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Highlights 

 

 Assessment of speaker similarity combining source and filter voice characteristics 

 

 Feature selection method to determine the most parsimonious feature subset  

 

 Testing with very similar-sounding speakers, i.e. monozygotic twins (MZ) 
 

 Testing using high quality and telephone-filtered recordings 
 

 Significant differences between same-speaker and different-speaker comparisons  

 

Abstract 

There is a growing consensus that hybrid approaches are necessary for successful speaker 

characterization in Forensic Speaker Comparison (FSC); hence this study explores the forensic 

potential of voice features combining source and filter characteristics. The former relate to the action 

of the vocal folds while the latter reflect the geometry of the speaker’s vocal tract. This set of features 

have been extracted from pause fillers, which are long enough for robust feature estimation while 

spontaneous enough to be extracted from voice samples in real forensic casework. Speaker similarity 

was measured using standardized Euclidean Distances (ED) between pairs of speakers: 54 different-

speaker (DS) comparisons, 54 same-speaker (SS) comparisons and 12 comparisons between 
monozygotic twins (MZ). Results revealed that the differences between DS and SS comparisons were 

significant in both high quality and telephone-filtered recordings, with no false rejections and limited 
false acceptances; this finding suggests that this set of voice features is highly speaker-dependent and 

therefore forensically useful. Mean ED for MZ pairs lie between the average ED for SS comparisons 
and DS comparisons, as expected according to the literature on twin voices. Specific cases of MZ 

speakers with very high ED (i.e. strong dissimilarity) are discussed in the context of sociophonetic and 



 

 

twin studies. A preliminary simplification of the Vocal Profile Analysis (VPA) Scheme is proposed, 

which enables the quantification of voice quality features in the perceptual assessment of speaker 
similarity, and allows for the calculation of perceptual-acoustic correlations. The adequacy of z-score 

normalization for this study is also discussed, as well as the relevance of heat maps for detecting the 
so-called phantoms in recent approaches to the biometric menagerie.  

Keywords: forensic phonetics, acoustic analysis, perceptual assessment, voice quality, twins, pause 

fillers 

1. Introduction 

The human vocal apparatus is a sophisticated system relying on the accurate synchronization of 

multiple organic structures (e.g. lungs, vocal folds, vocal tract) in order to produce speech. Researchers 
from diverse disciplines have approached this field from very different angles, and continue 

contributing to the understanding of this immensely complicated process. Traditionally, the structures 

involved in speech production have been separated into the systemic view of the source-filter model 

due to [1], where the laryngeal structures are credited for the production of phonation, and the 

supralaryngeal structures are credited for modifying phonation spectral contents dynamically. 

Although early works relied on the study of phonated speech as a whole, over the last years there is a 

growing consensus that hybrid approaches that take into account the source-filter distinction are needed 

for achieving more reliable techniques in Forensic Speaker Comparison [2]; hence this study 

undertakes the analysis of a set of voice features combining source and filter characteristics of the 

human voice.  

State-of-the-art research on twins’ voices [3][4] suggests that distinguishing this type of speakers poses 

a major challenge in speaker recognition because they are very similar. Extreme physical similarity 

also explains that other biometrics such as fingerprints [5] or palmprints [6] have been investigated in 
twins for identification purposes.  In the case of Forensic Phonetics, including twins as participants in 

research experiments is of interest because these subjects may serve to assess how the results of 
pairwise comparisons –for the investigated voice characteristics– vary when highly similar speakers 

are considered (most often identical and fraternal twins but the variability of results can be observed 
considering also non-twin siblings or singletons). On the other hand, the relevance of twins is closely 

related with the search for robust voice characteristics for speaker discrimination, since a set of 
characteristics are considered robust for speaker comparison as far as they are maximally dependent 

on the speaker’s genetic endowment and minimally influenced by learned factors, the latter favoring 
voice disguise or imitation. The predominance of genes over environment is thus linked  to the two 

most important criteria for identifying characteristics for Forensic Speaker Comparison (FSC), namely 
that it should be as consistent as possible for each speaker, i.e. low intra-speaker variability, and that it 

should exhibit large variation amongst speakers, i.e. high inter-speaker variability [7] [8]. Kinnunen 
and Li [9] refer to the same characteristics for an ideal Automatic Speaker Recognition (ASR) system. 

Several acoustic parameters have been proposed to assess voice similarity in twins, the most 
common ones being fundamental frequency [10], formant patterns [11], or temporal characteristics 

[12], although ASR approaches are also common [13] [14]. More recent investigations [3][15][16][17]. 
have focused on the glottal analysis of twins, following a methodology that relies on the decoupling of 

the vocal tract from the glottal source estimates [18] and which allows the extraction of cepstral 
coefficients of the glottal source Power Spectral Density (PSD), singularities of the glottal source PSD, 

biomechanical estimates of vocal fold mass, tension and losses or time-based glottal source 
coefficients, among others. These features have the advantage of modelling the vocal folds and the 
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vocal tract separately, which opens the possibility of independently studying source and filter 

information. The approaches in [3][15] and [16][17] present a clear advantage as far as the easy 
extraction of the speech material is concerned. In the cited studies, as well as in the present 

investigation, the glottal source features are extracted from naturally sustained vowels found in 
hesitated speech; also known as fillers or referred to as disfluences by other authors.  

The main drawback for conducting more source-related studies in Forensic Phonetics in the past 

has been linked to the need for relatively long and stable vocalic sounds from which reliable values 

distortion features like jitter and shimmer could be extracted. In clinical settings, these sounds are 

normally elicited upon asking the subject to sustain a vowel (typically [a]) for as long and steadily as 

possible [19][20]. This technique is unrealistic in a forensic context, but previous studies in Spanish 

suggest that [a] can be replaced by the use of naturally sustained pause fillers (typically [e] in Spanish; 

[3], as they are more forensically realistic while long enough for estimating a sufficient number of 
glottal cycles. This type of disfluencies, which are characteristic of spontaneous speech, have recently 

become a fruitful area of research interest. Künzel [21] already highlighted the consistency of speakers 
in their respective use of a personal variant of the hesitation sound, whether in relation to the addition 

of a bilabial nasal consonant or as regards the specific timbre of the vocalic component.  

More recent studies have investigated formant values in filled pauses [22], or have focused on their 

duration and frequency of occurrence [23]. The extraction of voice quality features from fillers is less 

common [24]. The current study provides a new perspective to this type of disfluencies by analyzing 

309 hybrid acoustic features to test their forensic potential in distinguishing same-speaker and 

different-speaker comparisons. This includes testing their robustness with very similar-sounding 

speakers, i.e. identical twins. In addition, this study explores novel methods for measuring 

(dis)similarities between subjects in pairwise comparisons, such as Euclidean Distances (ED). In twin 

studies, this type of statistical mapping has been recently used in [25] or in [26]. Whereas both make 

use of ED, the former focuses on non-phonetic aspects (blood plasma lipidomics profiles), and only 

the latter is a phonetic study (a case study considering just one twin pair). In FSC in particular, [27] 
have explored ED to measure similarity between speaker pairs, including scores obtained from 

perceptual voice evaluations using the Vocal Profile Analysis (VPA) Scheme [28].  

2. Materials and methods 

This section presents the dataset used in the study and describes the methodology used to process the 

data. In the methodological section, we have distinguished between the acoustic analyses and the 

perceptual assessment of voices.  

2.1. Data  

We have used the phonetic corpus of Spanish male twins and siblings described in [3][29]. This 
comprises 54 speakers recruited ad hoc for the forensic phonetic investigation of twin and non-twin 

siblings in Spanish. To the best of our knowledge no other voice databases hitherto exist on twin voice 
research for the North-Central Peninsular Spanish variety. Although the database also includes 

dizygotic (DZ) twins and non-twin siblings, for this study we have only selected the available MZ 

twins (24 speakers) –all of the pairs having been raised together– and the group of unrelated speakers 

(12 speakers). The number of DZ twins was not enough to perform differential analysis; hence these 

samples were not considered.  



 

 

Each speaker was recorded on two different occasions, separated by 2-4 weeks, in order to account 

for within-speaker variability. The two recording sessions took place in the Phonetics Laboratory of 
the Consejo Superior de Investigaciones Científicas (CSIC) in Madrid. The speakers were required to 

come in pairs for the voice recordings: with their co-twin in the case of MZ twins, and with a friend or 
work colleague in the case of unrelated speakers. This was aimed at attaining a comparable speaking 

style to what may be expected in conversations between twins, usually characterized by their 
spontaneity due to their close relationship. The age of the speakers of this database ranged between 18 

and 52 years old (median: 28, interquartile range: 10). All participants were native speakers of North-
Central Peninsular Spanish (see [30] for a description of this variety, also known as Standard Peninsular 

Spanish). A thorough questionnaire completed by all the participants served to assess health habits at 
the time of the recordings as well as to evaluate the degree of relationship closeness between pairs 

(only in the case of twins) by using Likert scales and typical questions used in previous phonetic studies 
on twins [11]. Besides, the zygosity of all the twins was checked; only for a MZ twin pair a DNA 

testing was necessary, which served to confirm that they were actually MZ twins.  

Although the selected twin corpus included several speaking tasks, for this study we have only used 
the fifth speaking task: informal interview between each speaker and the first author of this 

investigation (the speaking styles exhibited by the participants were comparable to those found in 
forensic recordings). The interview lasted approximately 10 minutes and was carried out on the 

telephone, i.e. the researcher is at one end of the telephone and one member of each speaker pair at a 
time is at the other end of the telephone, in a different room. The recordings were made with high-

quality but unobtrusive microphones (omnidirectional, condenser and flat-frequency-response 
microphones in an ear-set device). Forensically realistic conditions were thus achieved, also thanks to 

the minimization of the observer’s paradox, well known in sociolinguistic studies [31]. Similar 
recording scenarios are found in the forensic phonetic literature [32][33]. In this speaking task the 

subjects were asked about the topic discussed in the first task. Since there is a considerably long time 
gap between the first and the fifth task, the speakers do not remember clearly the whole conversation 

and they exhibit hesitating responses. This gives rise to the so-called fillers, a type of speech 

disfluencies which in Spanish typically take the phonetic form of a long [e], usually transcribed as [e]. 
The forensic potential of these naturally sustained vocalic sounds was highlighted in the Introduction. 

For each of the 54 speakers, we extracted 6-10 tokens in each of the two sessions. In total, the dataset 

used in this study consists of 880 tokens of the [e] vowel (average tokens per speaker and recording 

session: 7.89), with an approximate duration of 160 milliseconds. These tokens were manually located 
and extracted using Praat [34].We excluded five tokens which were very short because it was not easy 

to perform a robust estimate of some acoustic features on them, thus processing 875 tokens.  

The voice data are available in two different qualities. Originally, the data were extracted from high-
quality recordings (44,100 Hz sample rate, 16-bit resolution, and mono channel). In a second step, the 

875 tokens were band-passed filtered in order to obtain more forensically realistic data, usually 
characterized by being channel-degraded due to the telephone transmission. To simulate band pass 

reduction, the voice signal was low-pass filtered at 3.4 kHz, high-pass filtered at 300 Hz and 
downsampled to 8 kHz.   
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2.2. Methods 

This section describes first the acoustic methodology for the processing of the speech tokens, using a 

range of speech signal processing algorithms (feature extraction). After that, the methodology for the 

exploratory data analysis and feature selection is described. Before getting into the details of the 

perceptual analysis, which comes at a second stage, a description of the metric used to calculate speaker 

similarities is provided.  

2.2.1. Acoustic analysis 

2.2.1.1 Acoustic characterization of the voice signals (feature extraction) 

We applied the 309 speech signal processing algorithms summarized previously in [35][36] and [20]1: 

these tools were originally developed to process sustained vowel phonations and assess neurological 

disorders which leave an imprint in voice. These algorithms include traditional perturbation measures 

such as jitter (f0 variation) and shimmer (amplitude variation): for the algorithmic definition of the 

various jitter and shimmer variants used, see [20]. Moreover, many of these tools rely on quantifying 

signal to noise ratio using a range of algorithmic approaches: these tools include the Glottal-to-Noise 

Excitation (GNE), the Vocal Fold Excitation Ratio (VFER), and the Empirical Mode Decomposition 

Excitation Ratio (EMD-ER). Other tools include variability of f0 (e.g. using wavelet-based 
approaches). The complete list of features appears in table 1.  

Many of the acoustic analysis algorithms reviewed above require the computation of f0 estimates. 

Recently, [37] compared 10 well-established f0 estimation algorithms in the speech signal processing 

literature validating their findings in two databases where the ground truth f0 was known a priori. 

Moreover, a novel f0 fusion scheme had been proposed which was reportedly leading to consistently 

more accurate f0 estimates than the individual f0 algorithms. In this study, we use that f0 fusion scheme 

to obtain the f0 estimates, which were subsequently fed into the acoustic analysis algorithms when 

required. Finally, we also computed 42 Mel Frequency Cepstral Coefficients (MFCCs), which is one 

of the most widely-used acoustic analysis methods, with applications in both speech recognition [38] 

and more recently in speaker identification. MFCCs focus primarily on the articulators (mouth, tongue, 

lips), and are traditionally used as the standard benchmark in speaker recognition systems against 
which novel techniques are compared to.  

Overall, we characterized each signal in the database using 309 speech signal processing algorithms, 

resulting in a design matrix of size 875×309. There were no missing entries in the design matrix. 

 

 

 

 

 

 

                                                             
1 MATLAB source code for the computation of these algorithms is available from [name deleted to maintain the integrity 

of the review process] 



 

 

 
Feature Description Number of features 

Jitter variants Fundamental frequency perturbations 30 

Shimmer variants Amplitude perturbations 21 

Harmonics to noise ratio Signal to noise ratio using autocorrelation 4 

Glottal quotient Quantifying vocal fold cycle variability 3 

Recurrence period density entropy (RPDE) 
Uncertainty in estimation of fundamental 

frequency 
1 

Detrended fluctuation analysis (DFA) Stochastic self-similarity of turbulent noise 1 

Pitch period entropy (PPE) 
Quantifying variability in F0 over and 

above normal variability in healthy controls 
1 

Glottal to noise excitation (GNE) 
Noise synchronization in different 

frequency bands  
6 

Vocal fold excitation ratio (VFER) 
Noise synchronization in different 

frequency bands 
9 

Empirical mode decomposition excitation 

ratio (EMD-ER) 

Decomposing the signal in multiple time 
series using EMD and quantifying energy 

and entropy   

6 

Mel Frequency Cepstral Coefficients 

(MFCC) 

Amplitude and spectral fluctuations 
42 

F0-related measures 

f0 statistical characterization, differences 

compared to age- and gender- matched 

healthy controls 

3 

Wavelet-based measures Characterizing f0 using wavelet 

decomposition methods 
182 

 
Table 1: Feature set names, description and number of features per category (total: 309 different features) 

2.2.1.2. Exploratory data analysis and feature selection 

Exploratory analysis refers to visualizing the data and using formal statistical analysis algorithms to 
explore certain hypotheses and quantify statistical association strengths. The data was non-Gaussian, 

and hence we used the Spearman correlation to report association between the features and the outcome 
(if the speakers are twins or unrelated speakers).  

We used the LOGO algorithm to select features [39], and applied the feature selection methodology 
described in previous studies [40][41] in order to decide on the feature subset with maximal 

generalization and predictive ability. In short, that methodology uses perturbed versions of the original 
dataset (we used 100), selecting features on each of these cases, and then using a voting mechanism to 

determine the final ranking of the feature set.  

2.2.1.3.Euclidean distances 

The metric used to calculate speaker similarity was the Euclidean Distance (ED). This well-known 

distance measure, also referred to as Pythagorean distance, is commonly defined as the square root of 

the sum of the squares of the differences between the corresponding coordinates of two points; or 

simply as the straight-line distance between two points in the Euclidean space. Since the different voice 

features considered for calculating this distance are on completely different scales of measurement, 

some form of standardization was necessary to balance out the different contributions of variables and 

to avoid that any of them dominate in the calculation of the ED. We therefore calculated pairwise 

distances between speakers using Standardized Euclidean Distances. Variables are thus transformed 

so they all have the same variance of 1. 
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݀ௌ௧ଶ = ( ௌݔ	 − ௌݔ)ଵି܄(௧ݔ − (௧ݔ ′ 
Equation 1: Standardized Euclidean Distance  

Equation 1 is the formula for calculating the Standardized Euclidean distance, where ܄ is the n-by-

n diagonal matrix whose jth diagonal element is s(j)2, where s is the vector of standard deviations. 

 

2.2.2. Perceptual analysis 

2.2.2.1. Vocal Profile Analysis Scheme (VPAS)  

The Vocal Profile Analysis Scheme (VPAS) is a perceptual approach to the description of voices and 

more accurately to the analysis of voice quality (VQ). This protocol grew out of some early work by 
John Laver [28][42] but has evolved to slightly different schemes since its inception as a clinical and 

research tool for voice analysis. Fuller descriptions can be found in [43] or [44]. While other perceptual 
protocols are available for voice analysis (e.g. GRBAS, SVEA, CAPE-V, described in [45][46][47], 

respectively) their use is more widespread among clinicians; the VPAS being most widely used by 
phoneticians, and also most popular among forensic practitioners, to a great extent thanks to studies 

such as [8][48][49], where its use is recommended.  

The VPAS is defined as a systematic phonetic framework for the descriptions of a speaker’s VQ, 
where the term VQ encompasses “all the non-segmental features of speech which characterize an 

individual’s habitual speech patterns” ([50]: 294). The general principles underpinning this scheme 
are: (1) The whole of the vocal apparatus is considered, i.e. habitual patterns of modifications in the 

vocal tract (e.g. lips, jaw or tongue configurations) contribute as much to an individual’s VQ as habitual 

configurations of the larynx, i.e the auditory coloring of a speaker’s characteristic voice stemming from 

phonation modifications; (2) VQ is analysed in terms of a number of strands, or components, which 

may be combined in a variety of ways. The term ‘setting’ is used to refer to these components and is 

defined as a long-term tendency for some part of the vocal apparatus to adopt a particular configuration 

[51]; A variable number of settings exist depending on the version of the protocol; 36 settings in [44]; 

(3) All voices are compared to a ‘neutral setting’, a clearly defined baseline with concrete acoustic and 

physiological correlates. Deviations from neutral are quantified in a 1-6 degree scale, where 1-3 are 

classed as ‘moderate’ and 4-6 are classed as ‘extreme’ (cf. [44][50]).  

For our study we have attempted a simplification of the VPAS with a considerable reduction of 

settings and no scalar degrees, which has enabled us to obtain a simplified method for calculating 
measures of dissimilarity between pairs of speakers, as we will explain below in some more detail. The 

main reason why a simplification of the dimensions/settings of the original VPAS has been deemed 
necessary for FSC is the high multidimensionality of VQ: while auditory judgments are predicated on 

the assumption that listeners have a common understanding of perceptual labels [52], perceptual 

dimensions often overlap and listeners cannot always isolate for judgement one perceptual dimension 

form several co-occurring dimensions [52][53]; cf. [54]. This justified the simplification and merger 

of very similar settings in the VPAS, for the sake of improving the reliability and validity of this 

methodology in a forensic scenario.  

The main characteristics of the Simplified VPAS (SVPAS) suggested here for FSC are as follows: 



 

 

1. There are 10 ‘major setting groups’ and a total of 26 possible settings within those 10 groups 

(see Table 2); the intermittent presence of a setting is no longer marked. Instead of using scalar 
degrees 1-6, it is proposed that for each setting the rater simply marks whether the voice is 

neutral (i.e. absence of a remarkable deviation) or non-neutral (i.e. presence of a remarkable 
deviation). 

2. If the voice is considered neutral for a specific setting, a 0 is assigned in a table such as the one 
presented in Table 3. If non-neutral, a decision should be taken on the direction of the deviation 

from neutrality. 
3. For most setting groups (e.g. lingual tip, larynx height, vocal tract tension), only two directions 

are possible as deviations from neutrality. For instance, for lingual tip: either advanced (1a) or 
retracted (1b). Other setting groups, however, the possibilities for non-neutrality include up to 

5 decisions. See group ‘voicing type’. Therefore, these possibilities need to be expressed as 
categories (a, b, c, d, or e). It is no longer a question of absence or presence of neutrality, but if 

non-neutrality is perceived for a category (e.g. absence of labial neutrality), a decision has to 
be taken on the direction of the non-neutrality (e.g. lip rounding). 

4. Besides, there is no marking following anatomical progression down the vocal tract from the 
lips to the larynx, as suggested in [44]. Instead, the category labelling is carried out by marking 
first what is more remarkable for the rater and then trying to decide on the rest of major settings.  

 Major setting groups 

Key Labial Mandib. Ling. tip Ling. body Pharyng. Velo-

pharyng. 

Larynx 

Height 

VT 

tension 

L 

tension 

Phon. 

Types 

1a Lip 

rounding 

Close Advanced Front 

&Raised 

Constricted Audible 

nasal 

escape 

Raised 

Larynx 

Tense Tense Falsetto 

1b Lip 

spreading 

Open Retracted Back 

&Lowered 

Expanded Nasal Lowered 

larynx 

Lax Lax Creak. 

1c Labiodent. Protr.  Denasal  Whisp. 

1d  Harsh. 

1e Tremor 

Table 2: Simplified Vocal Profile Analysis Scheme (SVPAS). Full names of the abbreviations used in the table: 

Mandib.: Mandibular; Ling.: Lingual; Pharyng.: Pharyngeal; Velo-pharyng.: Velo-pharyngeal; VT: Vocal Tract; 

L: Laryngeal; Phon.: Phonation; Labiodent.: Labiodentalization; Protr.: Protruded; Creak.: Creakiness.; Whisp.: 

Whisperiness. 

The main modifications towards simplification of the original VPAS can be summarized as: reduction 

from 36 settings to 26 and no use of scalar degrees. Besides, within each major setting group, a decision 

has to be taken as regards the direction of the deviation from neutrality, while in the original protocol 
it is possible to select several options. For instance, in relation to voicing type, a rater (i.e. the analyst, 

or expert who gives a rating to the voice) could label a voice with creakiness and harshness. While it 
is well known that there are combined phonation types, usually one is predominant –which is the one 

that has to be rated in our SVPAS– and the other/s only appear intermittently. For the rest of major 
settings, our simplified rating system is perfectly apt to the mutually exclusive nature of labels: e.g. in 

relation to the vocal tract (VT) tension, if the speaker is non-neutral for that setting, he presents either 
tense VT or lax VT; or if he is non-neutral as concerns the lingual body, he will either tend to present 

a fronted and raised tongue body or a backed and lowered tongue body. The main modifications from 
the original settings have been made for phonation types. We are no longer distinguishing between 

subgroups ‘voicing type’, ‘laryngeal frication’ and ‘laryngeal irregularity’. All of them are merged now 
into phonation types. Furthermore, for the sake of simplification –and because the boundaries are 

sometimes blurred– there is no distinction between creak and creaky and whisper and whispery, as in 
the VPA version described in [44].  
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2.2.2.2. Simple Matching Coefficients (SMC) 

The simplification of the VPA protocol has been envisaged in order to obtain a numerical measure of 

the distance between two speakers using ED for perceptual evaluations, which could then be compared 

with the ED calculated for acoustic features. Considering that ED for categorical data are best 

computed using a Simple Matching Coefficient (SMC) method, we will explain below how this 

technique was implemented for our data. If only one variable existed (for instance, labial setting), 

computing the distance between two speakers would be fairly trivial: imagine two speakers have the 

same configuration for that setting (e.g. lip rounding); their distance would be 0. If one of them had lip 

rounding and the other lip spreading, their distance would be 1. Also, if one of them was neutral for 

that setting and the other had any type of deviation from neutrality –in this case, either lip rounding or 

lip spreading– the distance would be 1 as well. As not only one but several categorical variables (labial 

setting, mandibular setting, etc.) exist for calculating the distance between two speakers, the simplest 

method is that of extending the ‘matching’ idea and counting how many matches and mismatches there 
are between samples. In the case shown in Table 3, there are 8 matches and 2 mismatches between 

speakers 41 and 42, hence the distance between the two speakers is 8 divided by 10, the number of 
variables, that is 0.8. This is called the Simple Matching Coefficient (SMC). 

 

  Major setting groups  

  Labial Mandib. Ling. 
tip 

Ling. 
body 

Pharyng. Velo-
pharyng. 

Larynx 
Height 

VT 
tension 

L 
tension 

Phon. 
Types 

 

Speakers 41 0 1a 1a 0 0 0 0 1b 1b 1c  

42 0 1a 0 0 0 0 1b 1b 1b 1c  

Matches 1 1 0 1 1 1 0 1 1 1 0.8 

 SMC 

Table 3: Example of calculation of Simple Matching Coefficients (SMC) for MZ twin pair 41-42. 

A total of 29 speakers (24 MZ speakers and 5 speakers pertaining to the DS group) were perceptually 

evaluated using the SVPAS by listening to recordings of spontaneous speech samples (90-120 seconds) 
of each speaker. These speech samples were extracted from the corpus described in [29]. The voices 

were listened by the first author at least twice before completing the SVPAS protocol. Then ED in the 
form of SMC were calculated for the 12 MZ pairs and three further DS pairs, corresponding to the 

speakers with higher ED in the HQ condition. Our aim here was to find how the ED in the acoustic 
domain correlate with ED found in the perceptual domain. 

3. Results 

3.1. Pre-test: Stability of f0 contours in pause fillers 

As a first step before any analysis, we tested the previously reported observation [3] that the naturally 

sustained pause filler [e] is similar to an artificially sustained vowel, as long [a] produced in typical 

clinical studies, for instance to calculate maximum phonation time. Firstly, visual inspection allowed 
us to verify that the pause fillers were actually “stable”, i.e. the amplitude and frequency remain 

relatively constant.  To objectively assess this we computed the f0 contours: we expect to see f0 

contours which are relatively stable (or at least stable over a certain time window), exhibiting 

fluctuations like those observed in sustained vowels. Visual inspection of these contours corroborated 

previous reports in the research literature that the pause fillers can be considered sufficiently stable, at 

least during the middle of the pause filler. Figure 1 presents some randomly selected samples to 

demonstrate this. 



 

 

 

 

 
 
Figure 1: Fundamental frequency (f0) contour of 10 randomly selected tokens to visually assess f0 variability. Each 

token corresponds to different subjects (S).  

3.2. Acoustic analysis 

3.2.1. Euclidean distances 

Feature selection methodology determined the most parsimonious feature subset comprising the 15 
jointly most statistical predictive features. Standardized Euclidean Distances (ED) were then calculated 

using those features for all the possible paired speaker combinations in our database (54 × 54). As there 
are only 54 possible same-speaker (SS) comparisons, the number of different-speaker (DS) 

comparisons was reduced also to 54. These DS pairings were randomly selected considering the 

following arithmetic progression: e.g. speaker 1 with speaker 3, speaker 2 with speaker 5, and so on. 

The total number of MZ pairs in the database was 12. As can be seen in Table 4, speakers 1 to 11 are 

paired with speakers 2 to 12; speakers 33 to 43 are paired with speakers 34 to 44, etc. Table 5 and 6 

summarize the ED for SS, DS, respectively, distinguishing between high quality (HQ) condition and 

telephone-filtered (TF) condition.  
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SP_1 1 3 5 7 9 11 33 35 37 39 41 43 

SP_2 2 4 6 8 10 12 34 36 38 40 42 44 

HQ 6.11 6.86 6.54 8.18 6.27 16.19 6.04 6.16 5.95 7.26 5.44 6.43 

TF 6.37 7.22 6.91 8.64 10.70 83.07 6.00 21.58 5.48 10.49 6.11 6.96 

 
Table 4: ED values in high-quality (HQ) and telephone-filtered (TF) condition for the 12 MZ pairs. The values 

considered outliers are shown in italics, corresponding to the strongest dissimilarity (pair 11-12 for both conditions; 
pair 35-36 for TF condition). 

 

 
SP_1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

SP_2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

HQ 5.32 5.34 5.38 5.34 5.41 5.33 5.39 5.35 5.34 5.32 5.33 5.31 5.36 5.33 5.40 5.41 5.26 5.37 

TF 5.31 5.30 5.30 5.35 5.36 5.19 5.35 5.31 5.27 5.30 5.31 5.26 5.28 5.31 5.36 5.31 5.23 5.32 

 

SP_1 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

SP_2 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

HQ 5.35 5.39 5.35 5.30 5.38 5.35 5.43 5.35 5.33 5.34 5.35 5.38 5.37 5.33 5.39 5.36 5.41 5.33 

TF 5.32 5.34 5.28 5.16 5.30 5.23 5.36 5.24 5.27 5.28 5.36 5.26 5.30 5.32 5.37 5.33 5.37 5.33 

 

SP_1 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 

SP_2 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 

HQ 5.31 5.36 5.35 5.41 5.41 5.40 5.35 5.35 5.34 5.28 5.27 5.36 5.34 5.34 5.36 5.38 5.39 5.37 

TF 5.33 5.34 5.34 5.40 5.36 5.33 5.28 5.34 5.25 5.20 5.22 5.29 5.34 5.33 5.34 5.33 5.31 5.36 

 
Table 5: ED values in high-quality (HQ) and telephone-filtered (TF) condition for the 54 same-speaker comparisons. 

 

SP_1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

SP_2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

HQ 11.44 6.85 9.06 7.99 7.16 10.01 13.36 15.69 8.55 8.64 138.6 9.77 8.16 7.15 10.41 11.49 9.26 9.14 

TF 33.33 6.87 7.13 6.71 8.11 7.50 11.78 18.17 8.76 8.67 44.90 7.30 6.97 7.01 8.52 7.24 32.87 7.68 

 

SP_1 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

SP_2 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 

HQ 7.64 282.2 8.53 8.93 7.61 6.94 7.86 10.53 19.41 9.07 8.20 7.90 7.68 7.93 6.88 7.14 8.15 6.06 

TF 6.61 17.83 6.89 5.34 11.56 7.27 7.68 8.02 6.40 13.97 9.77 7.72 6.49 9.89 7.19 51.20 6.42 5.15 

 

SP_1 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 

SP_2 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 1 2 

HQ 10.73 15.03 8.00 15.66 6.62 6.70 7.88 31.37 222.9 6.09 6.17 9.05 6.90 7.49 6.53 13.82 7.31 8.80 

TF 9.35 19.19 9.02 11.92 6.21 6.41 10.36 21.14 20.36 4.59 6.10 9.17 5.90 7.29 5.65 8.91 8.39 6.37 
 

Table 6: ED values in high-quality (HQ) and telephone-filtered (TF) condition for the 54 different-speaker (DS) 

comparisons. The values considered outliers are shown in italics, corresponding to the strongest between-speaker 
dissimilarity. The values in bold are the lowest ED for DS comparisons, and they overlap with the average ED for 
SS comparisons (False Acceptances). 

 



 

 

 

 

 

 
Figure 2: ED distribution per type of speaker comparison (SS: same speaker; DS: different speakers; MZ: 

monozygotic pairs) in the high quality (HQ) condition 
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Figure 3: ED distribution per type of speaker comparison (SS: same speaker; DS: different speakers; MZ: 

monozygotic pairs) in the high quality (HQ) condition: zoom view after removing the three outliers in figure 2, i.e. 

speaker pairs 11-13, 20-22 and 45-47 

 

Figures 2 and 3 present the distribution of ED per type of speaker pairing, only for the HQ condition. 

The boxplots show that the ED for the same-speaker comparison (n=54) are very homogenously 
distributed (mean: 5.35; standard deviation: 0.04). See also table 5 where none of the ED values 

outstands among the others as an outlier.   

In the case of MZ pairs (n=12), ED values are also quite evenly distributed with a mean higher than 
for SS comparisons, indicating a slightly higher dissimilarity between the speakers compared (mean: 

7.29; standard deviation: 2.89). Only one MZ pair (11-12) could be considered an outlier with an ED 
of 16.19 (see table 4), indicating stronger dissimilarity than for the average MZ pair. 

Finally, in the case of DS comparisons (n=54), ED values gather around 20 but their distribution is 

far from even (mean: 20.90; standard deviation: 49.61). Mainly three DS pairs outstand as strikingly 

dissimilar. Upon looking at table 6, we find that these pairs are 11-13, 20-22 and 45-47 with ED values 



 

 

of 138.6, 282.2 and 222.9, respectively. Pairwise Wilcoxon ranksum tests showed that the differences 

between all three groups (SS, DS and MZ) are statistically significant (p<0.001).  

Figure 4 presents the distribution of ED per type of speaker pairing, this time for the TF condition. 

The boxplots show that the ED for the same-speaker comparisons (n=54) are again very homogenously 

distributed (mean: 5.31; standard deviation: 0.05), with values very similar to those found in the HQ 

condition.  

 

Figure 4: ED distribution per type of speaker comparison (SS: same speaker; DS: different speakers; MZ: 

monozygotic pairs) in the telephone-filtered (TF) condition 

In the case of MZ pairs (n=12), ED values present a higher mean than for SS comparisons, as in the 
HQ condition, indicating higher dissimilarity between speakers, although in this case the standard 

deviation is much higher (mean: 14.96; standard deviation: 21.89). If in the HQ condition only one MZ 
pair was detected as an outlier (11-12), in the TF condition we still find pair 11-12 with an strikingly 

high ED (83.07) but another outlier value appears in the boxplot (21.58), corresponding to MZ pair 35-
36. Indeed, MZ pair 11-13 turns out to be more dissimilar that the most dissimilar DS pair. The striking 

difference found for this identical twin pair agrees with previous studies using this same twin database 
but a likelihood-ratio approach [3]. Possible explanations for this are suggested in the discussion 

section.  
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Finally, in the case of DS comparisons (n=54), ED values are not completely normally distributed, 

as it happened in the HQ condition (mean: 11.32; standard deviation: 9.43), but in comparison with the 
HQ condition the standard deviation is not so high. Besides, it seems that one of the effects exerted by 

the telephone filter is that the outlier pairs do not exhibit such high ED. Compare the values 282.2, 
222.9 and 138.6 obtained by the three more dissimilar pairs in the HQ condition with the values 51.20, 

44.90, 33.33, and 32.87 obtained by the four more dissimilar pairs in the TF condition (see table 6). 
Interestingly, only the pair 11-13, outlier in the HQ condition, remains an outlier in the TF condition. 

In addition, three new outliers (high ED) emerge in the TF condition, corresponding to speakers who 
were not so dissimilar in the HQ condition: 1-3, 17-19, and 34-36. In contrast, pairs 20-22 and 45-47, 

with high ED in the HQ condition, show ED aligned with the mean in the TF condition. As in the HQ 
condition, pairwise Wilcoxon ranksum tests showed that the differences between all three groups (SS, 

DS and MZ) are statistically significant (p<0.001).  

3.2.2. Z-score normalization 

In the previous section we have described the method to calculate ED between speaker pairs as a 

quantitative procedure to measure their similarity. Since each pairwise comparison is based on 15 
variables (15 voice features, comprising vocal-tract and laryngeal characteristics), it was expected that 

some of them contributed more than others to the ED value. Besides, these variables are on completely 
different scales of measurement. Therefore, some form of standardization was necessary to balance out 

the contribution of the most dominant variables, so that they do not overshadow in the calculation of 
the ED. The conventional way to do this is called standardization. An alternative way to do this is to 

normalize the data of each of the speakers being compared in each ED calculation. For that purpose, 
we used z-score normalization. Figures 5 and 6 show the boxplot distribution of SS, DS and MZ 

comparisons in HQ and TF condition, respectively. 



 

 

  
 

Figure 5: ED distribution per type of speaker comparison (SS: same speaker; DS: different speakers; MZ: 

monozygotic pairs) in the high-quality (HQ) condition with z-score normalization 

 



 

17 

 

 
Figure 6: ED distribution per type of speaker comparison (SS: same speaker; DS: different speakers; MZ: 

monozygotic pairs) in the telephone-filtered (TF) condition with z-score normalization 

 

Figures 5 and 6 show that standardizing the variables to their z-scores has primarily affected MZ 

and DS comparisons. The distribution for SS comparison was quasi-Gaussian already using the other 

method (standardized ED). What sees worth highlighting at this point is that with z-score normalization 

we lose some valuable information which was present when we used the other standardization method. 

We refer to the detection of the outliers in MZ and DS comparisons. From a forensic phonetic 

perspective, if we have access to this type of information we can gain relevant insight into the causes 

of the ED values above the mean in specific MZ pairs. At the same time, if we are able to detect 

strikingly dissimilar DS, we can discuss the role of these speakers in relation to the biometric menagerie 

[55][56] and how they can impair a forensic comparison system, as we will explain in next section. 

Likewise, the use of the standardized ED method in comparison with the normalization by z-scores 
allows us to better assess the effect of the telephone filter. As it was shown in Table 4 (MZ subjects) 

and especially in Table 6 (DS subjects), and in their corresponding boxplots, different outliers (high 
ED, stronger dissimilarity) can be detected depending on the condition of the recording. Although in 

general the TF seems to reduce the ED values of the most dissimilar DS pair, new high dissimilar DS 
pairs appear who did not outstand as highly dissimilar in HQ condition (see Table 6; pair 1-3, 17-19, 

and 34-36).  



 

 

Most importantly, however, the results obtained using standardized ED and z-score normalization 

are different. While the use of the former shows that ED are higher for DS pairs and lower for SS 
comparisons, with the ED values for MZ pairs in between, the results obtained using the second method 

are against expectations. We find higher ED for SS comparisons, followed by DS pairs and by MZ 
pairs. This suggests that the first standardization method should be preferred over the z-score 

normalization.  

3.2.3. Heat maps: hunting for phantoms 

Users do not perform equally well in biometric identification systems. In terms of error rates, two 

common misclassifications are false acceptances and false rejections, and the following performance 

metrics are used: False match rate (FMR, or False Accept Rate, FAR) is the probability that the system 

incorrectly matches the input user to a non-matching user in the database, and false non-match rate 

(FNMR, or False Reject Rate, FRR) is the probability that the system fails to detect a match between 

the input user and a matching template in the database, thus measuring the percentage of valid matches 
that are incorrectly rejected. Different combinations of excessive false accepts or rejects exist in 

biometric systems, so different user groups have been identified in relation to how their performance 
affects misclassifications or errors [57]. These problem user groups have been given animal names 

such as lambs and goats that pretend to analogously reflect the behavior of the denizens of such 
biometric zoo or menagerie. First formalized by [55], the original members of this zoo are: 

 Sheep: users who produce a biometric that matches well to other biometrics of themselves and 

poorly to those of other people, i.e. the similarity score is high for genuine comparisons and 

low for imposter comparisons. Therefore, sheep generate fewer false accepts and rejects than 

average. These users make up the majority of the population of a biometric system.  

 Goats: users who produce a biometric that matches poorly to other biometrics of themselves, 
i.e. they obtain low similarity scores for genuine comparisons. Therefore, these users are the 

main responsible for false rejects.  

 Lambs: users who produce a biometric that matches well to the biometric of a different person, 

i.e. they are easy to imitate (by wolves); they obtain relatively high similarity scores for 
imposter comparisons, leading to false accepts.  

 Wolves: users particularly good at impersonating other users (lambs); i.e. they obtain relatively 
high similarity scores for imposter comparisons between them and lambs. In other words, a 
wolf has an above average chance of generating a relatively high match score when compared 

to a stored biometric of a different person [58].  

In the biometric menagerie of [56], a revisited version of Doddington’s zoo, four new user groups 
are proposed (worms, doves, chamaleons, and phantoms), defined in terms of a relationship between 

genuine and imposter match scores. The name phantom is then used to refer to those speakers who 
match poorly against everyone, i.e. they show low match scores regardless of whom they are matched 

against. For this reason they rarely lead to a false acceptance. Although this would be generally 
considered positive for a speaker recognition system, this type of users tend to be very different to 

everyone, including themselves –there is some overlap with goat-like users in the original zoo– so it 
remains to be fully explored the causes of their inherent “unmatchability” (see discussion). More 

importantly, if they are thus deemed to belong to a different population, future work should investigate 
how the elimination of this type of speakers could help establish a more homogenous database for 

attaining more robust results. In other words, how would the inclusion of many phantoms in a reference 
population would affect the likelihood ratio (LR) obtained when comparing a suspect and an offender? 
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Recent studies in this field have investigated similar source of variability in the analyst decisions during 

the computation of numerical LRs [59] but more investigations seem necessary in this respect. Heat 
maps could prove a good visualization technique to detect the so-called phantoms. In Figure 7 this type 

of plot shows that ED are strikingly high for three main speakers: 13, 22 and 47, irrespective of whom 
they are being compared with. This information is missing with the z-score normalization technique 

(Figure 8). Speaker 47 presents the most phantom-like behavior. In Figure 7, we show the maximum 
ED value (499.2) found when comparing his voice with that of a different speaker. All other ED values, 

typically above 50, are still outliers if we compare them with the average values obtained in DS 
comparisons (Table 6).  

 

Figure 7: Heat map for all 54 DS comparisons in HQ condition using standardized ED (color bar on the right).  

 

 
 



 

 

 
Figure 8: Heat map for all 54 DS comparisons in HQ condition using z-score normalization 

 

 
 

 
 

3.2.4. System performance 

Tippett plots are typically used to evaluate the performance of a forensic recognition system. In this 

type of graph two curves are displayed, each one representing the probability for one of the competing 

hypothesis: that of the prosecution (Hp) and that of the defense (Hd). Usually the hypothesis of the 
prosecution is that the offender and the suspect samples come from the same speaker, while the 

hypothesis of the defense is that they belong to different speakers. Strictly speaking, Tippett plots 
represent graphically LR- based outputs. Here, we used the ED as a means to visualize the 

discrimination of the system using inverted cumulative distributions of ED, and not to represent the 

strength of the evidence. Note that in Tippett plots the strength of the evidence for H0 increases with 

the log value. In Figure 9, however, we have not aimed to represent the strength of the evidence since 

ED only represent the similarity term and not the typicality term of a likelihood ratio (LR). Figure 9 

shows the cumulative distribution of ED (log10) for the DS comparisons (red lines) and the SS 

comparisons (blue lines). Some overlap occurs between red and blue lines in the TF condition (dotted 

lines) while no overlap is observed in the HQ condition. The implication of this is that no false 

acceptances or missed hits are obtained with an ED-based system in the HQ condition. The same 
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system generates errors in the TF condition because, while SS comparisons still gather around 5.3 (0.7 

in log10), the ED values for some DS pairs are in that margin, or even lower. These cases represent 
false acceptances.   

Besides, the effect of the telephone is obvious in the DS comparisons. The range of values is greater 

in the HQ condition (with log10 Euclidean Distances of up to 2.4 in some pairs) than in the TF 

condition (maximum log10 Euclidean Distance being 1.7). This seems in agreement with the fact that 

the type of bandpass filter occurring in telephone transmissions leaves less spectral information 

available in the acoustic signal, in comparison with high quality recordings. The acoustic frequencies 

where speakers may differ is considerable reduced, therefore.  

 
 

Figure 9: Cumulative proportion of Euclidean Distances (Log10) for different-speaker (DS) and same-speaker (SS) 
comparisons. Red lines represent DS pairs while blue lines are used for SS comparisons. Continuous lines depict 

high quality (HQ) conditions whereas dotted lines are used for telephone-filter (TF) conditions. 

3.3.Perceptual analysis 

Twenty-nine speakers (24 MZ and 5 DS) were perceptually evaluated using the SVPAS explained in 

the methodological section. After completing the assessment, ED between pairs of speakers were 

calculated as SMC. The similarity values obtain range between 0 (very different) and 1 (very similar). 

A total of 15 SMC were calculated, corresponding to the 12 MZ pairs and three further DS pairs. The 

latter are the speaker pairs who obtained the highest ED in the acoustic analysis (HQ condition). In 
other words, in the acoustic domain they were found to be very different. These are used as control 



 

 

subjects in order to observe whether they would also be found very dissimilar applying only a 

perceptual assessment protocol.   

Table 7 shows the ED for the 15 speaker pairs mentioned above. For comparative purposes, the 

SMC are shown together with the standardized ED obtained by the same pairs in the acoustic analysis. 

Higher values in acoustic ED means greater dissimilarity while higher values in perceptual ED means 

greater similarity. In the acoustic domain, the MZ pair 11-12 outstands as very dissimilar (ED = 16.19) 

in comparison with the rest of identical twin pairs, presenting values homogenously distributed around 

6.5 (mean 6.48, standard deviation 0.74; n=11). From a perceptual point of view, differences between 

twin pairs are not so marked (mean 0.58, standard deviation 0.18; n=12) and, more importantly, MZ 

pair 11-12 does not outstand as different from the MZ group. It is still the MZ pair with less perceived 

differences in voice quality (VQ), but other pair (37-38) also receives a SMC of 0.3. This value 

indicates that these twins resemble each other in only three out of ten VQ components, while the 

average trend in MZ pairs is to present perceptual similarities in more than half of its VQ settings.  

If we compare the MZ pairs with the three most dissimilar different-speaker (DS) pairs in the 

acoustic analysis, taken as a control group, the difference between MZ and DS pairs in the perceptual 
ED are not remarkable, and this is due to the scale used here. The simplification on the perceptual 

protocol for voice description allows for only ten possible degrees of differentiation in a scale 0-1. Yet, 
the SMC of 0.3, 0.1 and 0 are very low, which agrees with the high acoustic ED. If these speaker pairs 

are very different between them, as shown in the acoustic analysis, scarce voice similarities are 
expected to be found aurally by a trained phonetician. Indeed, the values 0.3, 0.1 and 0 mean that out 

of 10 possible strands of voce quality variation, only three, one and none –correspondingly– sources 
of similarity have been found for these speakers perceptually.  

Our aim has been to find how the ED in the acoustic domain correlate with ED in the perceptual 

domain. For that purpose, we used the Kendall’s tau correlation test, a non-parametric correlation 

coefficient similar to Spearman but used in preference for small data sets with certain number of tied 

ranks. This allowed us to assess the perceptual salience of the voice features used in the acoustic 

analysis.  

 MZ pairs DS pairs 

Speaker_1 1 3 5 7 9 11 33 35 37 39 41 43 11 20 45 

Speaker_2 2 4 6 8 10 12 34 36 38 40 42 44 13 22 47 

Acoustic ED 6.11 6.86 6.54 8.18 6.27 16.19 6.04 6.16 5.95 7.26 5.44 6.43 138.6 282.2 222.9 

Perceptual ED 0.4 0.7 0.6 0.6 0.5 0.3 0.6 0.9 0.3 0.6 0.8 0.6 0.3 0.1 0 

 
Table 7: Euclidean Distances (ED) between pairs of speakers: monozygotic (MZ) pairs and different-speaker (DS) 
pairs. Both acoustic ED and perceptual ED are based on high-quality recordings. Perceptual ED are calculated as 

Similarity Matching Coefficients (MFCs). Higher values in acoustic ED means greater dissimilarity while higher 

values in perceptual ED mean greater similarity.  

 

Considering all the speakers (n=15), results show that acoustic ED are moderately correlated with 
perceptual ED, rτ = -0.36, p < 0.05. If we only consider MZ pairs (n=12), acoustic and perceptual ED 

are seldom correlated, rτ = -0.04, p < 0.05. As far as the interpretation of the phi-coefficient is 
concerned, if the agreement between the two rankings is perfect and the two rankings are the same, the 

coefficient has value 1; if the disagreement between the two rankings is perfect and one ranking is the 
reverse of the other, the coefficient has value -1. For all other arrangements the value lies between -1 
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and 1, and increasing values imply increasing agreement between the rankings, whereas if the rankings 

are independent, the coefficient has value 0. 
 

4. Discussion 
4.1. Acoustic analysis 

This study investigated the potential of using pause fillers for forensic speaker comparison. We 
demonstrated that these fillers exhibit similar acoustic characteristics to sustained vowels by examining 

the f0 contour and the amplitude contour. This motivated the use of speech signal processing algorithms 
which were originally proposed to study sustained vowels in different applications which focus on 

mining information from processing signals with similar acoustic characteristics.  

Therefore, we characterized each of the 875 fillers with 309 speech signal processing algorithms 
(voice features), and determined a robust, parsimonious subset which could jointly differentiate the 

two cohorts investigated, namely, MZ twins against unrelated speakers. Subsequently, we calculated 
acoustic ED between the speakers in our database, paired with themselves, i.e. one recording session 

versus another (same-speaker comparisons, SS) as well as paired with someone else (different-speaker 
comparisons, DS). This analysis was complemented by measuring distances between MZ pairs. Results 

revealed that there are significant differences among all groups. On the one hand, significant 
differences between DS and SS comparisons indicates overall good performance of the voice features 

used. It is commonly accepted in forensic phonetics [7][8] that for a parameter to be forensically 

discriminant, this needs to exhibit a high degree of variation from one speaker to another (between-

speaker variability) while remaining as consistent as possible for each speaker (low within-speaker 

variability). ASR systems are based on the same underlying idea when they compare targets and non-

targets and calculate false accepts and false rejects rates, although other approaches are used to assess 

a forensic system [60]. 

On the other hand, testing the same set of features with very similar-sounding speakers, i.e. MZ 
pairs, provides further support for the discriminatory potential of the voice features. Our results show 

that similarity of MZ pairs, also measured in ED, lie between the values obtained in SS comparisons 
and DS comparisons. This would be due to the fact that MZ pairs are genetically identical but expected 

to be less similar than one individual with himself, as their anatomical plasticity –both of their vocal 
tract and larynx behavior– can be freely exploited by each twin member to mark differences between 

them. In previous studies [3] this variation leeway was found to occur more frequently in certain MZ 
pairs for sociolinguistic reasons than in SS comparisons. In other words, one speaker is supposed to 

change less from one recording session to another –with some possible exceptions, as we will discuss 

in relation to the biometric users called phantoms and goats. 

 The only MZ pair who outstood as strikingly dissimilar in the acoustic analysis (speaker 11 and 12) 

is the same pair who was already found less similar than the average twin pair in the likelihood-ratio 

investigation carried out in [3]. A detailed diagnosis focusing on this unexpected result revealed 

insightful aspects in relation to both their medical anamnesis and their twin-closeness questionnaire. 

On the one hand, there seemed to be very different smoking habits between the twins, which together 

with the existence of nodules and usual sore throat in one speaker versus the other could explain their 

voice dissimilarities. On the other hand, the twin-closeness questionnaire revealed that they did not 

have an especially close relationship or were especially content with having a twin, which could have 

impede the most typical intratwin mimetism or accommodation, as found in the twin literature, and 



 

 

which would in turn have favored a voluntary tendency to vocally diverge and thus mark their own 

different personality. From a sociolinguistic and forensic perspective, this pair presents interesting 
evidence of how very similar speakers can sound very different if they intend to sound different, despite 

their anatomic similarities. 

The same voice features were tested both under an idealized scenario of high quality recordings and 

also using telephone-filtered recordings, mirroring more realistic scenarios in forensic casework. 

Results reveal that the differences between DS, SS and MZ comparisons were significant in both high 

quality (HQ) and telephone-filtered (TF) recordings. Interestingly, the speakers pairs found more 

dissimilar under the HQ condition were not necessarily the most different pairs under the TF condition. 

Overall the effect exerted by the telephone filter seems to be the reduction in the differences between 

the speakers who were very different in HQ condition. Compare the values 282.2, 222.9 and 138.6 

obtained by the three more dissimilar pairs in the HQ condition with the values 51.20, 44.90, 33.33, 

and 32.87 obtained by the four more dissimilar pairs in the TF condition. However, new outliers emerge 

in the TF condition, corresponding to speakers who were not so dissimilar in the HQ condition: 1-3, 

17-19, and 34-36. In contrast, pairs 20-22 and 45-47, with high ED in the HQ condition, show ED 

aligned with the mean in the TF condition. This suggests that the voice features that prove useful to 
distinguish some speaker pairs may fail to distinguish others. It also suggests that more studies are still 

necessary to investigate thoroughly the effects of the telephone bandpass filtering effects telephone, 
which should most probably be considered in combination with the effect exerted by different codecs 

and compression artifacts [61].  

We have also approached the question of data standardization and concluded that depending on the 
goal of the study and the perspective adopted, different methods for standardization could be preferred 

over others. While the z-score techniques may be valuable for testing comparison systems with high 
number of speakers without an intention to detect specific relationships between speakers, it seems that 

from a more traditional phonetic and sociolinguistic perspective, less reductionist techniques are better 
for detecting insightful detail in a similarity-dissimilarity approach while still balancing out the 

contribution of the most dominant variables, for instance via standardized EDs. These aspects were put 
in relation with the potential of heat maps to detect outlier speakers; these causing the most common 

misclassifications in biometric systems: false acceptances and false rejections. 

The detection of possible phantoms among the speakers in a database can be used for different 

purposes, whether it is only to decide not to include them in the analysis because they can be thought 
to belong to a different population than the rest of speakers, or rather in a more front-end approach to 

diagnose what can cause that a speaker be so different from all others, for instance through the 
collection of simple questionnaires of the participants at the time of the recording, or via more detailed 

medical anamnesis. This would be of great importance from a traditional phonetic and sociolinguistic 
perspective; the interest of these disciplines lying primordially in investigating speakers’ variation 

patterns and finding explanations for them. For instance, in previous investigations in the field of 
fingerprints [62] and iris recognition [63] it has been suggested that few users are intrinsically hard to 

match (i.e. goats and phantoms) and when there are, causes are typically data quality or data collection 
and enrollment issues, rather than any inherent characteristic of the person (cf. [57]), but little is known 

so far about what causes the existence of phantoms and goats in speech biometrics, or even if the zoo 
distribution is constant across different FSC systems or algorithms. Last but not least, it could be 

interesting to assess to which extent the speakers who outstand as very atypical in an acoustic approach 

are also found atypical perceptually, as we have attempted in Section 3.3.   
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4.2.Perceptual analysis 

The purpose of this perceptual analysis has been twofold. On the one hand, we have explored a subfield 

in FSC which has not extensively investigated in recent years. Ever since the use of acoustic software 

to analyze acoustic signals (e.g. f0, formant frequencies) has proliferated, these techniques have been 

applied to the comparison of voice samples of known and unknown origin. In contrast, auditory-

perceptual methodologies remain as complementary tools to the acoustic analyses. The arrival of more 

sophisticated automatized methods, created ad hoc for forensic comparisons (ASR systems) and also 

relying on the acoustic signal, would have increased this trend. Analysis methods based on the 

perceptual skills of a trained expert, usually a phonetician or dialectologist, are viewed by some authors 

as very subjective. While it may be true that speaker discrimination which is solely based on auditory 

perception is error-prone, as we have explained above in relation to cognitive factors affecting the 

multidimensionality of a voice and as it is well acknowledged in the psychology literature, it also holds 

true that little has been done so far to improve on this traditional methodology. Existing protocols for 

the perceptual assessment of voice quality present a large leeway for –if not improvement– change 

towards simplification and forensic-purpose tailoring. Having noted that the VPA scheme is the most 

common perceptual analysis used by forensic experts nowadays [64], we have proposed a simplified 
version of this protocol reducing its dimensions and simplifying the original scalar degrees. This has 

allowed us to calculate ED between pairs of speakers in a similar way that we calculated ED in the 
acoustic domain.  

The second objective of this preliminary perceptual analysis has been to compare the results of the 

acoustic analysis and the perceptual analysis, particularly with the aim of looking for correlation 
between both. The fact that we have found moderate correlation while only having a small number of 

subjects available (n=15) suggests that the acoustic features are perceptually salient. In other words, if 
two speakers are found very similar based on the range of voice features derived from the acoustic 

signal, they are also expected to be found similar by a phonetic expert using auditory assessment of the 
two speakers, provided that the acoustic features have certain salience. Since our voice features depend 

on both vocal tract estimation and laryngeal characterization, it seems highly feasible that they are 
capturing the main characteristics of the individual’s voice. For instance, among the range of voice 

features used in this study, some cepstral coefficients would undoubtedly give an approximation of 

vocal tract shape. Speakers who are particularly similar based on this should be deemed similar by an 

expert in voice quality strands such as labial, lingual or pharyngeal settings, for instance, in our SVPA. 

Similarly, if features derived from the glottal source are playing the greatest role in making two 

speakers two similar in the acoustic domain, the phonetic expert would have rated both speakers as 

very similar in settings such as larynx tension or phonation types. While this idea has not been fully 

explored speaker by speaker in this study, the moderate correlation between acoustics and perception 

is good indicator that it would be possible to disentangle the role of the source features and the 

contribution of filter aspects in the (dis)similarity between speakers. Previous studies suggest that lack 

of a strong correlation between acoustic and perceptual analyses makes their combined use possible in 

a forensic context. For instance, [27] found auditory VPA (vocal tract settings only) to offer different 

information relevant for voice characterization than the information provided by MFCCs and LTFDs. 

In a forensic context this finding is important since their combination would not result in an 

overestimation of the strength of the evidence, as each system would be independent and, as such, 

encoding different types of speaker-specific information.  

 



 

 

5. Conclusions and directions for future research  

We have approached speaker similarity from a two-fold ‘acoustic cum auditory’ perspective. From an 

acoustic point of view, we have used a wide range of 309 voice signal processing features, combining 

source (related to the vocal folds) and filter (related to the vocal tract) voice characteristics. We have 

used feature selection methods to determine the most parsimonious feature subset comprising the 15 

jointly most statistically predictive features, and have assessed speaker similarity on the basis of 

Euclidean Distances (ED). Robust assessment of similarities in voice has been undertaken for same-

speaker comparisons (SS) and different-speaker (DS) comparisons; targets and non-targets in 

automatic speaker recognition terminology. The results have revealed that there are significant 

differences between DS and SS comparisons, which indicate good performance of the parameters for 

forensic identification. Besides, we have also tested the same voice features with very similar-sounding 

speakers, i.e. identical twins, often considered to pose a challenge for identification across different 

forensic disciplines; this holds also true in the voice-specific literature. The results have revealed that 

similarity of MZ pairs (measured in ED) lie between similarity values for SS comparisons and DS 

comparisons. Finally, acoustic analysis has been performed using both an idealized scenario of high 

quality recordings, and also telephone-filtered recordings. Results have revealed that the differences 
between DS and SS comparisons were significant in both high quality and telephone-filtered 

recordings. 

From a perceptual point of view, we have proposed a preliminary simplified protocol for the 
perceptual assessment of voice similarity based on the VPA protocol, aimed at enabling the 

quantification of voice-quality features for speaker characterization and individualization purposes. 
The measuring of correlation between acoustic and perceptual ED have revealed that there is some 

agreement between acoustic and perceptual rankings, but more speakers need to be aurally assessed 
(preferably by more than one rater or judge) in order to obtain more robust correlation results as well 

as to offer measures of interrater and intrarrater agreement. This would help reduce subjectivity in this 
strongly human-based methodological approach and provide some indicators of reliability. All in all, 

the auditory assessment of voice quality still presents some challenges that need to be addressed, 
especially from a forensic-phonetic point of view if we want to increase not only its validity but also 

its reliability. Both aspects (validity and reliability) are not so well developed in this ‘acoustic cum 

auditory’ method as in ASR or acoustic methods, where the measurement of errors is common practice. 

Although hybrid approaches to the field of FSC have been recommended by some authors for a long 
time (e.g. [65][66]), not so many interdisciplinary studies can be found nowadays that approach the 

difficult task of speaker identification from both ASR perspectives and the more traditional linguistic 
approach, especially if the latter is understood as comprising auditory analyses. A notable exception is 

the recent investigation by González-Rodríguez et al. [67] in which two trained phoneticians undertook 
perceptual voice assessments of falsely accepted trials with the aim of finding how phonetic detail can 

be useful for the detection of differences between speakers who had been falsely identified by cepstral-
only i-vector-based speaker recognition systems. Their investigation delved into the question of 

whether a small percentage of false acceptances in an (MFCC-based) ASR system could be avoided 
by using phonetic knowledge. Among other phonetic parameters, voice quality characteristics turned 

out to be highly relevant in speaker characterization. Potentially laryngeal voice quality features would 
play the greatest role, together with other features which a vocal tract-based ASR system based would 

not be taking into account. Our study follows a similar research line but using an established protocol 

for the VQ evaluation. Besides, the perceptual evaluation was not done after the acoustic analysis in 

order to investigate how the former could ameliorate the latter, but performed independently at two 

different stages.  
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Further directions for future work could include the perceptual assessment of speaker recordings 

under telephone-filter quality. Notably, false acceptances in our study mainly occur in TF condition. 
For instance, speaker pairs 36-38 and 46-48 are falsely identified if we fix the threshold in 5.30 which 

is the mean ED in SS comparisons. Perceptual evaluation of VQ in degraded conditions present a 
challenge that has seldom been investigated so far, but it is a forensic realistic condition worth 

exploring. Besides calculating inter- and intrarater agreement for the perceptual evaluation –which 
would require multiple raters and different rating sessions– in order to account for reliability, other 

future lines of research may include the weighting of VQ settings. The primary idea here is that the 
rarity of a setting (e.g. tremor, as found in [68]) should count more than a frequent category if, for 

example, two speakers are to be compared in a forensic context on the basis of the sum of their VQ 
settings. Some preliminary studies [69] are being carried out by to calculate ED between pairs of 

speakers based on VQ settings and taking into account this rarity-of-the-setting weighting. 
 

From the point of view of forensic evaluation, we aim to further explore system performance using 
LRs. For that purpose, we will extract this same set of voice features from a larger speaker population, 

which will allow us to derive typicality measures from a relevant background population, and hence 
provide LRs as a method to evaluate the strength of the evidence.  
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