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Generalized Transmissibility Damage Indicator with

Application to Wind Turbine Component Condition

Monitoring
Long Zhang, Member, IEEE, Zi-Qiang Lang, Mayorkinos Papaelias

Abstract—Frequency methods such as frequency spectrum
analysis, frequency spike detection, demodulation, envelope spec-
trum method have been widely used for condition monitoring of
engineering structural systems. Different from the conventional
frequency methods, the transmissibility function (TF) represents
the relationship between different system output responses such
as, e.g. vibration and acoustic emission sensor measurements.
This paper introduces a simple and effective generalized trans-
missibility damage indicator (GTDI) for TF based condition
monitoring. Unlike the conventional transmissibility damage indi-
cator (TDI), the new GTDI can improve the detection sensitivity,
reduces noise effects and avoid dynamic loadings effects. This is
achieved by combining multiple groups of data to obtain more
accurate transmissibility analysis, exploiting all the available
TFs, and using multiple references. This has two advantages.
First, it does not require any other priori knowledge about
the system responses. Therefore the method can be used for
the condition monitoring of a wide range of components or
systems. Further, the method can be easily implemented using
Fast Fourier transform (FFT) or power spectra density (PSD)
methods and therefore is computationally efficient. These make
the method very suitable for implementing online real-time
condition monitoring. The method is investigated by simulation
studies and then applied to analyze the vibration data of the main
bearing of operating wind turbines, producing very promising
results.

Index Terms—Frequency methods, Transmissibility function,
Damage Indicator, Condition monitoring, Wind turbines

I. INTRODUCTION

Fault detection plays an important role in all engineering

systems. Early and timely fault finding can effectively avoid

further deterioration and catastrophic failure [1]. Traditional

periodic inspections using empirical and subjective reargument

are not economically effective or efficient as they often require

undesired downtime and can not fully evaluate the system con-

ditions [2]. To remedy the drawback of periodic inspections,

condition or health monitoring systems have been developed

and applied to monitor vulnerable components. Such systems

can provide early warnings of both mechanical and electrical

faults without affecting their functionalities [3].

Frequency analysis methods are the most popular condition

monitoring methods as many faults, such as unbalance and

crack in mechanical components and structures, can result in
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the changes in the frequency components of sensor measure-

ments. Typical frequency methods include spectrum analysis,

frequency spike detection and envelope method [4]. If the

measured data are corrupted by the strong noise or transient

signal from a complex component, filter methods, such as

adaptive noise cancelation, are often used to remove the

noise [5], [6], [7]. For rotating machine condition monitoring,

the demodulation methods are widely used. The objective of

demodulation is to suppress the resonant or carrier frequencies

of the rotating machine and then highlight its sidebands [4].

A mechanical fault or damage can produce new sidebands

or cause changes in the existing sideband components. En-

velope analysis is one of amplitude demodulation methods.

However, for both demodulation and envelope analysis, the

filtering bands have to be carefully chosen, otherwise the

useful component spectrum can be removed [8].

A main challenge in condition monitoring is that many sys-

tems are under non-stationary operations with dynamic loading

[7]. For example, wind turbines work under time-varying

wind loads. The non-stationary loads may produce different

frequency spectra and cause the difficulties in distinguishing

damaged from healthy conditions [6]. A common approach for

removing the loading effects is to build the relationship be-

tween extracted condition monitoring features and correspond-

ing loading conditions. A linear relationship is often used due

to its simplicity and computational efficiency [6]. If the linear

model is not satisfactory in term of detection performance, the

nonlinear artificial intelligent (AI) methods have to be used.

However, the nonlinear AI methods often require a complex

optimization process for parameter estimation, which is often

computationally demanding. Another approach for removing

the loading effects is to re-scale the original condition data

or features under non-stationary loading conditions to those

under a standard load condition. For the scaling operations,

many un-supervising methods, such as principal component

analysis and canonical discriminant analysis are used [7], [9].

Alternatively, frequency response function (FRF), which

is also referred to as transfer function, and defined as the

ratio of the complex spectrum of the output response with

respect to the complex input spectrum, can represent system

inherent properties and can therefore be used for condition

monitoring. Here, the system input is also equal to the system

load mentioned in the previous paragraph. If system inputs

are unknown or hard to measure, the FRF can not be used.

Recently, transmissibility function (TF), which is also referred

to as transmittance function [10], [11], has been used to
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represent the relations among the system outputs. The TF can

be easily computed using only measured system outputs. In

theory, TF has been derived using the dynamic properties of

the system structure for multiple degree of freedom (MDOF)

systems [12], [13], [10], and for MDOF structure system, TF

is solely dependent on system zeros while FRF are dependent

on not only system zeros but also system poles. Since system

zeros tend to be sensitive to local damage, TF can be a

indicator of damage or changes in structural properties [14],

[15].

A critical issue using TF for damage detection is to choose

a criterion reflecting the changes of TF. Several criteria are

available. The integration of the differences between healthy

and in-service TFs was proposed in [10]. Later, a logarithm

was used for TF before the integration is carried out [16].

For these two indicators, if the integral value is above a

predefined threshold, it indicates that damage is present. The

methods are easy to implement if a system has only two sensor

measurements so only one threshold is needed. However, for

multiple-sensor measurements, there are multiple TFs, and it

is difficult to determine multiple thresholds [15]. Alternatively,

novelty or outlier detection methods, such as Mahalanobis

squared distance method, auto-associative networks and kernel

density estimation, can also be used to distinguish the normal

TFs and the abnormal ones [17], [15].

More recently, a new transmissibility damage indicator

(TDI) is proposed in [18], where the correlation between

healthy and in-service TFs is used to estimate the structural

working conditions. Compared to the aforementioned integral

criteria, TDI is capable to deal with multiple TFs as it has

only one threshold for any number of TFs. Different from

neural networks or density estimation methods, TDI does not

involve complex training process. However, it is found in

this study that TDI may not be suitable for online condition

monitoring as it may not be able to obtain accurate signal

frequency components using only one data collection. Further,

it does not fully utilize the potentials of TFs because only

adjacent TFs are used and non-adjacent TFs are not used.

Finally, TDI may not be able to reduce noise effects on

TFs based analysis. In order to fully exploit the potentials of

TFs, this paper proposes a generalized transmissibility damage

indicator (GTDI) that extends TDI to a more general case.

GTDI groups together multiple collections of data to obtain

more accurate TF analysis results. GTDI also uses the TFs

between all different outputs, leading to an improved detection

accuracy. Moreover, multiple references and in-service TFs are

used to more effectively remove noise effects, to take different

loading effects into account, and to enable using only one TF

to conduct condition monitoring, which can not be achieved

if TDI is applied. Both simulation studies and the analysis

of vibration data from an operating wind turbine have been

conducted. The results have verified the effectiveness of the

GTDI based TF analysis and demonstrated the potential to

apply the new technique in wind turbine component or system

condition monitoring.

II. TRANSMISSIBILITY DAMAGE INDICATOR (TDI)

This section will introduce the concept of TF and the formu-

lation of conventional TDI, followed by some discussions on

the problems with the TDI based analysis. The TF is defined

as the ratio of spectra of two different output measurements.

Therefore the spectra have to be obtained first. Suppose there

are M system output responses measured by sensors. The

N point discrete spectra of these responses are given by

̥=[X1, ..., Xi, ..., XM ], where

XT
i =[xi1e

−jw1 , ..., xire
−jwr , ..., xiNe−jwN ]

=[xi1(w1), ..., xir(wr), ..., xiN (wN )]
(1)

with xir being a complex number, representing both the

amplitude and phase of the ith measurement at frequency wr,

r = 1, ..., N , i = 1, ...,M .

The conventional transmissibility function used by TDI is

defined as the spectra ratio between two adjacent responses.

Let i and (i+1) denote the two adjacent measurement indexes,

where i = 1, ...,M−1, and denote the transmissibility function

for two neighboring measurements as

Ti(i+1) = [ti(i+1)(w1), ..., ti(i+1)(wr), ..., ti(i+1)(wN )] (2)

where

ti(i+1)(wr) =
xir(wr)

x(i+1)r(wr)
=

xire
−jwr

x(i+1)re−jwr

=
xir

x(i+1)r
(3)

The total number of such transmissibility functions is L =
(M − 1). To simplify the expression of ti(i+1)(wr), denote

{ti(i+1)(wr), i = 1, ...,M − 1} = {τl(wr), l = 1, ..., L} (4)

Then the spectra of all the transmissibility functions can be

written as

Γ =











τ1(w1) τ1(w2) . . . τ1(wN )
τ2(w1) τ2(w2) . . . τ2(wN )

...
...

...
...

τL(w1) τL(w2) . . . τL(wN )











(5)

For damage detection and condition monitoring purpose, the

correlation between the reference and in-service transmissibil-

ity functions at frequency wr, denoted by hτ(wr) and τ(wr),
respectively, is defined as follows

TC(wr) =
|
∑L

l=1 τl(wr)
hτ̄l(wr)|

2

[
∑L

l=1 τl(wr)τ̄l(wr)][
∑L

l=1
hτl(wr)hτ̄l(wr)]

(6)

where the upper bar represents the conjugate operator. TDI

is the average of TC(wr) at all the considered discrete

frequencies w1, . . . , wN , which is given by

TDI =
1

N

N
∑

r=1

TC(wr) (7)

and has many advantages. First, TDI is a model-free method,

and therefore it does not involve any analytic or numerical

modeling process. Second, it is demonstrated that it is more

sensitive to the changes in the system properties than FRF

based method [18]. Finally, it is a simple and efficient method

as main computations can be implemented using the FFT

algorithm.
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In [18], the impact of positions of system input on TDI was

also considered, indicating that τl(wr) varies with the position

of system input. Therefore, τl(wr) can be denoted as τl(wr, q)
where q indicates that the input was applied at the qth position.

Consequently, an extension of equation Equ. (6) to the case

where the input can respectively be applied in M different

positions is given by

TC(wr)
′

=
|
∑M

q=1

∑L

l=1 τl(wr, q)
hτ̄l(wr, q)|

2

SS[τl(wr, q)]SS[hτl(wr, q)]
(8)

where SS[τl(wr, q)] = [
∑M

q=1

∑L

l=1 τl(wr, q)τ̄l(wr, q)] and

SS[hτl(wr, q)] = [
∑M

q=1

∑L

l=1
hτl(wr, q)

hτ̄l(wr, q)], and the

corresponding TDI becomes

TDI
′

=
1

N

N
∑

r=1

TC(wr)
′

(9)

However, it is worth pointing out the position of system input

can not be controlled in most practical situations. In general,

TDI is suitable for a wide rage of situations. Although used

in many real-world applications, the concept has the following

four aspects of problems:

• TDI may not be suitable for online or operational con-

dition monitoring. The reasons are as follows. The first

task of TDI is to compute the discrete spectra as shown in

Equ. (1). TDI requires that reference and in-service data

have the same frequency components over the range of

frequencies from w1 to wN . This can be satisfied when

the frequencies of input excitation can be designed or

controlled. However, for online or operational condition

monitoring, the input often varies and may have differ-

ent frequency components over different time periods,

which may cause the difficulty in conducting accurate

TF analysis. This is because one data collection only

lasts for a certain time and may not necessarily cover

all the required frequency range. Therefore, the resultant

reference and in-service TFs may not be able to be used

to fully evaluate the system conditions.

• TDI does not fully utilise the potentials of TFs because

only adjacent measurements are used and non-adjacent

measurements are not used. In other words, TDI does

not use all the available TFs. If all the TFs are used,

the accuracy of damage detection could be improved.

Here we simply stress the importance of exploiting the

contributions of all the TFs rather than just a few TFs

as in the case of traditional TDI method. For example,

suppose there are three measurements, say s1, s2, s3. The

transmissibility function between s1 and s2 is denoted as

T12 while the transmissibility function between s2 and

s3 is written as T23. TDI only uses the T12 and T23

without consideration of using T13 related to the s1 and

s3. As some changes in system properties that can be

detected by T13 may not be found by T12 or T23 [14],

[19], the conventional TDI may miss some significant

changes in system properties. In other words, TDI only

employs the local information represented by adjacent

sensor data while some global information can be missed.

Fig. 1. The TDI procedure and its drawbacks

Further, as some of these changes may need to be detected

by more than one TF, the more TFs are used, the easier

these changes can be detected.

• As defined in Equ. (7), TDI is the average of transmissi-

bility correlations between reference and in-service TFs

over all frequencies. The information can be affected by

noise. The TDI technique does not consider using noise

elimination methods to obtain a more accurate spectra.

Further, TDI only uses one reference represented by the

TFs evaluated under a normal system operating condition.

If the reference is not chosen well, the corresponding TDI

results may have problems and can not be used for the

required condition monitoring purposes.

• It is also found that TDI can not deal with the case

where only two measurements are available as the value

of TDI in this case is always equal to 1. This problem can

be explained as follows. For a given frequency wr, r =
1, . . . , N , suppose reference TF hτ1(wr) = a+bj and in-

service TF hτ̄1(wr) = c+dj, where a, c are the real parts

and b, d are the imaginary parts of the complex numbers,

respectively,

TC(wr) =
|(a+ bj)(c− dj)|2

[(a+ bj)(a− bj)][(c+ dj)(c− dj)]

=
(ac)2 + (ad)2 + (bc)2 + (bd)2

(ac)2 + (ad)2 + (bc)2 + (bd)2
= 1

(10)

Consequently, TDI = 1
N

∑N

r=1 TC(wr) = 1 all the

time, indicating TDI cannot be used in this case.

Fig. 1 summarizes the procedure of the TDI based analysis

and its drawbacks. To address these problems, a new concept

known as generalized TDI (GTDI) is proposed in next section.

III. GENERALIZED TRANSMISSIBILITY DAMAGE

INDICATOR (GTDI)

To address the problems of TDI discussed in the previous

section, GTDI is proposed in the present study. The associated

analysis first merges multiple collections of data to cover the
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Fig. 2. The GTDI procedure

...

Multiple data collections

One data collection Spectra

Spectra

(a) Single data collection

(b) Multiple data collections

Fig. 3. Merging multiple samplings

full range of working frequencies of the system. Further, it uses

all possible TFs in order to exploit all the information in the

data. Finally, it uses multiple reference and in-service TFs to

mitigate the effects of noises and different loading conditions.

The general procedure of the GTDI based analysis is shown

in Fig. 2.

The first step is to merge multiple collections of data in

order to obtain full range of data spectra. In most practical

cases, the length of data in each collection is determined by

expert experience and not optimal. Therefore, the information

in a single collection may not fully represent the system

conditions. In other words, the data from a single collection

may not contain all frequency components needed for the con-

dition monitoring. Further, under dynamic loading conditions,

it is even harder to estimate the signal frequency components

only from a single collection of data due to time varying

nature of loading input. Finally, noise in the data can also

increase the difficulty of conducting data frequency analysis.

To address these problems, merging multiple collections of

data is proposed. For example, if the each collection has 1000

data points and 3 collections are grouped together, the emerged

data has 3000 data points. Suppose the g collections, denoted

as d1, d2, ..., dg , are merged together, the spectra of these

grouped data are given by F g=[Xg
1 , ..., X

g
i , ..., X

g
M ], where

Xg
i

T
=[xg

i1e
−jw1 , ..., xg

ire
−jwr , ..., xg

iNe−jwN ]

=[xg
i1(w1), ..., x

g
ir(wr), ..., x

g
iN (wN )]

(11)

with xg
ir being a complex number, representing both the

amplitude and phase of the ith measurement at frequency wr,

i = 1, ...,M . A comparison between single and multiple data

collections is shown in Fig. 3.

It is also worthwhile mentioning that if both amplitude

and phase information are equally important to represent the

dynamic behaviors of the system, FFT is the most useful tool

(a)Adjcant TFs

(b) All TFs

Fig. 4. Adjacent TFs and all TFs

to obtain the information. If amplitudes are more significant

than phases in terms of presenting the changes in the system

properties or the phases are hard to be estimated accurately

due to noise, phases can be ignored. In this case, power

spectra density (PSD) methods, like the welch algorithm [20],

is preferable to compute amplitude only information.

In the second step, all available TFs are formulated by

using all the combinations of two different responses. More

specifically, TF between ith and kth responses is defined as

their spectra ratio, that is

Tik = [tik(w1), ..., tik(wr), ..., tik(wN )] (12)

where

tik(wr) =
xg
ir(wr)

xg
kr(wr)

=
xg
ire

−jwr

xg
kre

−jwr

=
xg
ir

xg
kr

(13)

and i = 1, ...,M−1, k = i+1, ...,M . To make the expression

tik(wr) simpler, the two index variables i, k are again rewritten

as one single vector, which is shown as follows:

{tik(wr), i = 1, ...,M − 1, k = i+ 1, ...,M}

= {τl(wr), l = 1, ..., L} = Γ
(14)

Fig. 4 is used to show the differences between adjacent TFs

and all TFs. The conventional TDI only exploits the adjacent

TFs, more specifically, only Ti(i+1), i = 1, ...,M − 1 are

used. For M sensor measurements, TDI exploits (M−1) TFs.

However, GTDI exploits all the possible combinations up to

M(M − 1)/2 and thus fully exploits the potential damage

information. Further, the larger sensor number is, the more

TFs will be used by GTDI than by TDI. Although GTDI uses

more TFs than TDI, its main computational demand is almost

the same as that of TDI since their main computations come

from the calculation of data spectra. Specifically speaking, for

M sensor data, M spectra calculation is needed, which counts

on the majority of the computations since other calculations,

including ratios and correlation, are negligible. Due to the fact

that spectra analysis can be easily implemented on both a

computer and micro-controller, GTDI is suitable for online

real-time condition monitoring.

The third improvement made in the present study is to

use multiple references. The reference TFs often represent

the healthy system conditions. However, it is often hard

to determine an optimal reference due to noise effects. To

overcome the problem, the multiple references provide a
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Reference In-service

Reference In-service

...

(a) Single reference

(b) Multiple references

Fig. 5. Single reference and multiple reference

......

...

...

Reference In-service

Fig. 6. Multiple in-service TFs and multiple references

feasible solution. As compared to the single reference, multiple

references can be more noise-robust. This is because multiple

references are able to introduce an averaging effects, leading to

an improved accuracy of analysis. Fig. 5 shows the difference

between the single and multiple references.

In addition to noise, the effects of dynamic loading also

have to be considered when estimating the in-service TFs.

Therefore, the multiple data sets scheme is also used for in-

service data in the proposed GTDI method. The multiple in-

service data sets was considered in TDI, as shown in Equ.

(8). However, it was only used for possible changes in input

positions. This study proposes that the multiple in-service TFs

can be used in any situations if necessary. Fig. 6 shows how

to use the multiple in-service TFs and multiple references

simultaneously. For the two sensor data case, there is only one

TF, and TDI can not be used, which has been explained in the

previous section. However, GTDI can address this problem by

using multiple in-service TFs where Q ≥ 2. This can be easily

explained using the same procedure as shown in Equ. (10).

A detailed mathematical description of multiple in-service

TFs and references based GTDI method is given as follows.

Suppose the number of multiple operations used for evaluating

the in-service TFs is Q, TFs can be written as

Γ(q) =











τ1(w1, q) τ1(w2, q) . . . τ1(wN , q)
τ2(w1, q) τ2(w2, q) . . . τ2(wN , q)

...
...

...
...

τL(w1, q) τL(w2, q) . . . τL(wN , q)











(15)

Denote the number of multiple references as S. Then the

correlations between sth reference TFs and all the in-service

TFs can be obtained as

MTC(wr, s) =
|
∑L

l=1

∑Q

q=1 τl(wr, q)
hτ̄ sl (wr, q)|

2

SS[τl(wr, q)]SS[hτ sl (wr, q)]
(16)

SS[τl(wr, q)] = [
∑Q

q=1

∑L

l=1 τl(wr, q)τ̄l(wr, q)] and

SS[hτ sl (wr, q)] = [
∑Q

q=1

∑L

l=1
hτ sl (wr, q)

hτ̄ sl (wr, q)].
Finally, the proposed GTDI is given by

GTDI =
1

S

1

N

S
∑

s=1

N
∑

r=1

MTC(wr, s) (17)

The properties of the new GTDI concept are summarized

as follows:

1) As GTDI represents the correlation between the refer-

ence and in-service conditions, its range is [0, 1].
2) If in-service condition is highly correlated with the refer-

ence conditions, GTDI approaches 1 and this implies the

in-service condition is good. In practice, due to the noise,

even if a condition is almost the same as the reference

cases, GTDI could not be exactly 1 but near 1.

3) As GTDI is sensitive to damage, there are clear dif-

ferences between healthy state references and damage

cases. Further, the smaller GTDI is, the severer the

damage can be. Therefore, GTDI values can show the

levels of damage severity.

The procedure of condition monitoring using GTDI method

is simple and can be summarized as follows:

Step 1: Compute data spectra shown in Eqn. (1) using FFT

or PSD method.

Step 2: Calculate the TFs using Equ. (12).

Step 3: Compute GTDI using Equ. (17).

It is important to point out that the choice for the number of

repetitive data collections and the number of multiple reference

and in-service TFs are not trivial tasks. The principal is to start

without repetition, namely g = 1, Q = 1, S = 1. If the GTDI

results are smooth, the repetition is not necessary as the impact

of the noise and dynamic loading is quite small. If GTDI

results fluctuate, then the repetition number can be increased

gradually until smooth results are obtained. As the number

of multiple data collections g controls the spectra accuracy in

Step 1, it is more important than multiple reference and in-

service TFs in Step 3. It is therefore suggested to increase g
first until the smoothness in the results does not increase any

more. Then, if necessary, increase S and Q in the same way

to further improve the analysis results.

IV. DISCUSSIONS

TF is an important and promising concept and can be used

in many applications. However, in the literature [15], [21],

it has been pointed that several important issues, such as

the frequency range and the location of input, have to be

considered first. In this section, detailed discussions on these

issues are given as below.

Frequency range: The frequency range plays an important

role in condition monitoring. A carefully chosen frequency

range can improve the detection accuracy. In [21], it has

been shown that damage in a cantilever beam can be more
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accurately detected using a small frequency band around res-

onance frequencies of the structure than that using the whole

frequency range. However, in many practical applications, it is

hard to determine a specific frequency band without knowing

the frequency responses of all possible damage or faults. As

GTDI does not restrict the frequency range, it can be used

over either a user chosen frequency range or the full frequency

range.

The location of the excitation source: It is also a key

factor that has to be considered when using TF based condition

monitoring. The reason for this is that the TF is dependent on

the location of applied input although there are some excep-

tions [15]. In other words, for the same healthy condition, TFs

may be different if the excitation is applied at two different

locations. If the excitation location can be designed, the simple

option is to apply the excitation at a single input position and

make sure the system is excited at the same location for all the

whole inspection period. As GTDI can use the multiple TFs,

the inspected system can have several input locations. But the

system inputs have to be applied at a predefined order over the

inspection period to make sure each reference and in-service

TF are compared under the same loading condition. When

multiple locations of input are considered, the input can either

be applied to the multiple locations one by one or on these

locations simultaneously. However, it is worth pointing out that

if the applied inputs are randomly applied to different locations

of inspected systems, all the TF based condition monitoring

methods including GTDI may not be used.

The nature of monitored system: The system nature needs

to be considered when conducting condition monitoring using

GTDI method. In the present study, the linear non-dispersive

system that can be described by a MDOF system is considered,

which can readily be studied by a simple numerical simulation.

The application of the GTDI method to such a system is to

demonstrate the effectiveness of the new method in a simple

case so as to show that the fundamental principle of the GTDI

method is correct. The real engineering systems are inherently

dispersive having a very high degree of freedoms. Therefore,

the study also applied the proposed method to a practical

system to demonstrate that the new method also works well

in the more complicated dispersive system case. Further, as

TF represents the system physical properties, it can be used

in both structure health monitoring [22] and rational system

condition monitoring [23]. If the monitored system can be

simplified to be a linear time-invariant system, GTDI can deal

with such systems well as all the physical parameters are not

changed with time and they can produce an unique TF. If the

system is time-varying, which can be caused by a variety of

reasons, such as environment and varying loadings, GTDI can

still be used in such cases as GTDI can use different TFs

to cover different cases of a system due to the time varying

nature of the system parameters.

Measurement types: Although TF is most widely known

for vibration data analysis, TF can use a variety of mea-

surements, including, e.g. motor current. The reasons are

shown as follows. TF is the ratio between the spectra of

two different responses, and TF is also equal to the ratio of

two different FRF or transfer functions. Therefore, as long as

the measurement is related to the system dynamic behaviour

under some excitations, it can be used in a TF based condition

monitoring method, including the proposed GTDI method.

Applications: The proposed GTDI is a general condition

monitoring method and it can be used for both structural health

monitoring, such as bridge, turbine blade and turbine tower,

and rotating machine monitoring such as gearbox, bearing and

generator. GTDI method can not only detect a fault but also

indicate the damage severity levels. However, GTDI is not

designed for diagnosing a fault and therefore it can not show

the reasons which induce faults.

References: In practice, the baseline states which are not

normal but have only smaller defects can still be used. In this

case, the proposed GTDI can use the measured data represent-

ing small defects as the reference and then indicate whether

there is a further deterioration causing severe defects. The

reason for this is that GTDI evaluates the similarity between

reference and in-service case using correlations of TFs and

can therefore detect changes caused by further deterioration.

Advantages and limitations: The advantages of GTDI over

existing methods are summarized here. Compared to model

based methods in which the loading information needs to be

measured to remove the effects of non-stationary loads, GTDI

does not require any loading information but can eliminate

the effects of varying loadings. Therefore, GTDI provides a

cost effective way for condition monitoring without additional

hardware for collecting loading information. Further, GTDI

can use the system respones over the whole frequency range

while most model based methods only use extracted frequency

features. If the extracted feature is not well chosen, it may not

fully reflect the real system conditions and cause false alarms.

Finally, many nonlinear AI methods are not computationally

efficient and may not be suitable for the on-line condition

monitoring while GTDI can be used for online condition

monitoring due to its low computation demands. GTDI can

be used for a variety of applications even if the input scenario

can not be fixed. However, as mentioned previously, GTDI

may not be applicable if the excitations are randomly applied

at the different locations of an inspected system; this is the

main limitation of the proposed method.

V. NUMERICAL EXAMPLE

To evaluate the performance of the proposed GTDI method,

a numerical study for a MDOF system condition monitoring

problem is carried out using MATLAB R2013b on a desktop

Intel PC with Windows 7 system. It is worth pointing that

as the proposed method is a general condition monitoring

method, it can be used for both structure health monitoring and

rotating machine condition monitoring. Therefore, a general

MDOF model, rather than a specific model, is used to test the

performance of the new method. The MDOF system can be

described as

Mẍ+Cẋ+Kx = F (18)

where the applied force F is the system input vector and

displacement x is the system output vector, and

M = Diag(m1,m2, . . . ,mn) (19)
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represent the system mass, damping and stiffness matrices,

respectively. The MDOF system structure in the case of n =
10 is shown in Fig. 7.

In this numerical example, a 10-DOF system is used, there-

fore n = 10. For the healthy condition, the system structure

parameters are chosen as mi = 0.8 × 105, ki = 4 × 107

and ci = 1.5 × 106 where i = 1, . . . , 10 [24]. For damaged

conditions, 10 damage levels are introduced in the 2nd, 3rd and

5th coordinates where their stiffness parameters are reduced

to the [90% 80% 70% 60% 50% 40% 30% 20% 10%] of their

original values, respectively.

Following [18], the system input force is applied to the

coordinates of the system one by one when the system output

data are collected for the required analysis. The input signal

is chosen as a multiple sine wave over frequency range from

1 Hz to 20 Hz, with the difference between two consecutive

frequencies being 1 Hz. To confirm the excitation frequency

range is wide enough, the frequency response of 1st coordinate

is plotted in Fig. 8 and it can be seen that all the response peaks

related to the main modes are below 20Hz.

In order to evaluate the performance of the proposed GTDI

method, four different cases are considered. The first one

is an ideal case where the system inputs are applied to all

the 10 coordinates one by one and all the system outputs

are measured. The second case considers the outputs in the

situation where only seven outputs are measured and the

outputs at 3rd, 6th and 9th coordinates are not used. The

third one conducts the required analysis when only the first

two coordinates are subject to force inputs; while the fourth

case considers the situation where the input frequency range is

reduced to [1, 10] Hz. Meanwhile, the GTDI is also compared

with the conventional TDI in all the cases.

As the length of data can be tuned easily and set sufficiently

long in numerical simulations, the multiple samplings are not

necessary, thereby choosing g = 1. Further, the system input

is sequentially applied to each coordinate, therefore there are

10 input positions, leading to Q = 10. Finally, the number of

multiple references S is also chosen as 1 first. If the results are

not smooth, it can be increased gradually. When S = 1, GTDI

and TDI have the same settings and their only difference lies

in the number of the TFs involved. GTDI uses all TFs while

TDI only uses adjacent TFs. To show the detailed information

for the first case where the full frequency range is used and

all the system outputs are measured, the responses at the 2nd

coordinate under the reference case and the cases of different

damage levels are shown in Fig. 9 and their corresponding

spectra are plotted in Fig. 10. The TFs between 2nd coordinate

and 3rd coordinate are shown in Fig. 11. It is clear that some

significant changes can be observed in the TFs.

The GTDI and TDI based analysis results for these four

cases are shown in Fig. 12. It is clearly shown that in all

the cases both TDI and GTDI can detect the changes and

their values decrease with the damage severity levels. The

advantage of GTDI is that it is more sensitive to the damage

severity. In other words, non-adjacent TFs can give more

useful information and improve the detection accuracy. This

is particulary useful for early warning of minor damage so as

to prevent further deterioration by carrying out proper main-

tenance in time. As these results have clearly distinguished

the differences of different damage levels, there is no need

to increase reference number S any more. As mentioned in

previous section, TDI and GTDI shares similar computational

burden and the main computations are from FFT operations for

10 sensor data. In this simulation, it takes about 0.07 seconds

to obtain the TDI or GTDI values.

VI. WIND TURBINE BEARING CONDITION MONITORING

Although wind energy industry has been significantly de-

veloped all over the world over the past few decades, the

cost of the operation and maintenance is still very high. It

is estimated that the cost for onshore wind turbines accounts

to 10%-15% of total income while it is even higher for

offshore wind turbines due to harsh working environment

[2]. An efficient and effective condition monitoring method

is therefore highly desirable in wind energy industry. The

proposed GTDI can potentially address such problems. In

this section, the real world wind turbine condition monitoring

problem is considered. A condition monitoring system with 4

vibration sensors were used to monitor the main bearing of
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two operating Vestas 47 turbines with 660kW rated power,

which is located in Profitis Ilias wind farm, Greece. It is

known that one bearing was in good conditions while the

other had some damage over the period of monitoring. The

4 vibration sensors were fitted at different locations along the

main bearing. Each data collection lasted for 12 seconds and

the sampling rate was 25 kHz. Data were collected over a

period of 5 months. In total, 2190 sets of good condition data

and 1800 sets of damaging condition data are available. A

detailed description of the main bearing vibration data is given

in Table I. Moreover, it is worth pointing out that generally the

reference and in-service data are better to be collected from the

same system. However, in the case, no healthy reference data

was collected before damage occur. To deal with this problem,

an alternative approach is used in which the healthy data from
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another system that has the same physical structure as that of

the damaged system is used as the healthy reference. As the

TFs are determined by physical parameters, two systems with

the same physical parameters can have the same or very similar

TFs. Therefore, TF based condition monitoring methods can

use another healthy system as a reference. This practice has

been adopted by many other researchers as reported in [25],

[26], [27], [5] where a healthy system was used as a reference

to inspect the possible damage in a system of the same nature.

As all the data were collected in different periods, the

variable loading conditions are naturally incorporated into the

data sets. To observe the variable loading effects, the raw data

of good condition and damaging condition data collected at

different times are plotted in Fig. 13 and Fig. 14, respectively.

Before computing the data spectra, the mean value from each

data set is subtracted. Further,as the spectra amplitudes are
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TABLE I
WIND TURBINE BEARING DATA SUMMARY

Turbine name Profitis Ilias 14 Profitis Ilias 9

Conditions Good Bad

Time span 2014.02.27-2014.06.25 2013.12.10-2014.03.20

Sensor number 4 4

Quantity 2190 groups 1800 groups

very small, all the amplitudes are magnified 30 times to make

them comparable in figures. Then the resultant spectra of

good and damaging condition data are plotted in Fig. 15

and Fig. 16, respectively. Each sub-figure is labeled by the

date when the data were collected, e.g. 20140324 representing

24 Mar 2014. It can be seen that the spectra varies with

the date when data collection took place, indicating different

loading condition on different dates. In general, for the good

condition data spectra, the frequencies below 5 kHz have large

amplitudes. For the damaging condition data spectra, some

large amplitudes appear over frequencies above 10 kHz. From

the plotted data spectra, it can be seen that the maximal

amplitudes in the good condition are between 2.5 and 12

while the maximal amplitudes in the damaging condition are

between 0.4 and 5. In other words, the amplitudes of good

conditions are not overwhelmingly larger than those in the

damaging conditions due to the overlapped range [2.5, 5].

Further, if all the data are considered, the amplitudes in the

good and damaging conditions are even more overlapped. It is

therefore not possible to determine the bearing condition only

using the signal amplitude.

As the TFs amplitudes are very big, all the amplitudes are

reduced by 100 times to make them comparable in figures.

The FFT based TFs under good and damaging conditions

are shown in Fig. 17 and Fig. 18, respectively. Following the

suggestions in the previous section, three tunable parameters

g,Q, S were all chosen as 1 first. Initially, 20 groups of

good condition data and 20 groups of damaging condition

data were used for testing the performance of the new GTDI

method under these choices of parameters. It can be seen from

the results in Fig. 19 that the differences between good and

damaging conditions are clear. However, the results are not

smooth due to the outlier in the resultant data. The outlier

may be caused by inaccurate data spectra, dynamic loading,

or large noise in the data.

To remove the outlier data point, the most widely used

PSD algorithm, the welch method [20], was used to compute

the more accurate data spectra and indicators of both TDI

and GTDI are shown in Fig. 20. It can be seen that the

PSD method can increase the similarity among good condition

data and therefore makes the differences between good and

damaging condition data analysis results more significant.

However, it can not remove the outlier. To eliminate the outlier,

the proposed schemes, namely the multiple data collections

and references, were used for obtaining more accurate spectra

and removing noise effects. As suggested in the previous

section, first increase the number of data collections and then

use multiple reference scheme if necessary. Here, g = 2 was

selected, that is, to emerge two groups of collected data, while

leaving Q = 1, S = 1. The PSD method was then used to

estimate the data spectra. As shown in Fig. 21 the outlier

disappears in the new results. The feasibility of the proposed

technique have therefore been demonstrated.

Using the same settings as the above test where g = 2, Q =
1, S = 1, all the data groups are tested and results are given

in Fig. 22. It can be seen that overall GTDI produces better

results than TDI in terms of distinguishing the differences

between good and damaging conditions. However, both of

them have many outliers due to the complex dynamic loadings

and noisy data. To minimize the effects of these outliers,

g and S were increased by trial and error. When choosing

g = 5, S = 2 and Q = 1, the results are shown in Fig.

23. The differences between good and damaging conditions

can be distinguished much more clearly. Further, compared

to TDI where it has many outliers, the GTDI produces more

consistent results with less outliers, due to the exploitation

of the non-adjacent TFs. It is worth pointing out that in all

the above results, TDI analysis also uses the new multiple

data collections and references technique proposed in this

paper. However, in the case where TDI does not use the new

technique, its results are as shown in Fig. 24. It can be seen

that TDI can not distinguish the damaging condition from the

good one due to a large number of outliers. This is because

TDI is not able to remove the dynamic loading and noise

effects. By comparing these results shown in Fig. 23 and

Fig. 24, the advantages of the proposed techniques have been

further demonstrated. To qualitatively evaluate the advantage

of GTDI over TDI, a misrecognition ratio that is defined as the

ratio between number of false alarms and the total monitored

instances is used. In this paper, the threshold is chosen as 0.5.

If the value of GTDI or TDI is above 0.5, it means healthy.

Otherwise, it means damaging. As can be seen in Fig. 23,

for GTDI, there is no false alarm and its misrecognition ratio

is 0. As shown in Fig. 24, for TDI, its misrecognition ratio

is 296/3990=7.42%. GTDI outperforms the TDI in term of

misrecognition ratio without sacrificing its computing time.

GTDI and TDI have the same main computing requirements,

namely 4 sensor data spectra of 300000 data points. In this

case, it takes about 1.5 seconds to obtain a TDI or GTDI

value. This demonstrates that GTDI has the potential for online

condition monitoring due to its low computational burden.

VII. CONCLUSION

In the present study, a new generalized transmissibility

damage indicator (GTDI) has been proposed for condition

monitoring. The proposed GTDI is able to remove dynamic

loadings and noise effects by using multiple data collections,

all transmissibility functions, and multiple references. It is

a simple and easily implemented method where its main

computation is from the calculations of data spectra. Further,

the new indicator does not require any priori knowledge, and

therefore can be used for the condition monitoring of any type

of systems. Results from both simulations and an operating

wind turbine main bearing condition monitoring have verified

the effectiveness of the proposed techniques.
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Fig. 18. TFs of damaging condition data collected at different times
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Fig. 19. FFT based transmissibility damage indicator values for 40 groups
of data
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Fig. 20. PSD based transmissibility damage indicator values for 40 groups
of data
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Fig. 21. PSD based transmissibility damage indicator values evaluated using
emerged groups of data with g = 2, S = 1, Q = 1

cal Systems and Signal Processing, vol. 13, no. 5, pp. 765–787, 1999.

[12] W. J. Liu and D. J. Ewins, “Transmissibility properties of MDOF
systems,” in Proceedings SPIE the International Society for Optical

Engineering, vol. 2. SPIE the International Society for Optical
Engineering, 1998, pp. 847–854.

[13] A. M. R. Ribeiro, J. M. M. Silva, and N. M. M. Maia, “On the
generalisation of the transmissibility concept,” Mechanical Systems and

Signal Processing, vol. 14, no. 1, pp. 29–35, 2000.

[14] T. J. Johnson and D. E. Adams, “Transmissibility as a differential
indicator of structural damage,” Journal of Vibration and Acoustics, vol.
124, no. 4, pp. 634–641, 2002.
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