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Abstract

We report time-dependent Probability Density Functions (PDFs) for a nonlinear stochastic pro-

cess with a cubic force by novel analytical and computational studies. Analytically, a transition

probability is formulated by using a path integral and is computed by the saddle-point solution

(instanton method) and a new nonlinear transformation of time. The predicted PDF p(x, t) is in

general given as a time integral and useful PDFs with explicit dependence on x and t are presented

in certain limits (e.g. in the short and long time limits). Numerical simulations of the Fokker-

Planck equation provide exact time evolution of the PDFs and confirm analytical predictions in the

limit of weak noise. In particular, we show that non-equilibrium PDFs behave drastically differently

from the stationary PDFs in regards to the asymmetry (skewness) and kurtosis. Specifically, while

stationary PDFs are symmetric, transient PDFs are skewed; transient PDFs are much broader

than stationary PDFs, with the kurtosis larger and smaller than 3, respectively. We elucidate the

effect of nonlinear interaction on the strong fluctuations and intermittency in relaxation process.
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I. INTRODUCTION

Many systems in nature or laboratories not only involve stochastic processes due to

intrinsic variability, or to uncertainty in the system, but may also be far from equilibrium.

Computing the time-evolution of the probability density function (PDF) of such systems

is often a major challenge. While in thermal equilibrium the same level of fluctuations

can be maintained by a reservoir (e.g. heat bath) at a fixed temperature (e.g. by the

fluctuation-dissipation theorem [1]), far from equilibrium there no longer exists such a

reservoir. The level of fluctuations in the system thus changes with time and becomes a

dynamical variable itself. For instance, drastic change in fluctuations can be caused by a

sudden change in the temperature at the reservoir, or just by an initial out-of-equilibrium

PDF. Consequently, a full knowledge of the time evolution of PDFs becomes critical.

As a simplest model, a Gaussian process has been widely used to understand a variety of

stochastic processes [2, 3]. At the heart of a Gaussian process is Brownian motion (random

walk) driven by white noise (random noise with a very short memory), where mean square

displacement increases linearly with time while there is no change in mean displacement.

When subject to a linear force, it becomes the Ornstein–Uhlenbeck (O-U) process, which

is a prototypical model for a noisy relaxation system, heavily used and extended in many

areas of physical science and financial mathematics (e.g. [2, 3]). This model is governed by

the following Langevin equation for a random variable x (say, the position):

dx

dt
= −∂V

∂x
+ ξ, (1)

where a linear force ∂V
∂x

= µox is given by a quadratic potential V (x) = µox
2/2. Here, µo

is a non-negative constant and ξ is the white noise characterised by the following statistical

property:

〈ξ(t)ξ(t′)〉 = Dδ(t− t′), (2)

where D is a constant. The angular brackets in Eq. (2) represent the ensemble average

over the noise. Given the initial condition (initial PDF), the time evolution of the PDF in

the subsequent time is precisely known as the joint distribution with a Gaussian transition

probability. In particular, when the initial PDF is strongly peaked at x = x0, the marginal
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PDF of x, call it p(x, t), has the following time-evolution:

p(x, t) =

√

β

π
e−β(x−〈x〉)2 , (3)

where 〈x〉 is the mean position, and β is the inverse temperature given as:

〈x〉 = x0e
−µot,

1

2β
= 〈(x− 〈x〉)2〉 = D(1− e−2µot)

2µo
, (4)

In a long time limit, a PDF approaches a stationary Gaussian distribution where the variance

of the PDF is set by 〈x2〉 = D/2µo. This stationary distribution can be linked to thermo-

dynamic equilibrium distribution by fluctuation–dissipation theorem by using 1
2
〈x2〉 = 1

2
T

(with the Boltzmann constant kB = 1) and Eq. (4) as t→ ∞ as follows:

T =
1

2β(t→ ∞)
=

D

2µo
, (5)

which is the Einstein’s relation. We note that a factor of 1/2 in the last term in Eq. (4) and

(5) is due to our definition of D in Eq. (2); that is, conventionally, Eq. (2) is defined with 2D

instead of D. For small time, the effect of the linear force is negligible compared to dx
dt

and

the second equation in Eq. (4) recovers the usual Brownian motion with 〈(x − 〈x〉)2〉 ∝ t.

For large time, the linear force becomes important, leading to the approach to the stationary

PDF. Mathematically, a Gaussian process offers a great analytical tractability in comput-

ing various statistical quantities (e.g. all even moments determined by second moments, etc).

Gaussian statistics however has serious limitations in explaining emerging complex phe-

nomena such as anomalous transport (super/sub diffusion), intermittency, self-organisation

or phase transition where a long-range correlation plays a key role [4–21]. In fact,

non-Gaussian PDFs often observed in these systems have stimulated an active research

on non-equilibrium statistics by considering nonlinear interaction, finite-correlated or

Levy-flight noise, multiplicative noise, fractional calculus, etc. (e.g. see [4–15, 17, 19–23]).

The main aim of this paper to shed light on this issue by elucidating the role of nonlinear

interaction in long-range correlation during the relaxation process of an initial PDF to a

final stationary PDF as an example of non-equilibrium processes.

To gain the key insight, it is valuable to consider the simplest nonlinear version of Eq.

(1) that has the same symmetry property under x → −x as the O-U process and compare
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results with the O-U process (e.g. Eq. (3)). To this end, we consider a cubic nonlinear

force (∝ x3) for a quartic potential V (x) = µx4/4 in Eq. (1) while keeping the same

short-correlated noise ξ given in Eq. (2). The cubic force has in fact been widely used

to model enhanced diffusion in various systems, including mixing in stellar interiors (e.g.

[24]) and self-organisation of shear flow by generalising a sand-pile in a continuous limit

[14, 20, 25]. In particular, [20] showed that similar stationary PDFs are obtained from 0D

dynamical model, 1D and 2D fluid models. This suggests important implications of the

results from a Langevin equation with cubic nonlinearity for a broad range of other physical

problems with the same highest nonlinearity.

For the cubic process, the prediction of time-dependent PDFs has proven to be elusive

[2]. However, a stationary distribution can easily be shown to be a quartic exponential PDF

p(x, t) = Ne−βx
4

where N ∝ β−1/4 (see Appendix A for its property), to which any initial

PDF relaxes in the long time limit. In this paper, we report on time-dependent PDFs

by novel analytical and computational studies. Analytically, a path integral formulation

[12, 14–16, 21, 26–33] and a nonlinear time transformation are utilised to predict a transition

probability. The PDF given in the path integral is computed by the saddle-point solution

(instanton method) (e.g. see [14–16, 21, 27–29, 31, 32]). The predicted p(x, t) in general

involves a time integral, and useful time-dependent PDFs with the explicit dependence on

x and t are presented in certain limits (e.g. in the short and long time limits). Numerical

simulations of the Fokker-Planck equation present detailed evolution of the time-dependent

PDF and confirm our analytical predictions.

We note that instantons originated in quantum mechanics as a non-perturbative way

of computing the transition amplitude from one ground state to another. The basic

idea is that the uncertainty relationship between position and momentum allows one to

formulate the transition amplitude from the initial to the final position by a path, and

the transition amplitude from one ground state to another can be isolated by considering

Euclidean action by taking time to be imaginary. An instanton is a saddle-point solution

of Euclidean action and corresponds to one particular path that leads to the transition

amplitude between ground states and was used in gauge field theory to compute the

transition amplitude from one vacuum to another [31]. About 20 years later, the method
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was adapted to a classical fluid problem [32] and to a plasma problem [14–16]. In particular,

[27–29] reported a series of detailed calculations for (multi)-instantons for double wells

and different anharmonic potentials in quantum mechanics. [14–16] utilised it to predict

stationary PDF tails of anomalous transport due to large events by taking a long-time

limit, while [21] generalised this methodology to predict the time-dependent PDF for

the O-U process without taking such long-time limit. It is the purpose of this paper to

extend this work further to nonlinear stochastic processes. The unique contribution of

this work lies in the prediction of the time-dependent PDFs p(x, t) by calculating the in-

stanton solutions which satisfy the boundary conditions at the initial and final times (see §2).

The remainder of the paper is as follows. We present the path integral solution of PDFs

in Section II. Exact time-dependent PDF by simulations are provided in Section III. Section

IV contains discussions and conclusions.

II. ANALYTICAL PREDICTION

We consider the evolution of a random variable x under a quartic potential V (x) = µx4/4

in Eq. (1) and a white noise given by Eq. (2) as:

dx

dt
= −µx3 + ξ, (6)

where µ is the frictional constant for the cubic force. To gain a key insight into the evolution

of this system, it is useful to obtain the equation for the mean and fluctuating components

of x by letting x = 〈x〉+ δx in Eq. (6). Here, 〈x〉 and δx are the mean value and fluctuation

so that 〈δx〉 = 0. Then, the time evolution of 〈x〉 and δx can easily be shown to be as

d〈x〉
dt

= −µ
[

(〈x〉2 + 〈(δx)2〉)〈x〉+ 〈(δx)3〉
]

, (7)

dδx

dt
= −3µ〈x〉2δx+G+ ξ, (8)

where G = 3〈x〉[(δx)2 − 〈(δx)2〉] + (δx)3 − 〈(δx)3〉. For small fluctuation, we can apply

the quasi-linear analysis to ignore G and 〈(δx)3〉 in Eqs. (7)–(8) and obtain approximate

equations:

d〈x〉
dt

= −µ
[

〈x〉2 + 〈(δx)2〉
]

〈x〉, (9)

dδx

dt
= −3µ〈x〉2δx+ ξ ≡ −µoδx+ ξ, (10)
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where µo = 3µ〈x〉2 is the (linear) force constant for δx. When fluctuations are negligible

compared to the mean value (〈(δx)2〉 ≪ 〈x〉2), Eq. (9) becomes d〈x〉
dt

= −µ〈x〉3, with

the solution 〈x〉 = x0/
√

1 + 2µx20t given the initial condition 〈x(t = 0)〉 = x0. As the

fluctuation δx increases in time, the second term in Eq. (9) gives the enhanced force,

leading to the faster movement of the PDF peak from x0 towards x = 0 (see Sec. III for

more details). On the other hand, Eq. (10) shows that the evolution of fluctuation δx is a

linear O-U process with the effective linear force µo = 3µ〈x〉2.

For analytical computation of a time-dependent PDF, we consider a narrow initial PDF

approximated by the δ-function p(x, t = 0) = δ(x − x0). In order to obtain a PDF at any

later time, we utilise a path integral formulation by expressing the transition probability

p(xf , tf ; x0, 0) between initial x0 at t = 0 and xf at later time t = tf [12–16, 21, 26, 30, 33]

as follows:

p(xf , tf ; x0, 0) ∝
∫ (xf ,tf )

(x0,0)

Dx[t]Dx[t]e−S, (11)

where S is the action given by (see Appendix B)

S =

∫ tf

t0

dt

[

−i(dx
dt

+ µx3)x+
1

2
Dx2 + ψ(x)

]

. (12)

Here, x is the conjugate variable to x (e.g. see Eq. (B3) and also Eq. (3)-(5) in [16]), which

effectively captures the effect of the stochastic forcing ξ. ψ = 3
2
µx2 in Eq. (12) is due to the

coordinate transformation between ξ and x. As ψ is negligible in the limit of small D [12],

we drop this term for analytical tractability below. The transition probability given in Eq.

(11) involves the integration along all the paths connecting initial (x0, 0) and final (xf , tf )

points. We evaluate Eq. (11) approximately to leading order in D by finding a particular

path which makes the largest contribution to the action S. This is the so-called saddle-point

solution (instantons) which minimises the action S, satisfying the zero variation of S with

respect to x and x as follows:

δS

δx
= 0 → i(

dx

dt
+ µx3) = Dx, (13)

δS

δx
= 0 → i(

dx

dt
− 3µx2x) = 0. (14)

Eqs. (13)-(14) are to be solved with the boundary conditions x(t = 0) = x0 and

x(t = tf ) = xf . We note that the crux of the instanton method is to capture a non-trivial

6



‘time-varying state’ as our basic state. As noted in the introduction, instanton solutions

satisfying boundary conditions were used for the computation of the time-dependent PDFs

for the O-U process [21].

The explicit appearance of the conjugate variable x in Eqs. (13)-(14) reflects a vital

role of the stochastic forcing in the determination of a saddle-point solution. That is, the

leading order contribution to the action cannot be obtained by simply ignoring ξ in Eq.

(1). Saddle-point solutions xs and xs to Eqs. (13)-(14) then give the effective action Seff ,

simplifying Eq. (11) as follows:

p(xf , tf ; x0, 0) = N exp[−Seff ], (15)

where N is a normalisation constant to satisfy
∫

dxf p(xf , tf ; x0, 0) = 1 and Seff is the

effective action

Seff =

∫ tf

0

dt
1

2D
(
dxs
dt

+ µx3s)
2 (16)

= −
∫ tf

0

dt
D

2
x2s. (17)

In the following, in order to obtain saddle-point solutions to Eqs. (13)-(14), we introduce a

nonlinear (nonlocal) time τ as

τ(t) =

∫ t

0

dt1 [x(t1)]
2, (18)

and recast Eqs. (13)-(14) in terms of τ as follows:

1

3

d

dτ
[x3e3µτ ] = −iDxe3µτ , (19)

d

dτ
[xe−3µτ ] = 0, (20)

by using d
dt

= x2 d
dτ
. See Appendix C for an example how the transformation (18) works.

The solutions to Eqs. (19)-(20) are found as

x(t) = x(t = 0)e3µτ , (21)

(x(t))3e3µτ = x30 +B[e6µτ − 1], (22)

where

B = −iDx(t = 0)

2µ
. (23)
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The boundary condition x(t = tf ) = xf fixes the value of B as

B =
x3fe

3µτf − x30
e6µτf − 1

, (24)

where τf = τ(t = tf ). In terms of x(τ), t is determined by the inverse of Eq. (18) as

t =

∫ τ

0

dτ1
1

(x(τ1))2
, (25)

while the effective action Seff in Eq. (17) is expressed by

Seff =
2µ2B2

D

∫ τf

0

dτ1
e6µτ1

[x(τ1)]2
, (26)

where Eqs. (21), (23) and (24) are used. In the following two subsections, we separately

consider the cases x0 = 0 and x0 6= 0.

A. x0 = 0

For x0 = 0, the time evolution of the PDF involves only a change in its width until it

becomes the stationary exponential PDF in the long time limit. Eq. (22) is simplified in

this case as

(x(τ))3 = B0(e
3µτ − e−3µτ ),

B0 =
x3fe

3µτf

e6µτf − 1
. (27)

With the help of Eq. (27), Eq. (25) can be expressed as

tf =
1

2µB
2

3

0

∫ zf

0

dz1
1

(1− z31)
2

3

=
1

2µB
2

3

0

sin−1
3

2
,3
(zf ). (28)

Here, z1 = (1 − e−6µτ1)
1

3 and zf = (1 − e−6µτf )
1

3 . sin−1
3

2
,3
(zf ) is the generalised p, q-family

inverse sine function (e.g. see [35] and Appendix D) with p = 3
2
and q = 3, which satisfy

the generalised trigonometric identity

| sinp,q(zf )|q + | cosp,q(zf )|p = 1. (29)

Eq. (28) thus gives us the expression for zf in terms of time tf as

zf = sin 3

2
,3(2µB

2

3

0 tf ). (30)
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On the other hand, the effective action Seff in Eq. (26) can be put into the following form

Seff =
µB

4

3

0

D

∫ zf

0

dz1
1

(1− z31)
5

3

=
µB

4

3

0

2D

[

2µB
2

3

0 tf +
zf

(1− z3f )
2

3

]

, (31)

where we used Eq. (28) and the following identity (see Appendix E):
∫ z

0

dz1(1− z31)
−5/3 =

1

2

[
∫ z

0

dz1(1− z31)
−2/3 + z(1− z3)−2/3

]

. (32)

By using Eq. (27), we rewrite Eq. (31) as

Seff =
µ

2D

[

2µB2
0tf +

x4f
(1− e−6µτf )

]

. (33)

The substitution of Eq. (33) into Eq. (15) then determines how PDFs vary with xf

depending on tf . The normalisation factor N = N(t) in Eq. (15) alters the overall

amplitude of the PDF and is discussed in Section II.C.

Eq. (33) involves τf and B0, which is a function of τf . Since τf =
∫ tf
0
dt1[x(t1)]

2, p(x, t)

is not simply given by a function of x and t but as an integral. Useful PDFs with explicit

dependence on x and t are presented in certain limits (e.g. in the short and long time

limits). Numerical simulations of the Fokker-Planck equation present detailed evolution of

the time-dependent PDF and confirm our analytical predictions.

In the short and long time limits, the PDFs can however be approximated by a function

depending on x and t. To demonstrate this, we examine the behavior of t and Seff in Eqs.

(28) and (33) in the short and long time limits, respectively. First, in the long time limit

(zf → 1), sin−1
3

2
,3
(zf ) → 1

2
π 3

2
,3, where π 3

2
,3 is the generalised πp,q (see Appendix D). Thus,

Eqs. (28) and (33) give us to leading order in 1/tf

z3f ∼ 1−
(

π 3

2
,3

4µtfx2f

)3

,

Seff ∼ µ

2D
x4f



1 +

(

π 3

2
,3

4µtfx2f

)3


 . (34)

Eq. (34) shows how the PDF evolves into the quartic exponential PDF in a long time limit.

We can estimate the time required to reach the stationary state by examining the behavior
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of the PDF width in Eq. (34). To do this, we let α = π 3

2
,3/(4µtf ) and find xf for Seff = 1

(i.e. the width at half-peak):

µ

2D

[

x4f +
α3

x2f

]

= 1.

Solving the above by perturbation as xf = x
(0)
f + x

(1)
f + . . . for small α ≪ 1 leads us to

xf ∼
( µ

2D

)
1

4

[

1−
( µ

4D

)
3

2

(

π 3

2
,3

4µtf

)3
]

.

The leading order solution x
(0)
f = (µ/2D)1/4 represents the width of the stationary PDF,

which is much wider than the width ∝ D−1/2 in the case of the linear O-U process for small

D. From the condition that the second, time-dependent, term is much smaller than the

first term in the above, we obtain an estimate for the critical time tc required to reach the

stationary state

tf >
π 3

2
,3

8
√
µD

(≡ tc). (35)

Interestingly, the critical time tc increases as D
−1/2 as D decreases. That is, the smaller the

diffusion, the longer the relaxation time tc. This should be contrasted to the linear friction

case where the relaxation time is independent of D and solely determined by the friction µ.

This dependence of the relaxation time on D reveals one of the important characteristics

of the nonlinear process where the diffusion sets not only the spatial structure (width), but

also the time structure.

On the other hand, in a short time limit (zf → 0), we evaluate sin−1
3

2
,3
(zf ) ∼ zf +

1
6
z4f and

use B0z
3
f = x3f (1− z3f )

1/2 to obtain

z6f [sin
−1
3

2
,3
(zf )]

3 = z6f (zf +
1

6
z4f )

3

= (2µtfx
2
f )

3(1− z3f ). (36)

We can then find the leading order solution to Eq. (36) for small 2µtx2f in the following

form

z3f ∼ (2µtx2f )(1− µtx2f ),

B2
0 =

x6f (1− z3f )

z6f
∼
x6f (1 + 2µtfx

2
f )

(2µtfx2f )
2

,
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thereby obtaining

Seff ∼
x2f

2Dtf

[

1 +
3

2
µtfx

2
f

]

. (37)

The parameter 2µtx2f physically represents the effect of a nonlinear damping, and the

limit of the small value of this parameter corresponds to considering a sufficiently small

time during which the effect of nonlinear damping can be considered to be small and thus

computed as a small perturbation the from no damping case.

The leading order behavior Seff ∼ x2f/2Dtf reveals that initially, the evolution of the

PDF is governed by the Gaussian process with the Gaussian PDF. The quartic term x4f in

Eq. (37) is symptomatic of the tendency towards a quartic (stationary) PDF in the long

time limit, shown in Eq. (34). For x0 = 0 considered in this subsection, the relaxation of

a non-equilibrium PDF undergoes two stages – the first is the Gaussian evolution where

the white-noise causes the Brownian motion with a negligible effect of the nonlinear force.

When the nonlinear force becomes sufficiently large, the PDF broadens its width, settling

in to the stationary quartic exponential.

B. x0 6= 0

Unlike the case x0 = 0, the time-evolution of the PDF is governed by the movement of

the peak of the PDF from x0 to x = 0 as well as the broadening of the PDF. Consequently,

the relaxation of a non-equilibrium PDF is more complex compared with the x0 = 0 case

considered in the previous subsection. In the following, we show that the relaxation of a

non-equilibrium PDF involves one more stage between the initial Gaussian evolution and

the final settling in to the quartic exponential PDF. The extra stage is a Gaussian evolution

and appears when the nonlinear force becomes sufficiently large and leads to a linear force

with the effective force coefficient 3µ〈x〉2 for fluctuations. That is, the second Gaussian

evolution is approximately the O-U process with the effective linear force µ0 = 3µ〈x〉2,
similar to the quasi-linear result in Eq. (10).

In order to obtain the PDF, we need to find Seff in Eq. (15) via Eqs. (26), (25) and
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(22). To this end, it is convenient to rewrite Eq. (22) in the following form:

x3 = Be3µτ + αe−3µτ = Be−3µτ [e6µτ − γ], (38)

where B is given by Eq. (24) and

α = x30 − B =
x30e

6µτf − x3fe
3µτf

e6µτf − 1
,

γ = −α

B
=
x30e

6µτf − x3fe
3µτf

x30 − x3fe
3µτf

. (39)

With no loss of generality, we take x0 ≥ 0 in this paper since the symmetry of our cubic

system under x→ −x guarantees exactly equivalent results for x0 < 0. Eq. (39) reveals the

following three different cases depending on the sign of γ and the ratio of xf to x0:

• CASE1: γ > e6µτf (xf < e−µτfx0);

• CASE2: γ < 0 (e−µτfx0 < xf < eµτfx0);

• CASE3: 0 < γ < e6µτf (xf > eµτfx0).

When x0 = 0, γ = 1, recovering the case in the previous subsection and thus CASE2

becomes irrelevant. That is, x0 6= 0 leads to the appearance of CASE2. For x0 > 0, a

schematic diagram for the different cases is shown in Fig. 1 where xf is plotted against τf .

From Fig. 1, we observe that a short time behavior is described by CASE1/CASE3 while

a long time behavior is obtained from CASE2. As τf increases from zero, the region for

CASE1/CASE3 gradually decreases while the region for CASE2 increases. The cross-over

between CASE1 and CASE2 is set by xf = x0e
−µτf ≡ xc while the cross-over between

CASE2 and CASE3 is set by xf = x0e
µτf ≡ xd. Here, xc = x0e

−µτf is the characteristic of

the movement of the PDF peak. Consequently, the left side of the PDF peak is described

by CASE1 while the right side of the PDF peak by CASE2. On the other hand, xf = x0e
µτf

characterises the boundary around which the PDF becomes negligible as Seff becomes very

large (details not shown here). That is, xb ≡ x0e
+µτf sets the boundary between the region

of a small probability due to a stochastic noise and a dead zone. (That is, the probability

is zero for xf > xb in CASE3.) To appreciate the meaning of γ, we rewrite

γ =
x3b − x3f
x3c − x3f

≡ ∆b

∆c

,

12
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FIG. 1: A schematic diagram of xf/x0 against µτf .

where ∆c = xf − xc and ∆b = xf − xb . Since ∆c and ∆b measure the deviation of xf from

xc and xb, respectively, the probability becomes larger for smaller ∆c and larger ∆b. For

instance, CASE1 with the large value of γ corresponds to the region where the probability

is largest.

To determine the relation between tf and τf along xf = x0e
−µτf , we note that Eq. (39)

gives α = x30 and B = 0. Thus, the saddle-point solution in Eq. (38) is simplified as

x = x0e
−µτ , leading to tf in Eq. (25)

tf =

∫ τf

0

dτ1
1

[x(τ1)]2
=

1

2µx20

(

e2µτf − 1
)

=
1

2µx20

(

x20
x2f

− 1

)

,

and consequently

e2µτf =
x20
x2f

= 1 + 2µtfx
2
0. (40)

In the following subsections, γ > 0 (CASE1) and γ < 0 (CASE2) are separately considered.

(The analysis for y − γ > 0 is included in Appendix F for completeness.)
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1. CASE1: γ ≥ 0 (α > 0, B < 0), xf < x0e
−µτf

We first find the relation between tf and τf by using Eq. (38) in Eq. (25) for γ > 0. To

do this, we let y = e6µτ and note γ − y > 0 (since γ − e6µτf > 0) to obtain

tf =
1

6µB
2

3

I0, (41)

where

I0 =

∫ yf

1

dy

y
2

3

1

(γ − y)
2

3

, (42)

and yf = e6µτf . The integral in Eq. (42) can be written in terms of the generalised two-

family inverse hyperbolic sine (e.g. see [35]). On the other hand, Eq. (26) can be shown

as

Seff =
µB

4

3

3D
I1

=
µ

6D

{

6µtf |αB| − 3|B| 43
[

y
1

3 (γ − y)
1

3

]yf

1

}

, (43)

where

I1 =

∫ yf

1

dy
y

1

3

(γ − y)
2

3

. (44)

In the second line in Eq. (43), we used Eq. (41) and the identity (see Appendix G):

I1 =
1

2

{

γI0 − 3
[

y
1

3 (γ − y)
1

3

]yf

1

}

. (45)

Eq. (43) shows that Seff becomes zero along the characteristics xf = x0e
−µτf as B = 0.

Recall that along these characteristics, Eq. (40) holds. This means that the PDF takes its

maximum value along these characteristics. To facilitate the analysis, it is thus useful to

consider the deviation ∆ from the characteristics by letting

xf = x0e
−µτf −∆, (46)

where ∆ ≥ 0 since xf ≤ x0e
−µtf . By using Eqs. (24), (39) and (44) in Eq. (43), we obtain

Seff =
µ

2D
|B|
[

2µtf (x
3
0 + |B|)−

(

xfe
3µτf − x0

)]

=
µ

2D
|B|
[

2µtf |B|+∆e3µτf
]

, (47)

where α = x30 + |B| (as B < 0),
[

y
1

3 (γ − y)
1

3

]yf

1
= (xfe

3µτf − x0)|B|− 1

3 , and yf = e6µτf are

used. To obtain the PDF in terms of ∆, we rewrite |B| by using Eq. (46) and Q = y
1

3

f =

14



e2µτf = 1 + 2µtfx
2
0 as

|B| =
1

2µtf

3∆Q
1

2 − 3∆2

x0
Q+ ∆3

x2
0

Q
3

2

Q2 +Q+ 1
. (48)

Then, by using Eq. (48) together with Q = 1+2µtfx
2
0 from Eq. (40) in Eq. (46), we obtain

the leading order behavior of Seff in the short and long time limits depending on the value

of Q, respectively, as follows:

Seff =
∆2

4Dtf

[

2− 3
∆

x0
+ 2

∆2

x20

]

, (for Q→ 1) (49)

∼ µ∆2

2D

[

∆2(1− 1.5Q−1)− 3x0∆Q
− 1

2 + 3x20Q
−1
]

. (for Q≫ 1) (50)

The cross-over between Eqs. (49) and (50) is set by the time where eµτf ∼ 1, or equivalently,

tf ≪ (2µx20)
−1, independently of D. In the short time limit (Q → 1), the first term in

Eq. (49) demonstrates the Gaussian PDF, the width increasing as t1/2 for small ∆. As

the width broadens, the cubic and quartic terms in ∆ becomes important for the PDF.

In particular, the quartic term leads to the broadening of the PDF width just before the

transition to the second stage governed by Eq. (50) for a sufficiently large time Q≫ 1.

Notably, Eq. (50) reveals the mixture of the Gaussian PDF, cubic and and quartic

exponential PDF depending on the relative size of the three terms on the right-hand side.

Since x20Q
−1 ∼ 〈x2〉, we recognise that 3µx20Q

−1 = 3µ〈x2〉 = µo is the effective linear force

coefficient for fluctuations defined in Eq. (10). Therefore, the third term on the right of

Eq. (50) gives rise to a Gaussian PDF with the inverse temperature ∝ µo/2D (equivalently,

with the width ∝
√

2D/µo). This is remarkably similar to the quasi-linear result and t1/2

increase in the PDF is caused by the decrease in µo as the mean value 〈x〉 decreases with

the movement of the PDF peak towards x = 0.

In comparison, the first term on the right of Eq. (50) leads to a quartic exponential PDF

with the width ∝ (2D/µ)1/4 for larger time Q−1 → 0. To compare the size of the first and

third term on the right of Eq. (50), we approximate Q−1 ∼ 2µx0tf and ∆ ∼ 2Dtf to obtain

the estimate of the ratio of the third to the first terms as

3x20Q
−1

∆2(1−Q−1)
∼ 3

4t2fDµ
.
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Thus, for tf ≪
√

3/4Dµ, the PDF is Gaussian while in the opposite large time, the

PDF relaxes to the quartic exponential PDF. This transition time from the Gaussian to

stationary quartic exponential PDF depends on D, increasing as D becomes smaller.

Finally, it is interesting to observe that in both Eqs. (49) and (50), the first order

correction term has a negative sign (since ∆ > 0), leading to the increase in the PDF above

the leading order term. This is to be contrasted to CASE2 considered in the next subsection

where the first order correction ∆ is shown to depress the PDF (as Seff increases).

2. CASE2: γ < 0 (α > 0, B > 0), x0e
−µτf < xf < x0e

µτf

We begin by rewriting Eq. (38) as

x = B
1

3 e−µτ [e6µτ + |γ|] 13 , (51)

where B (> 0) is given by Eq. (24). I0 in Eq. (41) is given by

I0 =

∫ yf

1

dy

y
2

3

1

(y + |γ|) 2

3

, (52)

where y = e6µt and yf = e6µτf . Similarly, Eq. (26) can be written as

Seff =
µB

4

3

3D
I1

=
µ

2D

{

−2µtf |αB|+B
4

3

[

y
1

3 (y + |γ|) 1

3

]yf

1

}

, (53)

where

I1 =

∫ yf

1

dy
y

1

3

(y + |γ|) 2

3

=
1

2

{

−|γ|I0 + 3
[

y
1

3 (y + |γ|) 1

3

]yf

1

}

. (54)

As xf > x0e
−µτf in CASE2, we define ∆ to be the deviation from the characteristics according

to

xf = x0e
−µτf +∆, (55)

where ∆ ≥ 0. By using Eqs. (24), (39) and (46) in Eq. (53), we obtain

Seff =
µ

2D
B
[

−2µtf (x
3
0 − B) +

(

xfe
3µτf − x0

)]

=
µ

2D
|B|
[

2µtfB +∆e3µτf
]

, (56)
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where α = x30 − B (B > 0),
[

y1/3(γ − y)
1

3

]yf

1
= (xfe

3µτf − x0)B
−1/3, and yf = e6µτf are

used. To obtain the PDF in terms of ∆, we again express B by using Eq. (56) and

Q = y
1

3

f = e2µτf = 1 + 2µtfx
2
0 as

B =
1

2µtf

3∆Q
1

2 + 3∆2

x0
Q+ ∆3

x2
0

Q
3

2

Q2 +Q+ 1
. (57)

Then, by using Eq. (57) and Q = 1 + 2µtfx
2
0 in Eq. (56), we obtain the leading order

behavior of Seff in the short and long time limit as follows:

Seff =
∆2

4Dtf

[

2 + 3
∆

x0
+ 2

∆2

x20

]

, (for Q→ 1) (58)

=
µ∆2

2D

[

∆2(1− 1.5Q−1) + 3x0∆Q
− 1

2 + 3x20Q
−1
]

. (for Q≫ 1) (59)

Similarly to Eqs. (49) and (50) in CASE1, the cross-over between Eqs. (58) and (59) is

set by the time where eµτf ∼ 1, or equivalently, tf ∼ (2µx20)
−1, independently of D. In the

short time limit (Q→ 1), Eq. (58) demonstrates the initial Gaussian PDF, which becomes

modified by the quartic term just before the transition to the second stage governed by

Eq. (59). The second stage in Eq. (59) starts with another Gaussian evolution, followed

by the transition from this Gaussian to the final stationary quartic exponential PDF for

tf ≪
√

3/4Dµ in the long time limit. In contrast to CASE1, in both limits, the first order

correction which is odd in ∆ > 0 is now positive and results in further decrease in the PDF

as ∆ increases.

C. Summary of CASE1 and CASE2

By combining Eqs. (49)-(50) and (58)-(59), we write Seff on either side of the PDF peak

in terms of r = xf − e−µτf as

Seff =
r2

4Dtf

[

2 + 3
r

x0
+ 2

r2

x20

]

, (for Q→ 1) (60)

=
µr2

2D

[

r2(1− 1.5Q−1) + 3rx0Q
− 1

2 + 3x20Q
−1
]

. (for Q≫ 1) (61)

Overall, starting from a narrow PDF centered about x = x0, the PDF undergoes three

stages. The first is the Gaussian evolution ending with the broadening of the PDF around

tf ∼ (2µx20)
−1, described by Eq. (60). This stage reflects the initial Brownian motion where
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the white noise is balanced by the inertia dx/dt, terminating when the effect of nonlinear

force becomes non-negligible, leading to a slight broadening of the PDF. The nonlinear force

shortly gives rise to a coherent force, initiating the second stage of yet another Gaussian

evolution where fluctuation evolves with the effective frictional force as µo ∝ µ〈x〉2 governed
by the O-U process. With further increases in time, the PDF finally settles in to the final

stationary quartic exponential PDF in Eq. (61) for tf ≫ tc where

tc ∼
√

3

4Dµ
. (62)

(See Appendix H for an alternative derivation of Eq. (62).) The critical time tc in Eq. (62)

increases as D decreases, similarly to the case of x0 = 0 given in Eq. (35), demonstrating

that the final relaxation time to a stationary PDF depends on D and µ (and not on x0).

Aforementioned different stages of PDF evolution and the two characteristic transition

times (tf ∼ (2µx20)
−1 and Eq. (62)) are confirmed from the exact solutions obtained by

numerical calculations in §3.

The odd terms in r signify the asymmetry of the PDF around its peak, where the PDF

on the left side of the peak is enhanced over that on the right side of the peak. Recalling

that x0 > 0 in our analysis, this illustrates the enhancement of the PDF around x0 = 0 as

the PDF moves towards xf = 0. This asymmetry property is also confirmed by numerical

calculation in §3.

Finally, the peak amplitude of the PDFs is determined by the normalisation N in Eq.

(15), which is determined by
∫

dxfp(xf , tf ; x0, 0) = 1. For the Gaussian PDF of the form

p(x, t) = Ne−βx
2

, the peak amplitude N =
√

β/π ∝ β1/2 while the width is proportional to

β−1/2. Thus, for the Gaussian PDFs in Eqs. (61)-(62), the behavior of the peak amplitude

of the PDFs can easily be inferred from the effective inverse temperature β. This is

discussed in Section III together with the interpretation of the numerical results. For the

quartic PDF of the form p(x, t) = Ne−βx
4

, N ∝ β−1/4 (see Appendix A for its property).
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III. EXACT PDFS FROM THE FOKKER-PLANCK EQUATION

To complement the analytic study in Section II, we compute numerical solutions of the

time-dependent PDFs. While it would have been possible to obtain the marginal PDF p(x, t)

by stochastic simulation of Eqs. (1) or (6), we instead solve the corresponding Fokker-Planck

equations (e.g. [1, 2])
∂p

∂t
= d

∂2p

∂x2
+

∂

∂x

(

xnp
)

, (63)

where n = 1 for the linear O-U process, and n = 3 for the cubic process. For convenience, we

use d = 2D where D is defined in Eq. (2). Without loss of generality, we also set µ0 = 1 for

n = 1 and µ = 1 for n = 3 in Eq. (63). The entire equation can always be rescaled to make

this coefficient one, which is convenient numerically to reduce the number of parameters in

the problem.

To solve these equations numerically, we begin by restricting the interval in x to [−1, 1],

rather than the original [−∞,∞]. There is again no real loss in generality involved here; by

suitably rescaling x, t, and/or d, any finite interval can always be mapped to [−1, 1]. As long

as d and the initial condition are chosen such that p would be negligible outside this interval

anyway, then solving Eq. (63) only on [−1, 1], and with p = 0 boundary conditions, should

yield results in good agreement with the analytic formulations. The numerical solution

involves second-order accurate finite-differencing in x, using up to M = 4 · 106 gridpoints.

The time-stepping is also second-order accurate, with step sizes as small as ∆t = 10−7. Both

M and ∆t were varied to ensure accuracy to within at least 0.1%. Especially in the later

stages of the evolution, once an initially narrow peak has started to broaden considerably,

M can also be decreased and ∆t increased, without loss of accuracy.

The initial condition was taken as

p =
1√
π10−8

exp
[

−(x− 0.7)2

10−8

]

, (64)

that is, a Gaussian with a peak at x0 = 0.7 and a width 1.7 · 10−4. The question then is

how this initial condition evolves toward the final equilibrated state, either p ∝ exp(−x2/2d)
for the linear process or p ∝ exp(−x4/4d) for the cubic process, with the constant of pro-

portionality in each case fixed by
∫

pdx = 1 (see Appendix A). For the linear process, an

analytic solution for the entire time-evolution given in Eq. (3) takes the following form

p(x, t) =
1√
2πd

1√
1− κe−2t

exp
[

− (x− x0e
−t)2

2d(1− κe−2t)

]

, (65)
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FIG. 2: Panel (a) shows peak amplitudes, panel (b) shows widths at half-peak. In each

panel the heavy solid lines are the cubic case with initial condition (64), the dash-dotted

lines are the linear case with initial condition (64), and the dotted lines are the linear case

with a δ-function initial condition. The five different lines in each set correspond to

d = 10−3 to 10−7, from left to right as indicated.

where κ is an arbitrary constant. Taking κ = 1 would correspond to a δ-function initial

condition, whereas κ = 1− 10−8/2d corresponds to the actual initial condition (64).

Fig. 2 shows how the peak amplitudes and widths at half-peak evolve in time, for

the five values d = 10−3 to 10−7. The heavy solid lines show the cubic case that we are

ultimately most interested in. The dash-dotted lines show the linear case with initial

condition (64), and the dotted lines the linear case with a δ-function initial condition

(that is, the dash-dotted lines have κ = 1 − 10−8/2d in Eq. (65) whereas the dashed lines

have κ = 1). If we first compare the two different initial conditions in the linear case,

we see that a δ-function initial condition relatively quickly (on a timescale ∼ 10−8/d)

becomes indistinguishable from the initial condition (64). This is encouraging, as it

indicates that all the theoretical analysis developed for a δ-function initial condition is still

relevant even for (64). The other point to note about the linear cases is how the evolu-

tion is indeed completed once t ≈ 1, independent of d. Different stages of PDF evolution

with the two transition times above agree with the analytical prediction summarised in §2.3.

Turning next to the cubic cases, we see that up to t ≈ 0.1 they follow the corresponding
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FIG. 3: Panel (a) shows the mean value 〈x〉, for d = 10−3 to 10−7 as indicated. Panel (b)

shows xpeak, the location where p takes its maximum value. In both panels the dotted line

denotes x0/
√

1 + 2tx20. Panel (c) shows the difference, xpeak − 〈x〉.

linear cases almost exactly. The detailed structure continues to be Gaussian in this regime

(as indicated also by further diagnostics below). For t ≥ O(1) the peaks continue to

decrease and the widths to increase, before eventually settling in to the final equilibrated

solutions where the peaks scale as d−1/4 and the widths as d1/4. Note also how the time

required to reach the final stationary PDF clearly scales as d−1/2, in agreement with the

analytic predictions in §2.3.

Turning next to where p is located, Fig. 3 shows two different ways of measuring this,

the mean value 〈x〉 =
∫

xp dx, and the position of the maximum value of p, call it xpeak.

Up to t ≈ 1 both measures are essentially indistinguishable from the expected result

x0/
√

1 + 2tx20 for small fluctuations 〈(δx)2〉 ≪ 〈x〉2; as fluctuations increase with time,

deviations do begin to appear as shown in the range t > O(1) in Fig. 3. As predicted in

Eq. (9), 〈x〉 tends to zero somewhat faster than expected from x0/
√

1 + 2tx20, especially

for the larger values of d. This is due to the contribution from fluctuations 〈(δx)2〉 in

Eq. (9) which increases with d. Since larger d corresponds to greater variance, 〈x〉 tends

to zero faster. That is, fluctuations lead to the enhanced dissipation of the mean value.

Considering xpeak next, this ultimately follows the same trend of tending to zero faster, and

with the same variation with d. It is interesting to note that for brief intermediate times

these curves are slightly above x0/
√

1 + 2tx20. The final panel in Fig. 3 shows the difference
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FIG. 4: Panel (a) shows the skewness
∫

((x− 〈x〉)2/σ)3 p dx, panel (b) shows the kurtosis
∫

((x− 〈x〉)2/σ)4 p dx, and panel (c) the ratio of variance to half-peak width. In each panel

d varies from left to right as 10−3 to 10−7. Note the ∝ d−1/2 scaling in time.

between these two measures of position. For all five values of d there are times where this

difference is surprisingly large, comparable to the larger of the two at the corresponding time.

The fact that these two measures of location give somewhat different answers is already

indicative of the result noted above, that the PDF is expected to be asymmetric about

its peak. This can be further quantified by computing the skewness
∫

((x − 〈x〉)2/σ)3 p dx,
where σ = [

∫

(x− 〈x〉)2 p dx]1/2 is the variance. Another interesting quantity is the kurtosis
∫

((x − 〈x〉)2/σ)4 p dx. Analytically one finds easily enough that a Gaussian profile has

kurtosis 3, whereas the final quartic profile has kurtosis 2.19 (e.g. see Appendix A). A third

quantity to consider is the ratio of the variance σ to the half-peak width. For this one finds

analytically that a Gaussian has 0.425, whereas a quartic has 0.319. Fig. 4 shows how

these three diagnostics evolve in time. The skewness starts and ends at zero, as expected,

but at intermediate times reaches a peak negative value of -0.56, reflecting this difference in

the two location measures in Fig. 3. This negative value of skewness is predicted in §2.3.
The kurtosis similarly starts at 3 and ends at 2.19, as expected, but at intermediate times

actually increases to a peak of 3.37. The variance/width ratio follows the same pattern as

the kurtosis.

These results are interesting in the following two aspects. First, this clearly shows that
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the stationary PDF is very different from the non-equilibrium PDF. Second, the broadening

of the PDF in the intermediate time before reaching the stationary PDF is reminiscent of a

cyclic geodesic solution in [18], suggesting an important role of nonlinear interaction (force)

in a geodesic. Detailed discussion on the implications of these results for information change

is provided in [38]. The last point to note about all three diagnostics is how the curves for

different values of d are essentially identical, but offset in time according to a d−1/2 scaling.

This is another reflection of the result derived analytically and discussed in Section II.C

(see. Eq. (62)) and also seen in Fig. 2 that the final adjustment timescale for the cubic

process scales as d−1/2.

IV. CONCLUSION

We have presented time-dependent PDFs in a cubic nonlinear stochastic process where

the frictional force is given by a cubic nonlinearity. Analytically, we applied an instanton

method based on a path integral formulation to a nonlinear system in the limit of weak noise

(small D) and proposed a new nonlinear time transformation to solve nonlinear instanton

(saddle-point) equations. We predicted a PDF which is in general given as an integral and

elucidated the effect of nonlinear interaction on enhanced dissipation in relaxation processes.

Useful local time-dependent PDFs were presented in certain limits (e.g. in the short and

long time limits). In sharp contrast to a linear stochastic process where transient PDFs

are Gaussian and the relaxation time tf to the final stationary PDF is independent of the

diffusion coefficient D, the PDF in the cubic process was shown to be asymmetric around

its peak while the relaxation time tf > tc ∼ 1√
µD

in Eq. (62) depends on D, increasing as

D decreases. The latter reflects a close interlinking between space and time in nonlinear

relaxation processes. Alternatively, time flows at a different rate depending on the coordi-

nate. We also demonstrated the utility of generalised two-family trigonometric functions in

solving nonlinear equations. Numerical simulation of the Fokker-Planck equation revealed

detailed evolution of the time-dependent PDF; analytical and numerical results agreed on

overall PDF evolution, in particular, transition times for different evolutions (e.g. relaxation

time tf ) and asymmetry, as noted in §2.3 and §3. Furthermore, it highlighted that transient

PDFs behave drastically differently from the stationary PDFs in regards to the asymmetry

(skewness) and kurtosis. Of particular interesting is the settling in to a symmetric and nar-
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row stationary PDF only after undergoing a transient state with asymmetric and broad PDF.

The generality of our methodology and predicted exponential PDF are reminiscent of

the possibility of transforming any automonous nonlinear Langevin equation driven by a

white noise to the Brownian motion, while our new proposed nonlinear time transformation

plays a role of random time change – the so-called Lamperti transformation [2, 3]. The latter

transforms away a nonlinear diffusion coefficient (D) to a constant diffusion (e.g. see [36, 37]

and Theorems 7.37 and 7.39 and Remark 7.4, Chap 7 in [2]). Together with the change of

variables, or change of measure (Girsanov transformation) which removes the drift term (i.e.

∂V
∂x

in our case), the solution to any stochastic equation with time-independent coefficient can

be obtained by the Brownian motion (e.g. see [2, 3]). However, since the resulting Brownian

motion depends on random time, it is not clear how to calculate transient PDFs by using this

method. In comparison, our nonlinear time transformation seems to offer a systematic way of

computing the PDFs in different limits. This opens a large scope for future study including

the application of our method to other nonlinear stochastic processes. Of particular interest

would be the inclusion of a linear (negative) force in the cubic process to investigate the

dynamics of growth, phase transition and long-term memory. A change of variables would

then permit us to examine the Feller-branching process with a logistic growth (e.g. see [36]).

Furthermore, the investigation of the change in information in nonlinear processes in terms

of information length [17] is addressed in the accompanying paper [38].

Appendix A: Property of p(x) = N exp(−βx4).

We first show how to fix N by the unity of the total probability
∫∞
−∞ dx p(x) = 1:

N−1 =

∫ ∞

−∞
dx e−βx

4

= 2

∫ ∞

0

dx e−βx
4

=
1

2
β− 1

4

∫ ∞

0

dy y−
3

4 e−y

=
1

2
β− 1

4Γ

(

1

4

)

, (A1)
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where the change of the variable y = βx4 (dx = 1
4
β− 1

4y−
3

4dy) was used and Γ(z) =
∫∞
0
dy yz−1e−y is the Gamma function. That is,

p(x) =
2β

1

4

Γ
(

1
4

)e−βx
4

.

By using Eq. (A1), we can calculate the second and fourth moments as follows:

〈x2〉 =

∫ ∞

−∞
dx x2p(x) = 2N

∫ ∞

0

dx x2e−βx
4

=
N

2
β− 1

4β− 1

2

∫ ∞

0

dy y−
1

4 e−y

=
Γ
(

3
4

)

Γ
(

1
4

)β− 1

2 , (A2)

and

〈x4〉 =

∫ ∞

−∞
dx x4p(x) = 2N

∫ ∞

0

dx x4e−βx
4

=
N

2
β− 1

4β−1

∫ ∞

0

dy y
1

4 e−y

=
Γ
(

5
4

)

Γ
(

1
4

)β−1 =
1

4
β−1, (A3)

where Γ(z) = (z − 1)Γ(z) was used for z = 5
4
in the last line.

From Eq. (A2) and Eq. (A3), we find the kurtosis κ:

κ =
〈x4〉
〈x2〉2 =

1

4

(

Γ
(

1
4

)

Γ
(

3
4

)

)2

= 2.1884. (A4)

Thus, the quartic exponential PDF has kurtosis less than 3, indicating narrow width and

flatness. Note that the Gaussian PDF has κ = 3.

Appendix B: Path integral in Eq. (12)

For Gaussian statistics with vanishing first moment, the prescription of the second mo-

ment given by Eq. (2) is sufficient. It is simply because all odd moments vanish while even

moments can be expressed as a product of second moments. Note that even if the forcing is

Gaussian, statistics of x can be non-Gaussian because of the nonlinearity of the dynamical
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equation. An equivalent way of prescribing the second moment (2) for the Gaussian forcing

is to introduce the probability density function for ξ as follows [12, 26, 33]

d[ρ(ξ)] = Dξ exp
{

−1

2

∫

dtD−1ξ(t)2
}

. (B1)

This is a Gaussian distribution for ξ(t). The average value of a quantity Q is then computed

as

〈Q〉 =
∫

d[ρ(ξ)]Q .

For instance, by taking Q = ξ(t)ξ(t′), one can easily reproduce Eq. (2).

When the average value of a functional of x (i.e. 〈Q[x]〉) is required, the constraint should
be imposed that ξ and x satisfy the original equation (1). This can be done by inserting an

identity with a δ-function, which enforces Eq. (1), as

1 =

∫

Dx δ
[

dx

dt
+
∂V

∂x
− ξ

]

J

∝
∫

DxDx exp

{

i

∫

dt x

[

dx

dt
+
∂V

∂x
− ξ

]}

ψ, (B2)

where J = J
[

∂ξ
∂x

]

is the Jacobian due to the change of variables for the delta function. Let

us show in detail how this is done. Starting from the definition,

〈Q[x]〉 =

∫

Dξ Q[x] exp
{

− 1

2D

∫

dtξ(t)2
}

=

∫

DξDxQ[x] δ
[

dx

dt
+
∂V

∂x
− ξ

]

J

× exp

{

− 1

2D

∫

dtξ(t)2
}

=

∫

DξDxDxQ[x] exp
{

i

∫

dt x

[

dx

dt
+
∂V

∂x
− ξ

]}

J

× exp {− 1

2D

∫

dtξ(t)2}

=

∫

DxDxQ[x] e−S . (B3)

Here, we used the identity Eq. (B2) to obtain the second line and J = e−ψ and ψ = −3
2
µx2

(see, e.g. Eq. (96)-(97) in [33], Eq. (2.10) in [12]) for V (x) = µx4/4 to obtain the last

line. the Gaussian integral over ξ was performed to obtain the last line of Eq. (B3); S is the

action given in Eq. (12) in the main text. Taking Q[x] = δ(x(tf ) = xf )δ(x(0) = x0) gives us

Eq. (11) in the text. Note that x is a conjugate variable, which acts as a mediator between

the forcing ξ and dynamical variable x.
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Appendix C: Nonlinear transformation Eq. (18)

Let us consider a homogeneous cubic equation dx
dt

= −µx3. The usual way of solving this

equation is to separate variables and integrate to obtain

x(t) =
x0

√

1 + 2µtx20
, (C1)

where the initial condition x(t = 0) = x0 is used. To elucidate how the nonlinear transfor-

mation defined in Eq. (18) works, we rewrite dx
dt

= −µx3 as follows:

0 =
dx

dt
+ µx3 = x2(

dx

dτ
+ µx). (C2)

The solution to Eq. (C2) is x(τ) = x0e
−µτ where x0 = x(τ = 0) = x(t = 0). To obtain x(t),

we use x(τ1) = x0e
−µτ1 in Eq. (25):

t =

∫ τ

0

dτ1
1

(x(τ1))2
=

1

2µx20

(

e2µτ − 1
)

=
1

2µx20

(

x20
(x(t))2

− 1

)

. (C3)

Solving Eq. (C3) for x(t) gives the same solution Eq. (C1).

Appendix D: Generalised two family trigonometry functions

The generalised sine function with two parameters p, q, where p > 1 and q > 1, is defined

through its inverse function [35]

arcsinp,q(x) =

∫ x

0

dt (1− tq)−1/p, (D1)

where x = [0, 1]. Note that when p = q = 2, Eq. (D1) recovers the definition of the usual

arcsin(x). When x = 1, Eq. (D1) defines the generalised πp,q as

arcsinp,q(1) =

∫ 1

0

dt (1− tq)−1/p =
πp,q
2
, (D2)

which again recovers π/2 when p = q = 2. We note that sinp,q(x) is a monotonically

increasing function of x, mapping [0, 1] → [0, πp,q/2] and Eq. (D1) can also be written in

terms of Gaussian hypergeometric function.

The (p, q)-cosine is defined as

cosp,q(x) =
d sinp,q(x)

dx
= (1− (sinp,q(x))

q)1/p, (D3)
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where x is a real number. Hence, cosp,q(x) is strictly decreasing on [0, πp,q/2], cosp,q(0) = 1,

cosp,q(πp,q/2) = 0 and satisfies the following identity:

| sinp,q(x)|q + | cosp,q(x)|p = 1, (D4)

which is Eq. (29) with x = zf .

Appendix E: Derivation of Eq. (32)

To show the identity Eq. (32), we let the left-hand side of Eq. (32) be I1 and re-express

it as follows:

I1 ≡
∫ z

0

dz1
1

(1− z31)
5/3

(E1)

=

∫ z

0

dz1

[

1− z31
(1− z31)

5/3
+

z31
(1− z31)

5/3

]

(E2)

≡ I0 +

∫ z

0

d[(1− z31)
−2/3]

z1
2

(E3)

= I0 +
1

2

z

(1− z3)2/3
− 1

2

∫ z

0

dz1
1

(1− z31)
2/3

(E4)

= I0 +
1

2

z

(1− z3)2/3
− 1

2
I0 =

1

2
I0 +

1

2

z

(1− z3)2/3
(E5)

=
1

2

[
∫ z

0

dz1(1− z31)
−2/3 + z(1− z3)−2/3

]

, (E6)

obtaining Eq. (32) in the text. Here, I0 in Eqs. (E3)–(E5) is defined as

I0 ≡
∫ z

0

dz1
1

(1− z31)
2/3
, (E7)

and integration by parts is used to obtain Eq. (E4) from Eq. (E3).

Appendix F: For y − γ > 0

In this case, we obtain from Eq. (38) and Eq. (25)

t =
1

6µB
2

3

I0, (F1)

where

I0 =

∫ yf

1

dy

y
2

3

1

(y − γ)
2

3

. (F2)
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Here, y = e6µt and yf = e6µτf . Similarly, Eq. (38) can be written as

Seff =
µB

4

3

3D
I1

=
µ

6D

{

6µtf |αB|+ 3B
4

3

[

y1/3(y − γ)
1

3

]yf

1

}

, (F3)

I1 =

∫ yf

1

dy
y

1

3

(y − γ)
2

3

. (F4)

In the second line in Eq. (F3), we used Eq. (F1) and the following identity (similar to

that used in Appendix C):

I1 =
1

2

{

γI0 + 3
[

y1/3(y − γ)
1

3

]yf

1

}

. (F5)

Appendix G: Derivation of Eq. (45)

We rewrite I0 in Eq. (42) in terms of I1 in Eq. (44) as

I0 =

∫ yf

1

dy
y−

2

3

(γ − y)
2

3

=
1

γ
[I1 + J ] , (G1)

where

J =

∫ yf

1

dyy−
2

3 (γ − y)
1

3

= 3

{

[

y
1

3 (γ − y)
1

3

]yf

1
+

1

3

∫ yf

1

dyy
1

3 (γ − y)−
2

3

}

= 3
[

y
1

3 (γ − y)
1

3

]yf

1
+ I1. (G2)

By using Eq. (G2) in Eq. (C1), we obtain

γI0 = 2I1 + 3
[

y
1

3 (y − γ)
1

3

]yf

1
,

which gives Eq. (45).

Appendix H: Alternative derivation of the relaxation time to the stationary PDF

To estimate the relaxation time to the stationary PDF, we let r = r(0) + r(1) in Eq. (61)

by assuming a small Q−1 and find

r =

(

2D

µ

)
1

4

− 3

4
√

2µtf
.
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By comparing the two terms in r above, we conclude that the critical time tc required to

relax into the equilibrium PDF satisfies

tf >
9

32
√
2Dµ

(≡ tc). (H1)
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