present in each event can be seen in

diagrammatic form in Figure 7, where particles appearing in the second decay chain are

denoted with primed labels. We assume in the following discussion that particles labeled

with the same letter possess the same mass.

With each event we can construct one pair of invariant mass observables and three

contransverse mass observables from the momenta of the four observed particles P , Q, P ′

and Q′. These observables are:

• m(P (′), Q(′)): the invariant masses of the visible products of the two decay chains

• MCT (P,P
′): MCT constructed from the momenta of P and P ′
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• MCT (Q,Q′): MCT constructed from the momenta of Q and Q′

• MCT ([PQ], [P ′Q′]): MCT constructed from the momenta of the aggregate products

of each chain [PQ] and [P ′Q′].

These observables possess kinematic end-points whose positions are functions of the masses

m(δ), m(β) and m(α). The end-point positions are respectively3:

mmax(P,Q) =

√
[m2(δ) −m2(β)][m2(β)−m2(α)]

m(β)
≡ k1, (5.2)

Mmax
CT (P,P ′) =

m2(δ) −m2(β)

m(δ)
≡ k2, (5.3)

Mmax
CT (Q,Q′) =

m2(β)−m2(α)

m(β)
≡ k3, (5.4)

Mmax
CT ([PQ], [P ′Q′]) =

m2(δ) −m2(β)

m(δ)
+m(δ)

(
m2(β)−m2(α)

m2(β)

)
≡ k4, (5.5)

where the final relationship is obtained from Eqn. (1.3) with m(v) = mmax(P,Q). In

addition the two-dimensional distribution of events in the MCT ([PQ], [P ′Q′]) versus m2
max

plane discussed in Section 4.1 can be constructed, providing additional mass constraints

via Eqn. (4.7). The two-dimensional distributions of events in the (non-boost-corrected)

MCT (P,P
′) versus pb and MCT (Q,Q′) versus pb planes discussed in Section 4.2 can also in

principle be used.

Using Eqns. (5.2), (5.3) and (5.4) the mass of the parent particle δ can be calculated

from:

m(δ) =
k41k2

k41 − k22k
2
3

. (5.6)

The masses of β and α can then be obtained by simple substitution into Eqns. (5.3)

and (5.4) respectively. The constraints on the masses provided by Eqn. (4.7), Eqn. (5.5)

and/or Eqn. (4.8) may be more difficult to exploit, as shall be discussed in Section 5.2, but

they can be used as a closure test for the masses measured using the other constraints.

In typical SUSY decay chains we consider cases where the particles P and Q can be

either quarks/jets (q) or leptons (ℓ), leading to the following possible final-state config-

urations: {P ≡ q,Q ≡ q}, {P ≡ q,Q ≡ ℓ} and {P ≡ ℓ,Q ≡ ℓ}. The second of these

configurations is particularly favourable from an experimental point-of-view because in

this case there is no ambiguity in assigning particles to steps in the decay chains when

constructing MCT (P,P
′) and MCT (Q,Q′). In the case-studies presented below we shall

therefore focus on events with the final state P ≡ q and Q ≡ ℓ.

3When dealing with single-step three-body decay chains in which two visible particles and one invis-

ible particle are produced in each decay Eqns. (5.2)–(5.5) are replaced by mmax(P,Q) = m(δ) − m(α),

Mmax
CT ([PQ], [P ′Q′]) = 2[m(δ)−m(α)] and Mmax

CT (P, P ′) = Mmax
CT (Q,Q′) = [m2(δ)−m2(α)]/m(δ), although

in the last two cases the distributions are strongly phase-space suppressed near the endpoints.
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Figure 7: Diagrammatic view of the decay chain described in the text. The mass measurement

technique described in the text is independent of the boost given to the system of interest by

upstream decays or ISR (denoted by circles).

5.2 Benchmarking on top events

The mass measurement technique proposed above can be tested with tt̄ events in which

both top quarks decay to leptons via leptonically decaying W ’s through the chain:

t → bW → bℓν. (5.7)

Such events contain two symmetric two-step sequential two-body decay chains, with invis-

ible particles being produced at the end of each chain. They therefore provide a suitable

testbed for our mass measurement technique, with δ ≡ t, β ≡ W , α ≡ ν, P ≡ b and

Q ≡ ℓ. The main notable difference between these events and SUSY events is that the

invisible particles are in reality approximately massless, however in our analysis we shall

not make this assumption. This approach has been used previously to study alternative

SUSY particle mass measurement techniques [18, 14].

In order to evaluate the observables discussed in Section 5.1, we generated with MC@NLO

3.3 [26, 27] an inclusive sample of
√
s = 14 TeV LHC tt̄ events with an input top mass of

172.5 GeV. The events were passed through the parameterised detector simulation ACERDET

[28] which was modified to reproduce the resolutions for leptons and jets given in [29]. For

the tagging of b-jets, an efficiency of 60% was assumed, for a light jet rejection of 100.

The total generated sample was 2.2 M events, corresponding to an integrated luminosity

of approximately 3 fb−1.
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Events were selected with the following requirements:

1. Njet ≥ 2, with pT (j2) > 40 GeV

2. Emiss
T > 30 GeV

3. Nlep = 2, where lep = e/µ(isolated) and pT (l2) > 20 GeV

4. At least two jets tagged as b with pT > 50 GeV

5. Only one of the two possible sets of pairings of the two leptons with the two leading

b-jets should generate invariant mass values which are both less than 175 GeV. This

cut was intended to reduce the experimental combinatorial background and was used

only when constructing observables which required the pairing of leptons and jets

from the same decay chain.

Approximately 16100 (8300) events passed cuts 1-4 (1-5) respectively. Of these 15200

(7400) were indeed events in which both hard W ’s decayed into a muon or electron. The

remaining events contained at least one tau lepton decaying leptonically into e or µ.

With the two bℓ pairs, each corresponding to the decay of a different top quark, one

can construct the observables discussed in Section 5.1. These observables are m(b(′), ℓ(′)),

MCT (b, b
′), MCT (ℓ, ℓ

′) and MCT ([bℓ], [b
′ℓ′]). Neglecting the mass of the b-quark, the end-

points in the distributions of these quantities lie at (from Eqns. (5.2)–(5.5)):

mmax(b, ℓ) =

√
[m2(t)−m2(W )][m2(W )−m2(ν)]

m(W )
= 152.6 GeV, (5.8)

Mmax
CT (b, b′) =

m2(t)−m2(W )

m(t)
≡ 135.0 GeV, (5.9)

Mmax
CT (ℓ, ℓ′) =

m2(W )−m2(ν)

m(W )
≡ 80.4 GeV, (5.10)

Mmax
CT ([bℓ], [b′ℓ′]) =

m2(t)−m2(W )

m(t)
+m(t)

(
m2(W )−m2(ν)

m2(W )

)
≡ 307.5 GeV.(5.11)

Accounting for m(b) 6= 0 translates into shifts of less than 0.1% in the end-point positions.

We show in Figure 8 the distributions of the observables at parton-level and at detector-

level for events passing the selection cuts in which both W ’s decay into electron and muons.

All contransverse mass observables have been corrected for transverse boosts according

to the procedure discussed in Section 2.2. It can be seen that the end-point structures

at parton-level are conserved at detector-level, modulo some smearing. The enhancement

observed at the lower limit of the MCT (b, b
′) distribution is generated by the Jacobian peak

at MCT = Mmin
CT = 2m(b) discussed in Section 3 together with the MCT = MCy effect of

the boost correction procedure discussed in the same ssection. The MCT (ℓ, ℓ
′) distribution

in Figure 8 is relatively unaffected by the Jacobian enhancement because Mmin
CT = 0 for

massless leptons. The dilepton systems in these events receive large boosts from the bb′

recoil however and so the boost correction procedure generates a prominent MCT = MCy

peak at MCT = 0.
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Figure 8: Distributions of m(b(′), ℓ(′)) (top-left), MCT ([bℓ], [b
′ℓ′]) (top-right), MCT (b, b

′) (bottom-

left) and MCT (ℓ, ℓ
′) (bottom-right) for tt̄ events passing the selection cuts where both leptons are

generated directly from a W decay. The histograms show the parton-level distributions while the

points with error-bars show the distributions after detector-level smearing. The expected end-point

positions are indicated with vertical lines. The small populations of parton-level events lying beyond

the expected end-points arise from the natural width of the W .

In order to explore in an approximate manner the potential precision of mass measure-

ments obtained with this technique, we fit the end-points of the distributions with a linear

function smeared by detector resolution effects. Following Ref. [29] we use a function f(x)

given by:

f(x) =
1√
2πσ

∫ xEP

0
exp

(
− (x− x′)2

2σ2

)
max{A(x′ − xEP), 0} dx′ + a+ bx. (5.12)

Here x is the observable under consideration, xEP represents the end-point position, σ

represents the resolution of the assumed gaussian detector smearing, A is the slope of the
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Figure 9: Distributions of m(b(′), ℓ(′)) (left) and MCT (b, b

′) (right) at detector-level for tt̄ events

passing the selection cuts. The dark (red) histogram indicates the distribution of events passing

the selection where one of the two leptons is not directly produced in the decay of a W . The fit to

the end-point function described in the text is shown.
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Figure 10: Distributions of MCT (ℓ, ℓ
′) for Ax(lab) > 0 (left), and Ax(lab) < 0 (right) at detector-

level for tt̄ events passing the selection cuts. The dark (red) histogram indicates the distribution of

events passing the selection where one of the two leptons is not directly produced in the decay of a

W . The fit to the end-point function described in the text is shown.

distribution before smearing, and a and b are parameters describing an assumed linear

background distribution. The latter distribution helps to take into account the effects

of both combinatorial background from incorrect assignment of visible particles to decay

chains and non-gaussian tails in the experimental resolution.

For the observables m(b(′), ℓ(′)) and MCT (b, b
′), the fits to the distributions for all
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detector-level events passing the cuts are shown in Figure 9, with the irreducible background

of tt̄ events where at least one of the leptons is not directly produced in a W decay shown

in grey (red). The fit function reproduces well the observed shape, and the value of the

resolution parameter σ obtained from the fit is in good agreement with the actual value of

the smearing used in the detector simulation.

The situation is somewhat more complex for the MCT (ℓ, ℓ
′) observable. In this case

one has two populations. If Ax(lab) > 0 only a very small transverse boost correction

is applied to MCT , using Eest
δδ = Ecm. Therefore the experimental end-point resolution

is to a good approximation just the resolution of the lepton pT measurement (of order

1 GeV), plus the end-point smearing arising from the W natural width (of order 2-3 GeV).

If Ax(lab) < 0 however, MCT is corrected using the pT of the hadronic recoil, resulting in a

significantly larger resolution of order 9-10 GeV. The two configurations must therefore be

fitted separately. The distributions are shown in Figure 10, for Ax(lab) > 0 (Ax(lab) < 0) on

the left (right). From the figure one can also observe that the gradient of the Ax(lab) > 0

distribution near the end-point is smaller, and it was necessary in this case to fix the

experimental resolution to 3 GeV in order to obtain an acceptable fit.

Measurement of the end-point in the MCT ([bℓ], [b
′ℓ′]) distribution presents further
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Figure 11: Two-dimensional distribution in the MCT ([bℓ], [b
′ℓ′]) versus m2

max plane of detector-

level tt̄ events passing the selection cuts. The extremal values of the two observables, given by

Eqns. (5.11) and (5.8) are denoted by horizontal and vertical lines respectively. The dependence of

Mmax
CT ([bℓ], [b′ℓ′]) on m2

max given by Eqn. (4.7) is denoted by the diagonal line.
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Figure 12: Distributions of MCT ([bℓ], [b

′ℓ′]) for detector-level tt̄ events passing the selection cuts

after requiring additionally that m2
max < 20000 GeV2 (left) and m2

max < 17500 GeV2 (right). The

vertical lines indicate the expected end-point positions.

challenges due to the concave shape of the distribution near to the end-point, seen in

Figure 8(top-right). For this end-point the assumption of a linear shape breaks down, pri-

marily due to the depopulation of the MCT ([bℓ], [b
′ℓ′]) versus m2

max plane near m2
max =

(mmax(b, ℓ))2 seen in Figure 11. An alternative strategy for constraining the masses

with MCT ([bℓ], [b
′ℓ′]) would be to measure the dependence of Mmax

CT ([bℓ], [b′ℓ′]) on m2
max,

as discussed in Section 4.1. This could be accomplished in practice by constructing

MCT ([bℓ], [b
′ℓ′]) histograms of those events which pass a cut on m2

max. Unfortunately

however this procedure is also complicated by the presence of concave end-points, as can

be seen in Figure 12. Further progress with this specific element of the contransverse mass

technique will likely require a dedicated study of end-point shapes, which is outside of the

scope of this paper. Because of these considerations we will not use the measurements of

Mmax
CT ([bℓ], [b′ℓ′]) in the following mass measurement study. Nevertheless such constraints

could be useful for validating mass measurements obtained from the other observables.

Similar considerations apply when attempting to use the non-boost-corrected MCT (b, b
′)

and MCT (ℓ, ℓ
′) observables to measure the dependence of Mmax

CT (b, b′) and Mmax
CT (ℓ, ℓ′) on

pb, as shown in Figure 13, and this technique will also not be considered further here.

The results of the end-point fits are listed in Table 1, where the first uncertainty is

the statistical uncertainty from the MINUIT [30] fitting program for the chosen fit interval,

the second is the systematic uncertainty obtained by varying the fit interval and the third

uncertainty is the correlated systematic uncertainty derived from assumed energy scale

uncertainties of 1% for b-jets and 0.1% for leptons [31]. The quoted uncertainties should

be considered approximate and could be improved with the use of better end-point fitting

functions, for instance templates derived from Monte Carlo simulation studies.

Based on the end-point measurement uncertainties listed in Table 1 it is possible to
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Figure 13: Two-dimensional distributions in the MCT (b, b

′) versus pb plane (left) and MCT (ℓ, ℓ
′)

versus pb plane (right) of detector-level tt̄ events passing the selection cuts. The dependence of

Mmax
CT on pb given by Eqn. (4.9) is denoted by the curved line in each case. The small population of

events lying beyond Mmax
CT in the left-hand figure arises from the finite detector-level b-jet energy

resolution, which degrades at lower energy.

End-point Truth (GeV) Measured (GeV)

mmax(b, ℓ) 152.6 152.8 ± 1.7± 1± 0.8

Mmax
CT (b, b′) 135.0 137.7 ± 3.6± 3± 1.4

Mmax
CT (ℓ, ℓ′) (Ax(lab) < 0) 80.4 80.2± 0.5 ± 1± 0.1

Mmax
CT (ℓ, ℓ′) (Ax(lab) > 0) 80.4 81.2± 1.7 ± 2± 0.4

Table 1: End-point positions in GeV. The first uncertainty is statistical, while the second and

third are respectively the uncorrelated systematic and correlated energy scale uncertainties. The

expected end-point positions from Eqns. (5.8), (5.9) and (5.10) are listed in the column labelled

‘Truth’. The assumed integrated luminosity is 3 fb−1.

evaluate the achievable precisions for measuring the masses of the top quark, W and neu-

trino. We use the technique described in Ref. [32], where for each end-point measurement

we generate a set of pseudo-experiments by sampling from a gaussian distribution centred

on the nominal value of the end-point position of width equal to the estimated measure-

ment precision. We assume that the measurements are uncorrelated with the exception of

the energy scale uncertainties, which are assumed to be fully correlated. For each pseudo-

experiment we calculate the value of m(t) according to Eqn. (5.6) and hence calculate

m(W ) and m(ν) from Eqns. (5.9) and (5.10).

The distributions of the measured m(t) values and m(t)−m(W ) mass differences are

shown in Figure 14 for a set of 100000 pseudo-experiments. The precision of the top quark

mass measurement is ∼8 GeV, while the uncertainty on the measurement of m(t)−m(W )

is ∼2 GeV. A 95%(68%) upper limit on the neutrino mass of 30(16) GeV is obtained. These
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Figure 14: Distributions of the calculated top mass (left) and m(t) −m(W ) mass difference for

100k experiments. The assumed statistics is 3 fb−1.

results may appear to be disappointing when compared with the ∼1 GeV m(t) precision

expected to be obtained at the LHC from semileptonic tt̄ events for the same assumptions

on b-jet energy scale uncertainty [29]. Here however we have made no assumptions about

the masses of the W or neutrino and so 8 GeV is the stand-alone precision with can

be obtained with the technique. The end-point measurements used in this technique are

primarily sensitive to mass differences and so if the mass of the W were assumed to be

known the precision of the measurement of m(t) would improve to ∼2 GeV, dominated

by the systematics associated with the very crude end-point fitting function used for this

study.

5.3 A SUSY example

Having demonstrated the proposed mass measurement technique with tt̄ events let us now

apply the same technique to a SUSY model generating events with a similar final state.

An example of such a SUSY model is an MSSM model with a left-handed slepton doublet

lighter than the chargino. In this case events with the decay chain

q̃ → qχ̃±

1 → qℓν̃ → qℓνχ̃0
1 (5.13)

appearing in both legs of the event can be produced. The invisible sparticle at the end

of the chain is in this case the sneutrino, since both of its decay products are undetected.

This decay chain maps onto Eqn. (5.1) with δ ≡ q̃, β ≡ χ̃±

1 , α ≡ ν̃, P ≡ q and Q ≡ ℓ.

The decay (5.13) is however not the only decay yielding the final state of interest, with

a quark, a lepton and one or more invisible particles on each leg. We consider the following
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decay chains:

q̃ → qχ̃±

1 → qνℓ̃ → qνℓχ̃0
1 (5.14)

q̃ → qχ̃±

1 → qχ̃0
1W → qχ̃0

1ℓν (5.15)

q̃ → qχ̃±

1 → qχ̃0
1W → qχ̃0

1ℓν (5.16)

For all of these decays, formulas (5.2)–(5.5) are valid, provided that m(α) in (5.2), (5.4)

and (5.5) is replaced by mmin(α), defined as the minimum mass of the “pseudo-particle”

composed of all of the invisible particles in the decay. Analytical expressions for mmin(α)

in terms of the masses of the particles involved in the decays are given in Appendix B.

These can be used in Eqns. (5.2) and (5.5).

The case of Eqn. (5.4) deserves special comment. In this case for decay chains (5.14),

(5.15) and (5.16) one invisible particle is upstream of the lepton and one downstream. It

is therefore not possible to correct for the upstream momentum, since it is not possible to

separate the momentum of the neutrino and of the χ̃0
1. However, if one performs the boost

correction assuming that all of the observed missing transverse momentum is downstream

of the lepton, the distributions for Mmax
CT (Q,Q′) still possess end-points at positions given

by Eqn. (5.4) with the mmin(α) values defined in Appendix B.

Based on measurements of the end-point positions k1, k2 and k3, one can calculate the

masses of the squark and of the chargino independently from the decay mode of the χ̃±

1 .

This is a remarkable achievement, as it shows that it is possible to perform an absolute

measurement of the chargino mass through its leptonic decay notwithstanding the fact that

two invisible sparticles are present in the decay of each chargino. The interpretation of the

meaning of the measured m(α) is dependent on the chargino decay mode, and the analysis

based on the measurement of k1, k2, k3 and k4 does not allow the discrimination of the

different expressions given in Appendix B.

It should be noted that the mass hierarchy and coupling structure implied by the

presence of the decay chain given by Eqn. (5.13) imply also the existence, with a significant

branching ratio, of the chain:

q̃ → qχ̃0
2 → qℓℓ̃L → qℓℓχ̃0

1, (5.17)

which can be easily selected by requiring the presence of two leptons with the same flavour

and opposite sign. This ‘golden channel’ for SUSY mass measurement at the LHC can

potentially provide additional information regarding the masses of sparticles involved in

the chargino decay chain. In the following we shall not show a complete analysis along these

lines, which has been already developed in detail in e.g. Refs. [20, 21, 3]. We shall limit

ourselves instead to showing for our example model that the invariant mass of two OS-SF

leptons does give a characteristic end-point structure from the χ̃0
2 → ℓℓ̃ decay. Starting from

this end-point, and combining it with the hard jets in the events it is possible to measure the

masses of q̃, χ̃0
2 ℓ̃ and χ̃0

1 [20, 21, 3]. It is then straightforward to insert the measured values

of these masses into Eqns. (5.2)–(5.5) and observe that under the assumption of decays

(5.14), (5.15), and (5.16) the mass measurements from the two analyses are inconsistent.
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Parameter Value (GeV) Parameter Value (GeV)

m(g̃) 520.0 m(ũL) 503.4

m(ẽL) 157.1 m(ν̃e) 135.7

m(χ̃±

1 ) 231.5 m(χ̃0
2) 232.0

m(χ̃0
1) 117.2

Table 2: Masses of the relevant sparticles for the example MSSM point.

End-point Position: Chain (5.13) Position: Chain (5.14)

mmax(q, ℓ) 362.1 297.7

Mmax
CT (q, q′) 396.9 396.9

Mmax
CT (ℓ, ℓ′) 151.9 69.7

Mmax
CT ([qℓ][q′ℓ′]) 727.2 668.5

Table 3: Expected end-point positions in GeV for the decay chains (5.13) and (5.14).

In order to explore the feasibility of this measurement technique, we used HERWIG

6.5 [33, 34] to generate events from a toy MSSM model incorporating the mass hierarchy

present in decay chain (5.13). The masses of all of the squarks were set to 500 GeV and

those of all the sleptons to 150 GeV. The three gaugino masses M1, M2 and M3 were

set respectively to 120, 250 and 520 GeV while the higgsino mass parameter µ was set to

400 GeV, tan β to 10, and mA to 400 GeV. The trilinear couplings were set to zero. The

relevant sparticle masses, as calculated by ISASUSY 7.75 [35] are listed in Table 2. The

expected end-point positions for the chains (5.13) and (5.14) are listed in Table 3, using

the results of the discussion above regarding the treatment of m(α) in decay chain (5.14).

A total of 800 K events were generated, corresponding to an integrated luminosity of

∼12 fb−1. The generated events were passed through the same parameterised detector

simulation as for the top sample described in Section 5.2. Events were selected with the

following requirements:

1. Njet ≥ 2, with pT (j1) > 100 GeV and pT (j2) > 50 GeV.

2. Emiss
T > 100 GeV.

3. Nlep = 2, where lep = e/µ(isolated) and pT (l2) > 20 GeV. The two leptons were

required to possess different flavours.

4. Veto all events with jets with pT (j1) > 20 GeV labelled as a b-jet or τ -jet.

The veto on b and τ labelled jets was applied to reduce the SUSY background from events

containing top quark or τ lepton decays.

The requirement of leptons with different flavour reduces the signal by a factor two, but

it is necessary, as the same-flavour signal is dominated by SUSY background events in which

the two leptons are produced in the decay chain (5.17). This is demonstrated in Figure 15

which shows the lepton-lepton invariant mass distribution for opposite-sign same-flavour
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lepton pairs. The full line is the inclusive distribution, and exhibits the characteristic end-

point structure from decay (5.17) [20]; the grey (red) area indicates lepton pairs from the

decays (5.13) and (5.14). Figure 15 demonstrates also that the characteristic lepton-lepton

invariant mass end-point from the χ̃0
2 → ℓℓ̃ decay chain is indeed observable for this model.

Following application of the selection cuts described above the only significant remain-

ing background was from tt̄ production and only this background is considered in the

following. Approximately 9700 SUSY events passed cuts 1–4. Of these 7200 were indeed

events in which both the muon and the electron were produced directly in the decay of

a sparticle from the chains (5.13) or (5.14). In the remaining events at least one of the

leptons was generated by the decay of a tau lepton produced in one of the two legs of the

event. The number of tt̄ background events was approximately 1400.

The parton-level distributions for the observablesm(q(′), ℓ(′)), MCT ([qℓ], [q
′ℓ′]), MCT (q, q

′)

and MCT (ℓ, ℓ
′) are shown in Figure 16 for all events passing the selection cuts in which

both legs in the event contain the chain (5.13) or the chain (5.14). The contransverse

mass observables have been corrected for transverse boosts according to the procedure

described in Section 2.2. For the reasons discussed in Section 5.2 we shall not measure

or exploit the MCT ([qℓ], [q
′ℓ′]) end-points in the following analysis, nor the non-boost-

corrected MCT (b, b
′) and MCT (ℓ, ℓ

′) versus pb end-points. Nevertheless such constraints

could be useful for validating mass measurements obtained from the other observables.

The first step in the detector-level analysis is the calculation of the invariant mass
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Figure 15: Detector-level lepton-lepton invariant mass for opposite-sign same-flavour lepton pairs

after the selection cuts except with the requirement of different flavours for the leptons. The full

line is the inclusive distribution while the grey (red) area indicates the distribution for lepton pairs

from the decays (5.13) and (5.17).
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Figure 16: Parton-level distributions of m(q(′), ℓ(′)) (top-left), MCT ([qℓ], [q
′ℓ′]) (top-right),

MCT (q, q
′) (bottom-left) and MCT (ℓ, ℓ

′) (bottom-right) for SUSY events passing the selection cuts

where both leptons are generated by decay chain (5.13).

of each lepton with each of the two leading jets in the event. The distribution of the

minimum of these two masses for each lepton is plotted in Figure 17 and displays an end-

point at around 360 GeV, as expected from chain (5.13). The detector-level distributions

of MCT (q, q
′) and MCT (ℓ, ℓ

′) are plotted in Figure 18 and also display end-points at the

positions expected for chain (5.13). Only the distribution of MCT (ℓ, ℓ
′) values for events

with Ax(lab) < 0 is shown. This is due to the fact that the distribution at truth level for

Ax(lab) < 0 hits the nominal end-point, whereas that for Ax(lab) > 0 runs out of statistics

approximately 10 GeV below the nominal position (see Figure 19(left)), leading to a biased

fitted end-point position at detector level (see Figure 19(right)). This arises because only

a very small boost correction (with Eest
δδ = Ecm) can be applied in the Ax(lab) > 0 case

and hence the resulting corrected MCT value is more conservative than in the Ax(lab) < 0
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Figure 17: Detector-level distribution of the minimum value of m(q(′), ℓ(′)) for SUSY events

passing the selection cuts. The dark grey (blue) histogram indicates the tt̄ background. The

complete distribution is shown on the left while the region near the end-point is expanded on the

right. The fit to the end-point function given in Eqn. (5.12) is shown.

End-point Truth (GeV) Measured (GeV)

mmax(q, ℓ) 362.1 369.2 ± 2± 5± 1.5

Mmax
CT (q, q′) 396.9 401.7 ± 4.8± 5± 4

Mmax
CT (ℓ, ℓ′) (Ax < 0) 151.9 149.3 ± 1.5± 3± 0.8

Table 4: End-point positions in GeV. The first uncertainty is statistical, while the second and

third are respectively the uncorrelated systematic and correlated energy scale uncertainties. The

expected end-point positions from Eqns. (5.2), (5.3) and (5.4) are listed in the column labelled

‘Truth’. The assumed integrated luminosity is 12 fb−1

case. This effect is most evident when consideringMCT (ℓ, ℓ
′) because of the potentially

large boosts generated by the recoiling bb′ system. The same effect, although numerically

less evident, is present also in the top quark analysis but is masked by the smearing of the

end-point due to the W natural width. We choose here to use the larger of the two fitted

end-point positions, which must be nearer to the true value.

In order to explore the approximate potential precision of mass measurements obtained

with this technique, we fit the end-points of the distributions with the smeared linear

function given in Eqn. (5.12). The caveats associated with this technique discussed in

Section 5.2 are also relevant here. In the case of the MCT (ℓ, ℓ
′) distribution we only fit

the distribution of events with Ax(lab) < 0, as discussed above. The fitted distributions are

shown in Figures 17 and 18. The results of the end-point fits are listed in Table 4, where

the first uncertainty is the statistical uncertainty from the MINUIT [30] fitting program

for the chosen fit interval, the second is the systematic uncertainty obtained by varying

the fit interval and the third uncertainty is the correlated systematic uncertainty derived
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Figure 18: Detector-level distributions ofMCT (q, q

′) (left) andMCT (ℓ, ℓ
′) with Ax(lab) < 0 (right)

for SUSY events passing the selection cuts. The light grey (red) histogram is the distribution of

events in which at least one of the two leptons was not produced directly from the decay of a

sparticle. The dark grey (blue) area indicates the tt̄ background. The fits to the end-point function

given in Eqn. (5.12) are shown.
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Figure 19: Distributions ofMCT (ℓ, ℓ
′) at parton-level (left) and at detector-level (right) for SUSY

events passing the selection cuts. In the left-hand figure the dashed histogram is the distribution of

events with Ax(lab) < 0 while the full histogram is that of events with Ax(lab) > 0. In the right-hand

figure all events possess Ax(lab) > 0 and the shaded histograms and fitted curve are as for Figure 18.

The fitted end-point position is 133.6 GeV.

from assumed energy scale uncertainties of 1% for jets and 0.1% for leptons [31]. As for

the top study the quoted uncertainties should be considered approximate and could be

improved with the use of better end-point fitting functions, for instance templates derived
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from Monte Carlo simulation studies.

If we use the measured end-point positions to calculate the masses of the sparticles

using Eqns. (5.6), (5.3) and (5.4) we obtain an uncertainty of 20 GeV on the absolute squark

mass, an uncertainty of 6 GeV on the difference between the squark mass and the masses of

the other sparticles, and an uncertainty of 3 GeV on the chargino-sneutrino mass difference.

We have thus shown with a toy SUSY model that it is possible to achieve a stand-alone

measurement of sparticle masses using the contransverse mass technique applied to events

containing two symmetric sequential two-step two-body decay chains.

6. Conclusions

In this paper we have extended the contransverse mass technique for measuring the masses

of pair-produced semi-invisibly decaying heavy particles so that it can be applied to events

with non-negligible boosts of the CoM frame of the heavy states in the laboratory transverse

plane. We have demonstrated the modified technique with case studies measuring the

masses of the top quark, W and neutrino in fully leptonic tt̄ events, and the masses of

sparticles in SUSY events with a similar final state. The case studies presented here are in

many respects more detailed than previous studies of alternative strategies and illustrate

well the potential utility of the contransverse mass technique.
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Note added to version 2: Since version 1 of this paper was released onto arXiv a

paper [38] has been released which also derives Eqn. (4.9). The boost-dependence study

described in Section 4.2, which appeared in version 2 of this paper, was carried out without

knowledge of Ref. [38], however we are happy to acknowledge that Eqn. (4.9) appeared in

Ref. [38] first.

A. The connection between MT2(χ) and MCT

Eqn. (4.1) can be used to study the links between MT2(χ) [1] and MCT , as we shall now

illustrate. In the process we shall obtain an approximate analytical expression for a boost-

corrected version ofMT2(χ). The link between the two quantities in the absence of co-linear

transverse boosts and for massless visible states was first discussed in Ref. [36].

First, observe that if we assume a value for m(α) and know Mmax
CT then we can solve

Eqn. (4.1) for m(δ). For any given event we do not know Mmax
CT however, but rather MCT .

Let us therefore substitute MCT for Mmax
CT to obtain the following solution

msoln(δ) =
(
χ2 +AT +

√[
1 +

4χ2

2AT −m2(v1)−m2(v2)

][
A2

T −m2(v1)m2(v2)
])1/2

, (A1)
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where AT ≡ [M2
CT − m2(v1) − m2(v2)]/2 and χ is the assumed value of m(α). This is

identical to the analytical expression for the ‘balanced’ solution of MT2(χ) in the absence

of co-linear transverse boosts, which was identified in Refs. [37, 7]. In general msoln(δ)

need not be bounded by m(δ), because AT and hence MCT appears in the denominator

inside the square-root causing msoln(δ) not to be a monotonically increasing function of

MCT . Therefore a value of MCT < Mmax
CT need not generate a value of msoln(δ) which

is less than the value obtained with MCT = Mmax
CT . Note that if χ = 0 then msoln(δ)

is nevertheless bounded by m(δ) because in this special case msoln(δ) is a monotonically

increasing function of MCT .

In general msoln(δ) is not invariant under co-linear transverse boosts, because it de-

pends on MCT which is also not invariant. One might consider therefore whether it is

possible to correct msoln(δ) for such boosts in a similar manner to that used to correct

MCT in Section 2.2. The MCT boost-correction procedure minimises MCT with respect to

the possible boosts, however this does not necessarily minimise msoln(δ) because it is not

in general a monotonically increasing function of MCT . Boost-correction can be performed

however, as we know not only the minimum possible value of MCT in the δ1δ2 CoM frame

but also the maximum possible value, which is given by the maximum of the MCT values

obtained by boosting v1 and v2 with respectively β = pb/Ecm and β = pb/Ê (see Fig. 3).

We therefore know the range of CoM frame MCT values which could have occurred in the

event.

To proceed we find the turning-points of Eqn. (A1), which lie at the following four

values of M2
CT :

M2
CT =

χ[3m2(vi) +m2(vj)]± 2m(vi)[m
2(vi) +m2(vj)]

χ±m(vi)
, (A2)

where i, j = 1, 2 (i 6= j). We then take the minimum of all the msoln(δ) values obtained at

turning-points where MCT lies within the allowed range identified above. We finally take

the minimum of this msoln(δ) value and those obtained with MCT set to its extrema. The

result is a boost-corrected value of msoln(δ).

Now although msoln(δ) is not in general bounded by m(δ) the full analytical expres-

sion for MT2(χ) in the absence of co-linear transverse boosts [37, 7] is so bounded. This

is because in those cases where msoln(δ) > m(δ) MT2(χ) takes on an alternative value

corresponding to an ‘unbalanced’ solution (see e.g. Eqn. (54) in Ref. [37]). The quantities

upon which the decision to switch to such an alternative value rests are not themselves

boost-invariant. Development of an appropriate boost-correction procedure for these quan-

tities consistent with the parallel boost-correction of msoln(δ) requires more work. In the

absence of such a correction procedure we can choose to neglect the boost when making

this decision, to obtain an approximate analytical form for a boost-corrected version of

MT2(χ).

Note that the quantity calculated here is not the same quantity as the conventional

MT2(χ) used elsewhere, which is boost-independent but currently does not possess a general

analytical form. The boost-correction procedure, even if exact (i.e in the absence of the

approximation mentioned in the previous paragraph), leads to a quantity which is not in
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general equal to the conventional MT2(χ), although equality is obtained in the absence of

co-linear transverse boosts.

The procedure described above for calculating this ‘boost-corrected MT2(χ)’ quan-

tity is implemented in the boost-correction package described in Section 2.2, available at

http://projects.hepforge.org/mctlib.

B. Invisible pseudo-particle masses for chargino decay chains

If a heavy sparticle decays via a chain which produces multiple invisible final state particles

then the values of mmax(P,Q) and Mmax
CT ([PQ], [P ′Q′]) can be calculated by constructing

an aggregate ‘pseudo-particle’ α from the invisible particles. The minimum value of m(α),

mmin(α), can then be used in end-point formulae, as described in Section 5.3.

If a chargino decays through χ̃±

1 → χ̃0
1W

± → χ̃0
1νℓ

± then α ≡ [χ̃0
1ν] and mmin(α) is

given by:

m2
min(α) = m2(χ̃0

1) +m(W )
[
E(χ̃0

1)− p
]
√

E(W )− p

E(W ) + p
, (B1)

where

p ≡

√
[m2(χ̃±

1 )−m2(χ̃0
1)−m2(W )]2 − 4m2(χ̃0

1)m
2(W )

2m(χ̃±

1 )
, (B2)

E(W ) =
m2(χ̃±

1 )−m2(χ̃0
1) +m2(W )

2m(χ̃±

1 )
, (B3)

E(χ̃0
1) =

m2(χ̃±

1 ) +m2(χ̃0
1)−m2(W )

2m(χ̃±

1 )
, (B4)

and we have assumed m(ν) = 0. If however the chargino decays through χ̃±

1 → νℓ̃± →
νℓ±χ̃0

1, as in decay chain (5.14), then:

mmin(α) =
m(χ̃±

1 )m(χ̃0
1)

m(ℓ̃±)
, (B5)

while if the chargino decays through χ̃±

1 → ℓ±ν̃ → ℓ±νχ̃0
1, as in decay chain (5.13), then

α ≡ ν̃ and mmin(α) is fixed to m(α) given by:

m(α) = m(ν̃). (B6)

Finally, if the chargino decays through the three-body decay χ̃±

1 → χ̃0
1ℓ

±ν then α ≡ [χ̃0
1ν]

and mmin(α) is given by:

mmin(α) = m(χ̃0
1). (B7)
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