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RESEARCH ARTICLE Open Access

Digital gene expression analysis of the
zebra finch genome
Robert Ekblom1,2*, Christopher N Balakrishnan3, Terry Burke1, Jon Slate1

Abstract

Background: In order to understand patterns of adaptation and molecular evolution it is important to quantify

both variation in gene expression and nucleotide sequence divergence. Gene expression profiling in non-model

organisms has recently been facilitated by the advent of massively parallel sequencing technology. Here we

investigate tissue specific gene expression patterns in the zebra finch (Taeniopygia guttata) with special emphasis

on the genes of the major histocompatibility complex (MHC).

Results: Almost 2 million 454-sequencing reads from cDNA of six different tissues were assembled and analysed.

A total of 11,793 zebra finch transcripts were represented in this EST data, indicating a transcriptome coverage of

about 65%. There was a positive correlation between the tissue specificity of gene expression and non-

synonymous to synonymous nucleotide substitution ratio of genes, suggesting that genes with a specialised

function are evolving at a higher rate (or with less constraint) than genes with a more general function. In line

with this, there was also a negative correlation between overall expression levels and expression specificity of

contigs. We found evidence for expression of 10 different genes related to the MHC. MHC genes showed relatively

tissue specific expression levels and were in general primarily expressed in spleen. Several MHC genes, including

MHC class I also showed expression in brain. Furthermore, for all genes with highest levels of expression in spleen

there was an overrepresentation of several gene ontology terms related to immune function.

Conclusions: Our study highlights the usefulness of next-generation sequence data for quantifying gene

expression in the genome as a whole as well as in specific candidate genes. Overall, the data show predicted

patterns of gene expression profiles and molecular evolution in the zebra finch genome. Expression of MHC genes

in particular, corresponds well with expression patterns in other vertebrates.

Background
Studies of molecular evolution have until recently

focused on nucleotide divergence, while studies of varia-

tion in gene expression profiles have mainly been

restricted to a few model species such as Drosophila

and mice [1-4]. This is because the technologies for

studying gene expression have not been available (or

have been too costly to develop) for non-model species

[5]. However, sequencing-based technologies for expres-

sion profiling can now be utilised to this end. By count-

ing the number of reads generated by sequencing

of cDNA from different genes in the transcriptome,

one can get an estimate of the expression level of

these genes in the particular tissues sampled [6].

A complementary approach is to scan publicly available

databases of expressed sequence tags (ESTs) for the

genes of interest. In addition to microarrays, these stra-

tegies, called digital transcriptomics, are today the most

commonly used methods for investigating expression

patterns [7]. Digital transcriptomics has received a great

deal of attention, but the use of these methods has been

restricted in many species by the requirement of having

a reference genome to evaluate and analyse the data.

The advent of massively parallel (next-generation)

sequencing is now starting to change this picture by

providing a cost-effective way of generating large

amount of sequence data in species where there is no

prior knowledge of the genome sequence [8-10]. Next-

generation sequencing technology generally generates

millions of short sequence reads, each read being tens

to hundreds of base pairs long, depending on the
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specific platform. This enables detection of genes even

with very low expression levels. Roche 454-sequencing

[11], in particular, generates reads that are long enough

to be informative in the absence of a reference genome

[12,13]. Here, we evaluate the use of 454-sequencing to

investigate tissue specific gene expression profiles.

Next-generation sequencing can be used to not only

describe genome-wide patterns of gene expression, but

also to characterise specific gene families or genetic

pathways. To illustrate this point, we use the ecologi-

cally important and widely studied genes of the major

histocompatibility complex (MHC) for a more detailed

analysis. These genes are a very common focus of stu-

dies that take a candidate gene approach to investigate

functionally important genetic variation in immune

function [14]. MHC genes are among the most variable

of the vertebrate genomes [15-18]. In particular, the

classical MHC genes (class I and class II) exhibit an

extraordinary level of polymorphism. This polymorph-

ism is strongly associated to the role of these genes in

regulating and triggering the adaptive immune response.

Studies have found links between nucleic acid variation

in the MHC genes and resistance to parasites [19,20],

sexually selected ornaments [21], mate choice [22],

maternal-foetal incompatibilities [23] and local adapta-

tion [24]. Typically studies of MHC variation have

focused on sequence variation only in a few highly poly-

morphic regions of class I and class II genes, while var-

iation in other genes, regions and expression levels has

largely been ignored. The completion of the genome

sequence of first the chicken (Gallus gallus) [25] and

now of the zebra finch (Warren et al. in press) have

opened the door for in-depth studies of organisation

and expression of MHC genes in birds. There are strik-

ing differences in the way the adaptive immune defence

operates in birds compared to mammals [26] and it

could be envisioned that such studies will reveal new

insights in the evolution of vertebrate immunity.

The aim of the present study was to investigate tissue-

specific gene expression patterns in the zebra finch.

With the sequencing of its genome, the zebra finch has

taken a major step towards becoming an important

model system for bird genomics [27,28]. Outside of

some recent studies of gene expression in brain [29-31],

however, little is known about genome-scale, and organ-

ism-wide patterns of gene expression in song birds. In

this study we describe patterns of gene expression

across six zebra finch tissues and explore the relation-

ship between expression profiles of genes and character-

istics of their molecular evolution. To this end, we use a

next-generation sequencing (NGS) digital transcrip-

tomics approach known as RNA-Seq [32,33]. This meth-

odology was recently employed to study gene expression

differentiation between two subspecies of crow (Corvus

corone) [34], but as far as we are aware, this is the first

time that a bird transcriptome has been characterised in

multiple tissues using an NGS RNA-Seq approach. In

addition to global patterns of gene expression, we high-

light patterns of expression in the genes of the MHC.

Because of the complex history of duplication among

certain MHC genes, gene expression profiles have the

potential to offer insight into the evolutionary fates of

these duplicated genes. Importantly, characterizing the

expression of MHC genes will also facilitate downstream

studies of these genes in ecological contexts by identify-

ing functionally important loci.

Results
Assembly of 454 sequencing reads

After trimming and removal of contaminant sequences a

total of 1,882,439 reads were available, with a mean read

length of 83 nucleotides. 741,917 of these reads were

assembled (Additional file 1: Appendix s1) de-novo (the

rest were kept as singletons) into 49,606 contigs with a

mean contig length of 150 nucleotides (range 41-2,953;

Figure 1) and a mean of 15 reads per contig. The total

length of all contigs was 7,439 kb. For read and contig

statistics for each tissue separately see Additional file 1:

Appendix s2. 582 (1.2%) of the contigs showed signa-

tures of multiple splice variants, as indicated by gaps in

alignments between the contig and one or more of the

reads that contribute to that contig.

Expression levels for contigs

Expression levels were highly variable between tissues

and contigs. A vast majority of contigs were made up by

only a few reads (median = 6) but some had indications

of very high expression levels (maximum 6,028 reads;

Additional file 1: Appendix s3). As would be expected

(at least until a majority of the contigs are large enough

to include the whole transcribed gene) there was a posi-

tive relationship between contig length (log number of

base pairs) and contig depth (log number of reads; r =

0.636, df = 49,577, p < 0.0001, Figure 2, Additional file

1: Appendix s4). The tissue specificity of the expression

(τ) of contigs was negatively correlated with the overall

(log) amount of expression (r = -0.29, df = 49,076, p <

0.0001, Figure 3). This negative correlation could be the

result of a sampling artefact during the calculation of τ.

We found however, that the observed correlation was

significantly (t451 = 8.35, p < 0.0001) stronger than the

mean simulated correlation (mean r = -0.120) based on

unbiased τ-values calculated from randomisations of re-

sampled data. This suggests that there is indeed a sam-

pling bias in the calculation of τ but that it is not strong

enough to alone explain our observed correlation. Inter-

estingly, τ seems to have a somewhat bimodal distribu-

tion (Additional file 1: Appendix s5) with peaks around
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0.5 and 0.75, indicating that the genes may group into

two different classes of tissue specificity. However, only

a few contigs showed evidence of very low τ-values indi-

cative of housekeeping genes.

Outlier contigs with high expression levels

Three contigs were found to have strikingly high overall

expression levels; following BLAST searches against the

chicken and zebra finch gene databases they were found

to represent Albumin (6,028 reads), Heat Shock 90 kDa

Protein 1 Beta (4,305 reads) and NADH Dehydrogenase

Subunit 1 (4,753 reads). All of these are considered to

be so-called housekeeping genes (genes with equal

expression across tissues and treatments) and are also

highly expressed in mammals. Some contigs were con-

spicuous in having very strong expression in one or few

tissues. Genes represented by these include Elongation

Factor 1-Alpha (1,268 reads in embryo), Cytoplasmic

Beta-Actin gene (1,185 reads in embryo), Haemoglobin

Alpha (1,516 reads in spleen) and MHC Class II Asso-

ciated Invariant Chain Ii (2,137 reads in spleen). One

contig was found in high levels in testes (1,499 reads)

but was almost completely absent in other tissues, the

BLAST search revealed that this originates from a con-

tamination with DNA from a freshwater planarian

(Schmidtea). This is likely to have occurred in the

laboratory that carried out the sequencing (the

Washington University Genome Center), since the gen-

ome of Schmidtea mediterranea was being sequenced

there at the same time as the zebra finch cDNA pre-

paration. This contig, together with 26 other contigs

resulting from contamination (mainly from planarians),

was removed from the data before conducting down-

stream analyses.

Coverage of the zebra finch transcriptome

13,562 contigs from the de-novo assembly and 118,165

of the non-assembled singletons gave significant BLAST

hits against at least one predicted zebra finch gene.

Since the contigs were generally much shorter than the

total cDNA length of the gene it was commonly found

that several different contigs matched the same gene. In

total 11,793 zebra finch transcripts present in the Bio-

Mart database were found to correspond to the 454/

EST transcriptome contigs and singletons. This repre-

sents 65% of the total characterised zebra finch

Figure 1 Distribution of contig lengths (log) from 454 sequencing reads of all tissues combined.
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transctiptome (18,241 unique transcripts). The tran-

scripts are derived from 11,567 different genes, suggest-

ing that more than one splice variant was detected (and

placed in different contigs) for ~2% of the genes. We

also identified potential novel splice variants for 270 of

the expressed zebra finch genes, as indicated by gaps in

the alignments of the contig and the gene prediction.

On average 38% of the lengths of represented transcripts

were covered by contig sequences and 370 transcripts

were fully covered.

To further investigate the extent of transcriptomic

coverage, we investigated the presence of known genes

in various metabolic pathways and signalling cascades

(Table 1)[35]. For the metabolic pathways about 85% of

the genes were represented and for signalling cascades

we found around 60%. 2,285 (19%) of all genes found

were expressed in all investigated tissues and 2,998

(25%) were expressed exclusively in one tissue (Table 2).

Out of the 36,044 contigs that did not give any matches

to known predicted zebra finch transcripts, most

(34,456) still gave highly significant BLAST hits (e < 1e-

10) against the zebra finch genome sequence, suggesting

that these represent transcribed regions that have not

yet been annotated. The remaining 1,588 contigs (those

that did not match either the annotated zebra finch

genes or the genome sequence) may represent genes in

Figure 2 Positive relationship between length (log number of bases) and depth (log number of reads) of contigs for the whole

dataset (all tissues combined). The line represents a linear regression of the data (slope = 0.33, Intercept = 4.23, R2 = 0.40, p < 0.0001).
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Figure 3 Total expression level plotted against tissue specificity of gene expression (τ) for all contigs.

Table 1 Number of genes for specific metabolic and signalling pathways identified in the zebra finch genome that

were present in the transcriptome assembly presented here

GO number Biological process Total # zebra finch genes # present in this analysis % represented Mean τ (95% CI)

GO:0006096 Glycolysis 31 37 84 0.41 (0.30 - 0.51)

GO:0006094 Gluconeogenesis 7 6 86 0.56 (0.25 - 0.86)

GO:0006098 Pentose Phosphate 8 7 88 0.44 (0.31 - 0.56)

GO:0006101 Citrate metabolic processes 2 2 100 0.52 (NA)

GO:0007224 Hedgehog signalling pathways 15 7 47 0.50 (0.38 - 0.62)

GO:0007259 JAK/STAT cascade 8 5 63 0.55 (NA)

GO:0007219 Notch signalling 19 13 68 0.53 (0.42 - 0.65)

GO:0016055 WNT signalling 48 20 42 0.51 (0.38 - 0.64)

GO:0002224 Toll like receptor signalling 6 3 50 0.67 (NA)

- MHC genes 16 10 62 0.60 (0.40 - 0.80)

Number of MHC related genes included in this study is also given. The mean index of tissue specificity of expression (τ) and its 95% CI (when more than two

τ values) for each pathway is also given.
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regions of the genome that have not been sequenced

and/or assembled in the current genome assembly, or

additional contamination from other organisms that are

not represented in GenBank.

Analyses of gene expression profiles

We found a positive correlation between tissue specifi-

city of expression (τ) and the ratio of non-synonymous

to synonymous substitution rate (ω) when compared to

the chicken orthologue of the gene in question (rs =

0.20, df = 7,342, p < 0.0001, Figure 4). There was also a

negative correlation between total expression level of

the gene and ω (rs = -0.071, df = 10,711, p < 0.0001,

Additional file 1: Appendix s6). There was a weak posi-

tive correlation between the length of the gene and the

total level of gene expression (rs = 0.059, df = 10,711,

p < 0.0001), and a negative correlation between gene

length and τ (rs = -0.065, df = 7,342, p < 0.0001). There

were differences in ω between the tissues in which

genes were primarily expressed (Kruskal-Wallis test,

c
2 = 106.43, df = 5, p < 0.0001). Genes that were

primarily expressed in the embryo had the lowest mean

ω-value (Table 2). The expression specificity (τ) of genes

also varied significantly between tissues of maximal

expression (ANOVA, F5 = 87.5, p < 0.0001). The lowest

tissue specificity was found in genes with primary

expression in embryo and muscle, while the highest

τ was found in genes with maximal expression in skin

and testes (Table 2).

Analysis of expression in relation to GO-terms

There were 20 gene ontology (GO) terms overrepre-

sented (Fisher’s adjusted p < 0.05) in genes with high

levels of expression specificity (6 for “biological process”,

2 for “cellular component” and 12 for “molecular func-

tion"; Additional file 1: Appendix s7). These represent

processes such as cellular and organelle movement and

specific enzymatic processes (for example “lipid meta-

bolic processes” and “carboxypeptidase activity”). Some

GO terms overrepresented in genes with high tissue

specificity are associated with reproduction (such as

“sperm motility”) and immune defence (such as “foam

cell differentiation”, “serine-type endopeptidase activity”

and “chemokine activity”). Genes identified as having

low tissue specificity of gene expression were signifi-

cantly overrepresented for 47 different GO terms (19 for

“biological process”, 14 for “cellular component” and 14

for “molecular function"; Additional file 1: Appendix s8).

These terms generally represented functions such as

protein synthesis and basal metabolic processes.

Gene ontology terms overrepresented in genes primar-

ily expressed in embryo were mostly associated with cell

division and protein synthesis (Additional file 1: Appen-

dix s9). Gene ontology associated with genes with high-

est expression in liver indicated functions of specific

metabolic processes - reactions involving oxygen and

energy related processes (Additional file 1: Appendix

s10). Also genes primarily expressed in muscles were

associated with GO terms related to energy utilisation

and especially the function of the mitochondria (Addi-

tional file 1: Appendix s11). In genes with the highest

expression levels in skin there was an overrepresentation

of GO terms related to cytoskeletal structures and cell

proliferation (Additional file 1: Appendix s12). Of main

interest in relation to MHC and immune function were

genes with primary expression in spleen. GO terms

associated with expression in this tissue include “leuko-

cyte adhesion”, “immune response”, “cell surface recep-

tor linked signal transduction” and “chemokine activity”,

but also several terms related to ribosomal activity

(Additional file 1: Appendix s13). Lastly, there were a

large number of GO terms overrepresented in genes

with maximal expression in testes, including for example

“spermatogenesis” and “microtubule motor activity”

(Additional file 1: Appendix s14).

Validation of expression profiling: “housekeeping” genes

We specifically investigated expression patterns in four

widely used housekeeping genes that have been shown

to have similar levels of expression over a wide range of

tissues and treatments in birds [36,37]. Two highly

expressed genes, Ubiquitin (UB) and Glyceraldehyde-3-

Phosphate Dehydrogenase (GAPDH), were represented

by 7,160 and 12,397 reads, respectively. The tissue speci-

ficities of gene expression (τ) for these were 0.15 for UB

and 0.16 for GAPDH (both within the lower 3rd percen-

tile of the total distribution of τ) Two genes with med-

ium expression levels also had low gene expression

variation between tissues. Ribosomal Protein S13

(RPS13) was found in 395 reads and had a τ-value of

0.20, while 60S Ribosomal Protein L30 (RPL30) was

found in 326 reads with a τ-value of 0.21 (within the

lower 7th percentile of the total distribution of τ).

Table 2 Mean dN/dS (ω) values and index of tissue

specificity of expression (τ) for genes with maximal

expression in each of the investigated six tissues,

together with 95% confidence intervals (CI)

Tissue Nmax (Nunique) ω 95% CI (ω) τ 95% CI (τ)

Embryo 2,033 (454) 0.132 0.120 - 0.144 0.438 0.430 - 0.446

Liver 1,347 (552) 0.157 0.150 - 0.164 0.518 0.506 - 0.530

Muscle 738 (348) 0.278 0.015 - 0.541 0.458 0.440 - 0.475

Skin 964 (427) 0.155 0.145 - 0.165 0.561 0.547 - 0.574

Spleen 1,000 (368) 0.161 0.140 - 0.182 0.492 0.479 - 0.505

Testes 2,996 (849) 0.165 0.148 - 0.182 0.542 0.534 - 0.549

Nmax represents the number of genes with maximal expression in each of the

tissues and the number within brackets (Nunique) is the number of genes

which are expressed uniquely in that tissue.
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Case study of expression profiling: MHC genes

We surveyed expression data for 16 MHC-related genes

found in the zebra finch assembly and targeted BAC

sequencing (Balakrishnan et al. in review, GenBank:

AC192433, AC191651, AC191861, AC192431,

AC232985, AC232854). We found evidence for expres-

sion of ten different MHC related genes in the zebra

finch (Table 3). Thus the coverage of these genes is

comparable to the rest of the genome (Table 1). Among

these there was evidence for one expressed MHC class I

loci but we did not find expression of any MHC class II

loci in the present dataset. This is not to say that there

are no expressed MHC class II molecules in the zebra

finch, but only that these genes are expressed at too low

levels in the sampled tissues to be detected using our

methodology. The expression patterns of MHC genes

were generally tissue specific (τ ranging from 0.336 to

0.833), with the highest expression levels for most genes

in spleen. A detailed presentation of the expression for

specific MHC genes can be found in a separate supple-

mentary text (Additional files 2 and 3). One of the

MHC genes, CD74 (Ii) presents a case of alternative

splicing. As is true in many other species, we found evi-

dence for at least two differently spliced isoforms of this

gene, represented by different contigs in our 454

sequence assembly (Additional file 2; Figure s3).

Figure 4 Positive relationship between the rate of non-synonymous/synonymous substitution (log (ω+1)) and the index of specificity

of gene expression (τ) for zebra finch against chicken comparisons of orthologous genes. The grey data points represent MHC genes.
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Discussion
We have used transcriptomic data from six different tis-

sues, generated by 454-sequencing [11], to investigate

expression patterns of different zebra finch genes. Our

results highlight, in a new evolutionary lineage, a num-

ber of trends in the evolution of gene expression pro-

files. Genes with a high degree of tissue specificity in

expression levels also had high non-synonymous to

synonymous rate of nucleotide substitutions (dN/dS),

while genes with high overall expression levels had low

dN/dS ratios. Thus genes with a more specialised func-

tion (lower overall expression and higher degree of tis-

sue specificity) seem to be evolving at a higher rate (or

with less constraint) than genes with a more general

function (high overall expression and low degree of tis-

sue specificity). These results recapitulate those of

Axelsson and co-workers [38] who analysed chicken

expression profiles in conjunction with sequence diver-

gence data from chicken and zebra finch. Similar pat-

terns of molecular evolution and expression specificity

have also been found in mammals [39]. One important

consequence of this finding for future studies of gene

expression is that genes under strong positive selection

might be missed if RNA from the appropriate tissues is

not sequenced. In other words, the genes that are likely

to be relevant for explaining genetic variation in ecologi-

cally important processes such as host-parasite co-evolu-

tion or reproduction [40] may be relatively less likely to

be sequenced. This is particularly relevant in the present

study system because the vast majority of gene expres-

sion studies in passerine birds have focussed on a single

tissue, the brain.

Overall about 65% of the annotated zebra finch tran-

scripts were covered by 454 sequencing in this study.

An analysis of genes in well characterised metabolic

pathways and signalling cascades [35] also corroborate

this number. There is also some indication that more

than one splice variant [41] was detected for some of

the genes. Most of the contigs that did not match any

of the annotated zebra finch transcripts still gave highly

relevant hits against the zebra finch genome, suggesting

that these represent novel genes that have yet to be

annotated in the zebra finch genome. A few contigs that

did not match anywhere in the zebra finch genome

could either be part of genetic regions that have not

been sequenced in the present zebra finch genome

assembly or may represent contamination from other

organisms. Higher coverage transcriptome sequencing

will be needed to complete the zebra finch transcrip-

tome and to fully characterize splice-variants.

Genes primarily expressed in embryo had low dN/dS
ratios, while genes with the highest expression in testes

showed high ratio. Low dN/dS ratios of embryonically

expressed genes may represent stabilizing selection and

high evolutionary constraint on core developmental and

housekeeping genes [42]. High dN/dS in testes-expressed

and reproductive genes has also been observed in

human versus chimpanzee comparisons [40], in Droso-

phila [43,44] and in mice [45]. Such a pattern may be

attributable to sexual selection acting on genes impor-

tant for traits involved in reproduction. High dN/dS
values of genes expressed primarily in spleen is also

concordant with previous studies showing high rate of

evolution in genes involved in the immune system [46].

Several of the MHC genes investigated in this study had

primary expression in spleen and high dN/dS ratios of

these genes are often seen as an indication of balancing

selection acting on them [47].

In addition to performing genome wide analyses we

also used the 454 transcriptome sequence data to investi-

gate specific genes of interest. In particular, special atten-

tion was given to genes of the major histocompatibillity

Table 3 Expression of zebra finch MHC genes in seven different tissues expressed as number of transcripts

per million (TPM) [57]

Gene Brain, EST Embryo Liver Muscle Skin Spleen Testes τ

TUBB 21.7 3.1 0.0 0.0 0.0 0.0 0.0 -

TRIM7.2 97.8 0.0 0.0 3.1 0.0 0.0 0.0 0.833

TRIM39 0.0 0.0 2.5 0.0 4.0 6.9 3.3 0.519

TRIM27 10.9 3.1 0.0 0.0 0.0 0.0 0.0 -

Ii 76.1 182.2 323.2 887.5 241.7 4,060.4 250.2 0.336

Class I 130.4 6.2 106.9 18.4 31.7 1,695.0 110.1 0.497

CIITA 0.0 0.0 0.0 0.0 0.0 10.4 0.0 -

CD1A 0.0 0.0 2.5 0.0 0.0 55.6 0.0 0.817

BRD2 21.7 0.0 0.0 0.0 0.0 0.0 0.0 -

B2M 10.9 0.0 45.8 9.2 27.7 896.1 43.4 0.602

Library size 92,040 323,897 392,890 325,646 252,349 287,902 299,755

The total number of reads in each tissue library after trimming (library size) and the tissue specificity of gene expression (τ) are also given (τ values based on

three or fewer reads are omitted, see Methods).
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complex (see Additional file 2 for details). We found evi-

dence for expression of ten different genes associated

with the major histocompatibility complex. Most of these

were primarily expressed in spleen, although there were

also high levels of expression in brain and liver for some.

Expression in the spleen is hardly surprising given the

function of spleen in the immune defence. The expres-

sion of MHC genes in the brain however, was only rela-

tively recently discovered in mammals [48] and has not

been previously described in birds. It will be of interest to

determine whether the role of the MHC in the brain is

conserved across vertebrates. Furthermore, several gene

ontology terms related to immune response were overre-

presented in genes with primary expression in spleen.

Some GO terms related to immune response were also

overrepresented in genes with high tissue specificity,

indicating that many immune genes are expressed mainly

in a few specialised tissues.

For a few known MHC genes we could not detect any

expression. This illustrates the fact that one may not

necessarily find specific genes of interest in a next gen-

eration transcriptome sequencing dataset, especially if

they are expressed at very low levels or only in specific

tissues or life history stages. On the other hand, ongoing

development of next generation sequencing technologies

means that deeper coverage will be obtained enabling

gene finding of lowly expressed genes. Coverage of

MHC genes was within the range of other well charac-

terised groups of genes related to specific metabolic and

signalling pathways. These genes had medium levels of

tissue specificity of expression, and there was a tendency

for MHC genes to have higher levels of expression spe-

cificity (Table 1).

In expression profiling it is preferable to use

sequences from a non-normalized cDNA library to

avoid bias in the estimates of expression individual

genes [49]. In our case the only data available for gene

expression in different tissues came from cDNA libraries

that were normalized to increase the abundance of rare

transcripts [50]. Thus there is a risk that our expression

estimates might be biased. In particular the expression

levels of rare transcripts are probably overestimated

while the levels for very common transcripts should be

underestimated. This also means that estimates of tissue

specificity of gene expression (τ) may be underestimated

for individual genes. We argue, however, that the com-

parative analyses presented here can be performed using

this dataset. There are at least four lines of evidence

that these analyses are valid. 1) There is still consider-

able variation in expression levels between the different

genes and tissues in our study, with many genes only

expressed in one or a few tissues. 2) The analysis con-

cerning gene expression gave results in the predicted

direction. For example there was a positive relationship

between specificity of gene expression and dN/dS ratio

[38]. 3) The expression of most MHC genes was by far

strongest in spleen which is what would be predicted

for genes involved in immune defence. Further, GO

terms overrepresented for genes with maximal expres-

sion in a certain tissue seemed to correspond well to

those expected given the biological functions of the dif-

ferent tissues. 4) The expression levels of several house-

keeping genes seemed to be stable across the different

tissues analysed here.

One potential explanation for our failure to find 6 of

the 16 MHC genes surveyed is that the relatively short

contigs generated here, in combination with oligo dT

priming, produced a strong 3’ bias in the 454 sequen-

cing. Indeed, many of the 454 reads fell in the 3’

untranslated region (UTR) of genes (Additional file 2:

Figure s4). It is therefore possible that these MHC genes

were expressed, but the sequence reads only included

UTR sequence. To investigate this issue we collected

information from the avian MHC genes where the 3’

UTR has been sequenced. UTR regions of avian MHC

genes are not well-described at this point but we found

3’ UTR sequence data for MHC class IIB from chicken,

turkey, quail, New Zealand robin (Petroica australis),

Bengalese finch (Lonchura striata) and zebra finch

(locus 2 from the genome sequence). For MHC class I

we found data from chicken, turkey, quail, mallard duck

(Anas platyrhynchos) and great reed warbler (Acrocepha-

lus arundinaceus), and we also included data from duck

CD74 (Ii). These sequences were blasted against all

zebra finch 454 contigs and positive matches were veri-

fied by a reciprocal BLAST against the zebra finch gen-

ome and chicken transcriptome databases. Only two of

our contigs matched the 3’ UTR MHC sequences, both

representing the CD74 (Ii) transcript. Therefore it is

unlikely that the failure to detect more MHC genes can

be attributed solely to the short, and 3’ UTR biased,

contigs we assembled. New and improved methods for

library preparation are now used to deal with this pro-

blem of 3’ bias.

In general, the contigs produced using de-novo

assembly of the 454-reads only partially covered the

gene transcripts, with a mean contig length of only

150 nucleotides. These data were produced using the

first generation of the 454-sequencing system (GS20)

for which maximal read lengths were only around 125

bp. With application of the new generation of 454-

sequencing (GS FLX Titanium), which generates more

and longer reads, one would expect to get longer con-

tigs and more contigs covering the whole of the gene

coding sequence [51]. On the other hand deeper cover-

age of the transcriptome, and expression data on

more genes, would be obtained using Illumina/Solexa

or ABI SOLLiD technology. Both of these approaches
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generates a much larger amount of reads compared to

454 sequencing but at a cost of much shorter reads.

They are thus particularly useful for species, like the

zebra finch, that have a characterized genome

sequence.

This study highlights the utility of next-generation

sequencing data for expression pattern profiling. The

zebra finch genome sequence was recently released and

this, together with the gene predictions available, has

been very useful when analysing the data. Still, this

methodology would also work well when addressing a

non-model species without any prior genome informa-

tion [10]. In particular, the long read lengths of the new

Titanium 454-generation means that many expressed

genes can be identified using comparative sequence ana-

lysis against genomes of distantly related species. The

combination of data on sequence and gene expression

variation makes this strategy useful for future studies in

novel species. However, our study also shows that it

may not always be possible to find and sequence specific

genes of interest using whole-transcriptome sequencing.

For example, we did not find any MHC class II, TAP or

tapasin sequences, even though there is no reason to

believe that these are not present and expressed in the

zebra finch genome. It may be that gene capture meth-

ods [52] or more efficient cDNA normalization and ran-

dom primed libraries are needed to be able to pick up

specific and very rare transcripts. Another approach to

improving the discovery of genes specifically involved in

the immune system would be to boost an immune

response prior to cDNA sampling.

Conclusions
Our analysis of the zebra finch transcriptome extends

conserved patterns of gene expression profiles and

molecular evolution to the avian lineage. Genes with

low overall and tissue specific expression were shown

to evolve at a higher rate than genes with high and

unspecific expression levels. Such genes were also

shown to be related to biological functions such as

reproduction and immune response. Furthermore

genes with primary expression in spleen were often

related to the immune function (for example several

MHC genes). Our results highlight the usefulness of

next-generation sequence data for investigating expres-

sion profiles in the genome as well as in specific candi-

date genes. However, as illustrated by our survey of

MHC genes, it is far from certain that all genes of

interest will be present in a given transcriptome

sequencing run. Therefore care must thus be taken to

ensure sampling of the appropriate tissues and life

stages if the aim of the sequencing run is to examine

specific gene families or physiological pathways.

Methods
Sequence data

Gene expression was analysed using 454 pyrosequencing

data generated by sequencing of cDNA from six differ-

ent tissues (Embryo, Liver, Muscle, Skin, Spleen and

Testes) of from pooled samples from six different zebra

finches in the University of Sheffield colony [53]. Raw

data (.sff files) from the GS20 sequencer were kindly

provided by Wesley C. Warren (The Genome Center,

Washington University School of Medicine). This repre-

sent two sequencing runs of cDNA from each tissue

type, totalling 1,961,888 reads. Library construction of

polyadenylated cDNA was performed using a variation

of the Clontech SMART system, in which the 5’ and 3’

PCR adapters contain type IIs restriction enzyme sites

(MmeI). The optimally-cycled product was then normal-

ized using a duplex-specific nuclease (DSN) that prefer-

entially digests double-stranded DNA in the presence of

single-stranded DNA (Trimmer; Evrogen). For more

details about cDNA synthesis and normalization see

[50]. The produced sequence reads are also available as

fasta files in the NCBI trace archive http://www.ncbi.

nlm.nih.gov/Traces/trace.cgi?cmd=retrieve&s=search&-

m=obtain&retrieve=Search&val=SPECIES_CODE%

3D’TAENIOPYGIA+GUTTATA’+AND+CENTER_-

NAME%3D’WUGSC’+AND+TRACE_TYPE_CODE%

3D’454’. For expression analysis of MHC genes we also

used EST libraries from zebra finch brain tissue down-

loaded from the NCBI website. Coding sequences from

manually-annotated MHC genes were obtained by

BLAST searches and HMMER gene prediction of the

zebra finch genome, as described in Balakrishnan et al.

(in review). After screening zebra finch BAC libraries

using probes designed for MHC genes, seven BAC

clones were sequenced at 6x coverage (Balakrishnan

et al. in review). Predicted zebra finch gene sequences

(cDNA, version 3.2.4.54) and chicken protein sequences

(version 2.52) were downloaded from the ENSEMBL ftp

site http://www.ensembl.org/info/data/ftp/index.html.

454 assembly

Trimming and assemblies (both de-novo and templated,

see below) of 454 sequence fragments were performed

using SeqMan NGen version 2.0 (DNASTAR, Inc.). The

sequences were trimmed of low-quality sequence, poly-

A tails, Smart primer sequence from cDNA synthesis

and 454 adaptor sequence before assembling into con-

tigs. In order to avoid falsely joining reads that do not

belong to the same gene, we increased the match size to

41 base pairs. This parameter defines the length of

sequences common to two or more sequences that are

used to join reads together into contigs. For other para-

meters we used default values or values suggested in the
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software manual for assembling 454 data (for complete

trimming and assembly parameters see Additional file 1:

Appendix s1). 454 reads for all six tissues were first

combined in a full data de-novo assembly. In order to

identify contigs with multiple splice variants we also

searched for gaps (defined here as more than 15 bases

long) in the alignments between all the individual reads

and the best matching contig. Alternative isoforms

would be expected to generate alignment gaps if a con-

tig contains an extra (or different) exon which is not

present in the read. In order to check for tissue specifi-

city of expression, another assembly was then made for

each tissue separately using the contigs created by the

full data assembly as a sequence template. To investigate

expression of MHC genes specifically we also performed

a templated assembly using zebra finch chromosome 16

and MHC containing BAC sequences as a reference

sequence (for more details about the MHC analyses see

Additional file 2).

Transcriptomic analysis

All of the contigs and singletons from the de-novo

assembly of 454 reads from all six different tissues

were blasted (BLASTN) against the Ensembl zebra

finch gene predictions using a cut-off e-value of 1e-10.

Only the best BLAST (minimum e-value, maximum

length) hit from each contig was extracted. For each

unique gene we then combined the data on number of

reads for each corresponding contig and singletons

(since most contigs did not cover the whole gene it

was common that several different contigs and single-

tons gave BLAST hits to different parts of the same

gene). To calculate the proportion of the individual

genes that were covered with our transcripts we used

the length of the gene divided by the sum of the length

of all contigs aligned to that gene. In the few cases

where the total contig length was larger than the gene

length (probably due to overlapping contigs) the gene

coverage was set to 100%. We also searched for gaps

in the alignments between the contigs and the

Ensembl gene predictions, as these are indications of

the presence of novel splice variants in the expression

data. Data on gene length, name, genomic location and

dN/dS ratio (compared to the chicken orthologue) were

then extracted from BioMart http://www.ensembl.org/

biomart/martview/. Values of dN/dS for MHC genes

not annotated in Ensembl were calculated using the

codeml model in PAML4 [54] using the IDEA inter-

face [55]. To investigate transcriptome coverage of our

contigs and reads matching Ensembl contigs we

searched specifically for genes in well characterised

metabolic pathways and signalling cascades. The speci-

fic pathways investigated were chosen based on similar

studies e.g. [35]. We also searched (BLASTN) the

current assembly zebra finch genome (version 3.2.4)

for matches to all contigs that did not produce good

hits to any annotated gene models in order to identify

candidates for new and non-annotated zebra finch

genes.

Tissue Specificity of Gene Expression

We calculated the index of tissue specificity of gene

expression (τ)[56], using the guidelines in [57]. Thus,

the number of transcripts per million (TPM) was set to

2 for tissues with no detected expression of the gene in

question. Furthermore τ estimates based on 3 or fewer

reads were removed from the analyses. This was done

to reduce the effect of sampling stochasticity when

expression levels were very low. The theoretical range of

τ for a specific gene varies between 0 and 1, where 0

means that the gene is equally expressed in all studied

tissues (housekeeping genes) and values approaching 1

means that the gene is expressed specifically in one tis-

sue [56]. The tissue of maximal expression was defined

as the tissue with the highest number of reads for a spe-

cific gene. Genes with less than four reads were also

excluded from lists of maximal expression.

Simulation to investigate bias in τ

To investigate possible bias in the calculation of τ, we

also performed a simulation of τ calculated from re-

sampled data. For each of the 452 levels of gene

expression in our data we randomly drew the same

number of contigs as observed from the full distribu-

tion of expression levels while keeping the relative

expression levels between tissues constant. This proce-

dure was iterated enough times to get the same num-

ber of data points as for the observed data. As these

data points all come from contigs with the same

expression level, τ values calculated from these should

be unbiased with respect to expression. We then calcu-

lated the correlation coefficient between total gene

expression and τ for each of these 452 simulated data-

sets and compared these to the observed correlation

coefficient for the original dataset.

Gene ontology analysis

The five hundred genes with the highest and the five

hundred genes with lowest tissue specificity of expres-

sion, as well as all genes with maximal expression for

each of the six tissues, were compared against all other

zebra finch genes with respect to associated gene ontol-

ogy (GO) terms. GO terms more common in these

genes than expected by chance (adjusted Fishers p <

0.05) were identified using the CORNA algorithm [58],

applied using the web interface provided by Michael

Watson at the Institute for Animal Health http://bioin-

formatics.iah.ac.uk/tools/GOfinch.
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Statistical analyses

Sequence similarity searches were performed using a

stand-alone version of the BLAST (2.2.18) package [59].

Handling of BLAST output files, assembly results and

statistical analyses were performed in R (2.7.2) statistical

computing language [60]. Total expression levels and

dN/dS ratios of genes were not normally distributed

(Kolmogorov-Smirnov test, p < 0.0001) and therefore

non-parametric tests were used for analyses involving

these.

Additional file 1: Appendix s1 - s14. Additional tables and figures

Additional file 2: Appendix s15. Detailed survey of MHC genes

Additional file 3: Appendix s16. Alignment of the zebra finch MHC

class I gene
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