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Abstract
Autosomal recessively inherited glucocerebrosidase 1 (GBA1) mutations cause the lysosomal storage disorder Gaucher’s disease
(GD). Heterozygous GBA1 mutations (GBA1+/−) are the most common risk factor for Parkinson’s disease (PD). Previous studies
typically focused on the interaction between the reduction of glucocerebrosidase (enzymatic) activity in GBA1+/− carriers and
alpha-synuclein-mediated neurotoxicity. However, it is unclear whether other mechanisms also contribute to the increased
risk of PD in GBA1+/− carriers. The zebrafish genome does not contain alpha-synuclein (SNCA), thus providing a unique
opportunity to study pathogenic mechanisms unrelated to alpha-synuclein toxicity. Here we describe a mutant zebrafish line
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created by TALEN genome editing carrying a 23 bp deletion in gba1 (gba1c.1276_1298del), the zebrafish orthologue of human GBA1.
Marked sphingolipid accumulation was already detected at 5 days post-fertilization with accompanying microglial activation
and early, sustained up-regulation ofmiR-155, amaster regulator of inflammation. gba1c.1276_1298delmutant zebrafish developed
a rapidly worsening phenotype from 8 weeks onwards with striking reduction in motor activity by 12 weeks.
Histopathologically,we observedmarkedGaucher cell invasionof the brain and otherorgans. Dopaminergic neuronal cell count
was normal through development but reduced by >30% at 12 weeks in the presence of ubiquitin-positive, intra-neuronal
inclusions. This gba1c.1276_1298del zebrafish line is the first viable vertebratemodel sharing key pathological features of GD in both
neuronal and non-neuronal tissue. Our study also provides evidence for early microglial activation prior to alpha-synuclein-
independent neuronal cell death in GBA1 deficiency and suggests upregulation of miR-155 as a common denominator across
different neurodegenerative disorders.

Introduction
Gaucher’s disease (GD) is the most common lysosomal storage
disorder with a prevalence of 1:40 000 (1). It is caused by auto-
somal recessively inherited homozygous or compound heterozy-
gousmutations in glucocerebrosidase 1 (GBA1). GBA1 is a lysosomal
enzyme required for the breakdown of glucosylceramide to cera-
mide and glucose and forms part of the sphingolipid pathway.
The pathological hallmark of GD is the accumulation of charac-
teristic macrophages engorged with glycolipids also known as
Gaucher cells. Clinically, GD can present heterogeneously with
three different subtypes, categorized by severity and distribution
of symptoms. Patients with type I can be virtually asymptomatic,
type II presents with rapid neurological decline and subsequent
death within the first 3 years of life, whereas type III presents
with neurological decline during adolescence (2). Current treat-
ment options largely focus on enzyme replacement therapy,
which is effective for the treatment of non-neurological compli-
cations of GD but ineffective for the treatment or prevention of
neurological complications due to its inability to cross the
blood–brain barrier (3).

Heterozygous GBA1 mutations (GBA1+/−) are the most com-
mon risk factor for Parkinson’s disease (PD) with an odds ratio
of >5 (4–6). PD patients carrying such a heterozygous GBA1muta-
tion have an earlier age of onset and are more likely to develop
impaired cognitive function (7,8).

Both toxic gain of function and loss of function mechanisms
have been proposed to explain the link between heterozygous
GBA1 mutations and PD with particular focus on an interaction
between glucocerebrosidase 1 (GCase) enzymatic activity and
alpha-synuclein (6,9).

GBA1 knock out (KO) mouse die shortly after birth due to skin
defects leading to a loss of hydration. Conditional GBA1 KO mice
with isolated neuronal GCase deficiency have an initial, symp-
tom-free period of 10 days, followed by rapid neurological decline
and subsequent death due to excessive seizures. Conditional KO
mice in the hematopoietic andmesenchymal cell lineagesmodel
themajor visceral symptoms of GD, but otherwise have a normal
life span and fail to model the neuropathic forms (10).

Zebrafish have become a versatile disease model for studying
neurodegeneration (11). As vertebrates, they are more closely re-
lated to humans thanDrosophila or Caenorhabditis elegans, develop
externally and are transparent. We and others have previously
demonstrated their usefulness to identify novel drug targets in
zebrafish models of PD and other neurodegenerative disorders
(12,13).

We have used the TALEN (transcription activator-like effector
nucleases) approach to create a gba1 mutant zebrafish. Homozy-
gous gba1 mutant zebrafish (gba1−/−) develop normally but al-
ready display sphingolipid dysregulation and accumulation as
early as 5 days post-fertilization (dpf ) with marked alterations

of the GD biomarkers β-hexosaminidase and chitotriosidase in
juvenile brain tissue.We further demonstrate earlymicroglial ac-
tivation with marked upregulation of miRNA-155 (miR-155)
which precedes subsequent organ infiltration with Gaucher
cells in juvenile gba1−/−. These gba1−/− zebrafish also develop pro-
gressive neurodegeneration, mitochondrial dysfunction and loss
of dopaminergic neurons with ubiquitin-positive inclusions in
the absence of alpha-synuclein. This new vertebrate model of
GCase deficiency is likely to have utility for future gene–gene
interaction studies and in vivo drug screens. The identification
of distinct and potentially ‘druggable’ molecular targets such as
miR-155 will facilitate these in vivo drug screens.

Results
Zebrafish possess a single GBA1 orthologue

ABLAST search identified a single zebrafish orthologue of human
GBA1 on chromosome 16 (ENSDARG00000076058) of the zebrafish
genome. The zebrafish gene (gba1) encodes a single protein of 518
amino acids and 57% identity with the human orthologue. The
genetic loci of both (human) GBA1 and (Danio rerio) gba1 shared
conserved synteny, both containing the genes RUSC1, FDPS
and DAP3 within 500 kb of each orthologue. gba1 was expressed
at constant levels through 1–5 dpf with more marked expression
in the brain. Expressionwas also detected in adult brain and liver
tissue, organs specifically affected by GD pathology (Fig. 1A–D).

gba1 TALEN-generated mutants are loss of function

Using TALEN technology, we generated a gba1mutant containing
a 23 bp deletion in exon 7 (c.1276_1298del, Fig. 1E and Supple-
mentary Material, Fig. S1). The deletion results in a frame-shift
at position c.1276 and a subsequent premature stop codon
66 bp downstream, within exon 7 at c.1342 (p.379). The
gba1c.1276_1298del (from hereon referred to as gba1−/−) resulted in
a reduction of gba1 mRNA by >50% (P < 0.01, Fig. 1F). Similarly,
GCase activity was reduced in gba1−/− brains by >50% (P < 0.05)
compared with wild-type (Fig. 1G).

Analysis of sphingolipid metabolites

GCase deficiency leads tomarked sphingolipid dysregulation and
accumulation of GCase substrates in Gba1 KO mice and patients
with GD (14–16). We analyzed sphingolipid metabolites by mass
spectrometry across all gba1 genotypes and identified marked
accumulation of sphingolipid metabolites as early as 5 dpf in
gba1−/−, with increases in the C18 molecular weight species
of each glycolipid being the most pronounced (Fig. 2). Hexosyl-
sphingosine was virtually undetectable in wild-type samples
but increased to 1573% in gba1−/− of the level seen in controls
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(Fig. 2C; P < 0.0001), glucosylceramide was increased to ∼360%
(Fig. 2D; P < 0.0001). Substrates upstream of GCase also accumu-
lated, namely lactosylceramide to nearly 300% (Fig. 2F; P < 0.0001)
whereas galactosylceramide was notably decreased by 50%
(Fig. 2E; P < 0.01). Mass spectrometric analysis was repeated in ju-
venile brain tissue at 12 weeks post-fertilization (wpf) across all
gba1 genotypes. Again, direct substrates of GCase had the largest
increases in gba1−/− brains: hexosylsphingosinewas virtually un-
detectable in wild-type brains but increased in gba1−/− to 2734%
of the level seen in controls (Fig. 2I; P < 0.0001), whereas glucosyl-
ceramide increased to 14 000% (Fig. 2J; P < 0.0001). Galactosylcer-
amide was now increased as well (Fig. 2K; P < 0.0001) but not as
strongly as lactosylceramides which increased above wild-type
levels to 2000% of the level seen in controls (Fig. 2L; P < 0.0001).
Sphingosine levels were unaltered in 5 dpf larval homogenates
but doubled in gba1−/− juvenile brains (Fig. 2A and G, P < 0.0001),
sphinganine levels were increased to a similar extent in gba1−/−

larvae and juvenile brains (Fig. 2B and H, P < 0.01). In contrast,
there were no significant changes for any of the analyzed
sphingolipidmetabolites in either gba1+/− larvae or gba1+/− juven-
ile brains compared with wild-type (see also Supplementary Ma-
terial, Table S1 which lists all metabolites analyzed).

gba1−/− zebrafish mirror key Gaucher’s disease
phenotypes

gba1−/− and gba1+/− did not develop an overt morphological
phenotype during early development. By 8 wpf, gba1−/−

first
began to swim more slowly and to generally look less well. By
12 wpf, juvenile gba1−/− developed a curvature of the spine, remin-
iscent of the gibbus formation seen in conditional mouse KO

models (Fig. 3A and B) (17). The oldest gba1−/−
fish reached an

age of 14 wpf before death during pilot longevity studies. Conse-
quently, all gba1−/− fishwere culled at 12 wpf for humane reasons.

Chitotriosidase and β-hexosaminidase activity are markedly
increased in the serum of GD patients and used as biomarkers
to monitor disease activity (1). In gba1−/− zebrafish brains, chito-
triosidase activity was increased ∼10-fold in gba1−/− brains (P <
0.0001; Fig. 3C) without a change in gba1+/−. Similarly, β-hexosa-
minidase activity was increased to 350% of values observed in
controls (P < 0.0001) at 12 wpf but no difference was observed in
gba1+/− brains (P > 0.05; Fig. 3D). In contrast, β-galactosidase activ-
ity remained unchanged in its activity across all genotypes (data
not shown).

At 12 wpf, gba1−/− showed a reduction in total displacement of
50% (P < 0.001), with a reduction by 25% in gba1+/− (P > 0.05)
(Fig. 4A). When individual swimming movements were assigned
to low, medium and high speeds, wild-type fish spent the major-
ity of their time making fast movements (Fig. 4B and C). The op-
posite was true of gba1−/−

fish, which spent most of their time
making slow movements or remaining stationary (P < 0.0001,
Fig. 4B and E). gba1+/−

fish had an intermediate phenotype for
all speeds, but these changes were not significantly different to
either wild-type or gba1−/− (Fig. 4B and D). In addition, there
were obvious defects of balance, with the gba1−/− animals show-
ing severe variability of vertical body axis orientation (roll) during
swimming, resulting in a ‘corkscrew’ pattern of motion. Occa-
sional episodes were observed in which gba1−/− animals showed
bursts of high-velocity movements, often violently moving in
circles. These abnormalities were frequently interrupted by
longer periods of inactivity during which the gba1−/− zebrafish
lay on the tank floor (Supplementary Material, Video). These

Figure 1. gba1 expression inwild-type (WT) zebrafish and loss of function studies. gba1 expression through early development and in adult organs particularly affected by

GD (namely brain and liver) was confirmed by RT–PCR (A); ef1awas used as a loading control. WISH confirmed early expression of gba1 in brain tissue at 1 dpf (B), 2 dpf (C)
and 3 dpf (D). Using TALENs, a 23 bp deletion in exon 7 of gba1 (gba1c.1276_129del) was generatedwhich could be genotyped by PCR. A representative genotyping gel (E) shows

WT (lane 1), gba1+/− (lane 2) and gba1−/− (lane 3). The gba1c.1276_129del mutation resulted in a >50% decrease in gba1 transcript levels in gba1−/− brain tissue (P < 0.01, F) and a

decrease in enzymatic GCase activity (P < 0.05, G). *P < 0.05; **P < 0.01.
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abnormalities were not seen in any of the heterozygous or wild-
type sibling controls.

gba1−/− exhibit Gaucher cell organ invasion and
microglial activation

The primary histopathological hallmark of GD is the formation
and accumulation of lipid-engorgedmacrophages knownasGau-
cher cells leading to visceral organomegaly. Microglial activation
and other immunemechanisms have also been implicated in the
pathogenesis of neuronal cell death in both GD and PD (18–20).
Hematoxylin and eosin (H&E) staining in 12 wpf gba1−/− revealed
marked infiltration with enlarged ‘Gaucher-like’ cells not only in
the brain (Fig. 5B), but also in liver (Fig. 5C), thymus (Fig. 5D) and
pancreas (datanot shown). As expected, no overt pathology could
be detected in wild-type control individuals (Fig. 5A). Gaucher

cellswere periodic acid Schiff (PAS)-positive, indicative of glycolipid
accumulation (data not shown). No abnormalities could be de-
tected in thewild-type or gba1+/−fish. Therewasnoovert pathology
at all in any of the three genotypes at 4 wpf (data not shown).

These Gaucher-like cells around the tectal ventricle labeled
strongly with the 4.C4 monoclonal antibody marker for zebrafish
monocyte/macrophage lineage cells (Fig. 5E and F). In addition,
there was a marked increase in microglial cells in the brain
parenchyma of gba1−/− zebrafish compared with controls
(Fig. 5G and I). The microglia in gba1−/− brains showed swollen
cell bodies and retracted processes typical of microglial activa-
tion (Fig. 5H and J).

The transparent nature of zebrafish embryos allows the assess-
ment of microglial activation in vivo in a zebrafish transgenic line
inwhich themembrane-targetedfluorescent reporter (GFP-CAAX)
expression is driven by the promoter of macrophage-expressed

Figure 2. Sphingolipid metabolites accumulate in zebrafish larvae and brain tissue. Sphingolipid metabolites were analyzed across gba1 genotypes in 5 dpf larvae and

12 wpf brain tissue. Sphingosine levels remained unaltered across all genotypes at 5 dpf (A) but were approximately doubled in gba1−/− brains at 12 wpf (G). In
contrast, sphinganine (B), hexosylsphingosine (C), glucosylceramide C18.0 (D) and lactosylceramide C18.0 (F) had already accumulated in gba1−/− larvae up to 1500% of

control values, whereas galactosylceramide C18.0 (E) levels were reduced by 50%. In 12 wpf brain tissue, all these sphingolipidmetabolites had accumulated in gba1−/− by

up to 14 000% (G–L). The concentration of each sphingolipid is given in ng/mg (ns: non-significant; **P < 0.01; ****P < 0.0001).
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gene 1 (mpeg1). We crossed this mpeg1:GFP-CAAX transgenic line
with gba1+/− zebrafish and then assessed microglial activation in
larvae at 4 dpf across the three different genotypes to further deter-
mine whether altered immune mechanisms may precede overt
neuropathology. gba1+/− and gba1−/− had altered microglial shape,
reflecting microglial activation (shape factor in wild-type controls:
0.2077; gba1+/−: 0.2319; gba1−/−: 0.2356; P < 0.001 for both gba1+/−

and gba1−/−; Fig. 6A). Microglia vacuole count was also increased
in gba1−/− microglia by 40% with average count across genotypes
being 3.737 (wild-type), 4.015 (gba1+/−, P > 0.05) and 5.273 (gba1−/−, P
< 0.0001) per microglia (Fig. 6B). In contrast, microglia volume and
absolute count were unchanged across the three genotypes (data
not shown).miR-155 is a key regulator of inflammation (21).Wehy-
pothesized that miR-155 up-regulation may be an early feature in
gba1−/−. As predicted, miR-155 levels were increase by 88% in

gba1−/− larvae at 5 dpf compared with values observed in controls
(P< 0.05, Fig. 6C), with an evenmoremarked increase by 470% in ju-
venile gba1−/− brain tissue (P < 0.01, Fig. 6D).

gba1−/− undergo alpha-synuclein-independent
neurodegeneration

The alpha-synuclein (SNCA) gene is notably absent in the zebrafish
genome, but zebrafish possess orthologues of beta- and gamma-
synuclein (22). To further investigate the effect of partial or com-
plete GCase deficiency in the absence of alpha-synuclein (pro-
tein), dopaminergic neuronal cells were counted both during

Figure 3. Skeletal and biochemical indices ofGCasedeficiency. At 12 wpf gba1−/− (A)
developed a curve to their spine compared with wild-type (WT) controls (B) in a

similar manner to some conditional GBA1 KO mice (17). The difference in the

stripe pattern of gba1−/− (A) and wild-type zebrafish (B) is due to the gba1+/− line

being of mixed lineage with (wild-type) AB and (wild-type) TL genetic

background. Classical Gaucher disease biomarkers were markedly elevated in

gba1−/− brains at 12 wpf, with a 10-fold increase in chitotriosidase activity

(P < 0.0001) (C) and a 4-fold increase in β-hexosaminidase activity (P < 0.0001) (D).

No significant changeswere detected in either assay in gba1+/− brains. ****P <0.0001.

Figure 4.Marked slowing of spontaneousmotor activity in gba1−/−. Video-tracking

software was utilized to measure locomotion in gba1 genotypes. All fish were

filmed from the side. gba1−/− exhibited a 50% decrease in total displacement (A)

(P < 0.001). When speeds were segregated into small medium and high speeds

(B), gba1−/− spent more time moving at low speeds (300%, P < 0.0001) and a spent

less time moving at high speeds (88% less, P < 0.0001). For representative

movements traces of wild-type (WT) (C), gba1+/− (D) and gba1−/− (E), red lines

represent high-speed movements, green represents medium-speed movements

and black represents low-speedmovements. ns, P >0.05; ***P < 0.001; ****P < 0.0001.
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development and in juvenile zebrafish. At 5 dpf, therewas no dif-
ference between either gba1+/− or gba1−/− and wild-type controls
in the number of ascending dopaminergic neurons within the
posterior tuberculum, the anatomical structure in zebrafish
analogous to the human substantia nigra pars compacta (Fig. 7A).
By 12 wpf, however, there was a marked reduction
of dopaminergic neurons in both the caudal hypothalamus
by 40% (P < 0.01; Fig. 7B) and the posterior tuberculum by ∼30%
(P < 0.01; Fig. 7C). These data show unequivocally that dopamin-
ergic neurons degenerate in gba1−/− zebrafish. Unexpectedly,
both beta- and gamma-synuclein protein levels were markedly
reduced by 60% in gba1−/− brains (P < 0.0001; Fig. 7D and E).

Microscopically, there was an abundance of ubiquitylated neur-
onal cytoplasmic inclusions as well as occasional ubiquitylated
neurites throughout the CNS, but most prominently in the larger
hindbrain neurons of gba1−/−

fish at 12 wpf (Fig. 7H and I) which
bear resemblance to Lewy bodies and Lewy neurites in post-
mortem PD brain tissue (Fig. 7J).

gba1−/−-inducedmitochondrial dysfunction and impaired
autophagy

Mitochondrial dysfunction has been demonstrated in othermod-
els of gba1 deficiency (23). We analyzed the activity of the

Figure 5. gba1 deficiency leads to Gaucher cell invasion and increased abundance of activated microglia in gba1−/− brain. H&E staining of 12 wpf sections demonstrated

Gaucher cell (black arrows) organ invasion of the tectal ventriclewithin the brain of gba1−/− (B), comparedwithwild-type (WT) brains (A). Gaucher cell organ invasion was

also present in the visceral organs of gba1−/− such as the liver (C) and thymus (D). Fluorescent images show confocalmicrographs of gba1−/− andwild-type siblings control

brains labeled by indirect immunofluorescence for 4.C4 (macrophages andmicroglia; green), DAPI (nuclei; blue) and P0 (myelin; red). Low-power images through the tectal

ventricle showed accumulation of 4.C4 immunoreactivemacrophages in the ventricle and periventricular region of gba1−/− (F) but not wild-type brain (E). Microgliawithin

the brain parenchyma were identified by their immunoreactivity to 4.C4 and typical morphology (G and I). Compared with wild-type brain (G), microglial were more

numerous and brightly labeled in gba1−/− brain (I). In addition, compared with the typical quiescent morphology of microglia seen in wild-type brain (H), marked

rounding of the cell body and retraction of processes was apparent in gba1−/− brain (J). The white arrows point at a normal microglial cell body in a wild-type control

brain (H) and a rounded microglial cell body in a gba1−/− brain (J); the white arrow heads point at a normal, extended microglial process in a wild-type control brain (H)

and at a retracted microglial process in a gba1−/− brain (J). These morphological changes are typical of microglial activation.
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mitochondrial respiratory chain in 12 wpf brain tissue across the
gba1 genotypes. Complex III and IV activity was lower by ∼50% in
gba1−/− compared with wild-type (P < 0.05). Both complex III and
IV activity in gba1+/−

fish had intermediate values between those
seen in gba1−/− andwild-type, but did not differ significantly from
either (Fig. 8A and B).We hypothesized that the observed specific
abnormalities inmitochondrial function seen in gba1−/−

fishmay
be due to impaired mitochondrial biogenesis or mitochondrial
protein turnover, possibly linked to impaired mitophagy. How-
ever, the outer mitochondrial membrane protein TOMM20 and
TIMM9 (located in the inter membrane space) levels were similar
across the three genotypes (datanot shown). In contrast, NDUFA9
(encoding a complex I subunit) and Cox4i1 (encoding a complex
IV subunit) were reduced in gba1−/− brains compared with con-
trols (Fig. 8C and D, P < 0.01). The reduction of Cox4i1 may at
least in part underlie the observed lowering of complex IV activ-
ity. ATP5A (encoding a complex V subunit) was also somewhat
lower in gba1−/−

fish but this difference was not significant (P >
0.05; data not shown).

GCase deficiency results in lysosomal dysfunction due to the
accumulation of its substrate, glucocerebroside and inmice lack-
ing Gba1, decreased autophagosome formation and accumula-
tion of autophagy substrates in the brain as well as decreased
mitophagy has been observed (23). Therefore, we investigated
whether autophagy was disrupted in the brains of 12 wpf gba1
mutants compared with wild-type siblings. LC3-II is specifically
targeted to autophagosomal membranes and strongly correlates
with the number of autophagosomes (24). Brains from gba1−/−

fish had more than 2-fold increase in LC3-II levels compared
with wild-type siblings (Fig. 8E and F; P < 0.01). Whereas this dif-
ference in LC3-II levels clearly demonstrates that autophago-
some number is altered in gba1−/− brains compared with those
of wild-types, it is unclear whether autophagosome formation
is increased orwhether autophagosome degradation is defective,
because both of these scenarios would lead to an increase in LC3-
II levels.

Discussion
Modern gene editing techniques such as the TALEN strategy have
transformed zebrafish research (25).We have used the TALEN ap-
proach to generate a gba1 mutant zebrafish line which faithfully
resembles key pathological and biochemical features of human
GCase deficiency. We provide data on gba1−/− mRNA stability, re-
duced GCase enzymatic activity and other biochemical readouts
including extensive mass spectrometry-based analysis of sphin-
golipids which all support the presence of a marked biological
effect caused by the TALEN-induced 23 bp deletion in gba1 on
GCase function.

This zebrafishmodel of GCase deficiency is the first vertebrate
model to faithfully replicate key GD pathology in both visceral
and neural tissue simultaneously. Conventional KO and condi-
tional KO mice model either neuropathic or non-neuropathic

Figure 6. Activation of inflammatory/immune mechanisms during larval stages.

Microglia in 4 dpf gba1+/− and gba1−/− had an increase in shape factor (sphericity)

(P < 0.001 for both) indicative ofmicroglial activation (A). Additionally, the number

of vacuoles in gba1−/−was increased by 40% comparedwith the values observed in

wild-type (WT) controls (P < 0.0001) (B). Levels of miR-155, a master regulator of

inflammatory/immune mechanisms, were analyzed in 5 dpf larvae (C) and

12 wpf brain tissue (D) across gba1 genotypes. miR-155 was increased 2-fold

in gba1−/− larvae (P < 0.05) and 4-fold in 12 wpf gba1−/− brains (P < 0.01). *P < 0.05;

**P < 0.01; ***P < 0.001; ****P < 0.0001.
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Gaucher disease but not both (10). Our extensive glycolipid mass
spectrometry analysis suggests that it is mostly lower MW spe-
cies which accumulate, with high MW species either unchanged
or decreased compared with wild-type. The predominant in-
crease of C18 metabolites is in keeping with similar studies in
other model systems (16,26,27). Our observation of a marked in-
crease in the accumulation of distinct glycosphingolipids prior
to the onset of marked inflammation and neuronal cell loss in
GCase deficient zebrafish larvae is in keeping with similar obser-
vations in a mouse model of neuronopathic GD (14). miR-155 is a
master regulator of pathways involved in the regulation of im-
mune mechanisms (21) that is expressed in both the innate and
the adaptive immune system and predominantly acts viamoder-
ate mRNA degradation. Of note, miR-155 upregulation has al-
ready been implicated in the pathogenesis of different
neurodegenerative disorders. Early miR-155 upregulation contri-
butes to neuroinflammation in an Alzheimer’s disease transgenic
mouse model as well as in Aβ-activated microglial and astrocyte
cultures (28). Expression levels of miR-155 are increased in the
spinal cordof both familial andsporadic amyotrophic lateral scler-
osis and genetic ablation of miR-155 markedly increased survival
in SOD1 mice with restoration of abnormal microglia (29). How-
ever, miR-155 had not been implicated in the pathogenesis of GD
or PD before now. Our study clearly suggests that activation of im-
munemechanisms precedes neuronal cell loss rather thanbeing a
consequence of it. Future work needs to determine whether miR-
155may also be a promising ‘druggable’ target for neuroprotective
therapy in both GD and PD. Of note, an association of GBA muta-
tion status with an increase in the plasma levels of different in-
flammatory mediators such as interleukin 8 has been reported
in PD patients (30).

Both loss of GCase function and toxic gain of function have
been proposed to explain the increased risk of PD for GBA1+/− car-
riers (6,31). There is also strong evidence for an interplay between
GCase activity and alpha-synuclein levels (9,16,32). The marked
loss of dopaminergic neurons in gba1−/− zebrafish in the absence
of alpha-synuclein indicates that alpha-synuclein-independent

mechanisms can contribute to the neurodegeneration resulting
from GCase deficiency. The extensive accumulation of ubiqui-
tin-positive intra-neuronal inclusions in the brains of juvenile
gba1−/− zebrafish further suggests that proteins other than
alpha-synuclein accumulate in this model. Obvious candidates
are the β- and γ1-synucleins expressed in the zebrafish CNS
(22). However, western blot analysis showed that these are both
markedly reduced in juvenile gba1−/− brains, possibly as a conse-
quence of extensive synaptic loss accompanying neurodegenera-
tion in this model. Indeed, neuronal ubiquitinopathy preceding
an increase in alpha-synuclein levels has been described in a
GBA1 knock-in mouse model (33) and it is likely that gba1−/−

zebrafish represent an example of non-synuclein proteinopathy
and synuclein-independent neurodegeneration occurring in the
absence of GCase activity.

Mitochondrial dysfunction with impaired quality control has
been reported in a mouse model of GD and iPSC-derived GBA1+/−

neurons (16,23). However, we observed reduced complex III and
IV activity rather than reduced complex I activity as observed in
GBA1−/− mice (23). We hypothesize that this may at least in part
be due to alpha-synuclein-mediated mitochondrial toxicity in
GBA1−/− mice which typically affects complex I activity (34). The
reduced complex IV activity in gba1−/− juvenile zebrafish brains
may be due to a direct effect of the markedly elevated glucosyl-
sphingosine, a potent inhibitor of the mitochondrial cytochrome
c oxidase on the environment of this membrane-bound enzyme
(35). Interestingly, magnetic resonance spectroscopic imaging
data in human patients also provide circumstantial evidence of
alteredmembrane phospholipid metabolism in GBA1-associated
PD (36). Alternatively, the reduced complex IV activity may at
least partially be due to the observed reduction in the Cox4i1 pro-
tein level the gba1−/− brains (Fig. 8D). Autophagy plays an essen-
tial role in the clearance of aggregate-prone proteins and
damaged mitochondria, and dysfunctional autophagy has been
implicated in the pathogenesis of PD (37). In mouse models of
GCase deficiency, autophagosome formation is decreased and
ubiquitylated proteins monomeric and oligomeric forms of

Figure 7.Dopaminergic neuronal cell loss and ubiquitinated inclusions in gba1−/− brains. The number of ascending diencephalic dopaminergic neurons (Rink–Wullimann

groups 1, 2, 4 and 5) was similar across the three gba1 genotypes at 5 dpf (A). In contrast, there was a 40% loss (P < 0.01) of the dopaminergic neurons in the caudal

hypothalamus (B) and a 30% loss (P < 0.01) in the posterior tuberculum at 12 wpf (C). β (D) and γ1 (E) synuclein proteins levels were reduced by 60% in gba1−/− brain

tissue suggesting a distinct loss of synapses due to global neurodegeneration. F–J: IHC labels ubiquitin brown by 3,3′-DAB. Glial cell nuclei are highlighted by

hematoxylin counterstaining (blue). At 12 weeks of age, there is no significant pathology in wild-type (WT) (F) or gba1+/− fish (G). In contrast, gba1−/− fish (H and I) have

granular ubiquitylated neuronal cytoplasmic inclusions (black arrows) and ubiquitylated neuritic pathology (white arrow). These granular neuronal cytoplasmic

inclusions and neurites resemble the granular aggregates of a-synuclein (black arrow) and Lewy neurites (white arrow) as seen in sporadic PD (J; substantia nigra)

(scale bar = 50 μm throughout). ns, P > 0.05; **P < 0.01; ****P < 0.0001.
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alpha-synuclein and ubiquitylated proteins accumulate in the
brain (23). In juvenile gba1−/− zebrafish brains, we observed a sig-
nificant increase in LC3-II levels which may result from either an
increase in autophagosome formation or a defect in degradation.

Someof ourfindingsare remarkablysimilar toobservations ina
GBA1 nonsense medaka (Oryzias latipes) model of Gaucher disease
(27). Future studies need to reveal whether the observed early
microglial activation and subsequent neuronal cell loss is linked
to the recently reportedWnt signaling abnormalities inGCase1 de-
ficientD. reriozebrafishwith reducedCGaseactivity causedby tran-
sient antisense knockdown of gba1 early in development (38).

Conclusion
Zebrafish are an excellent vertebratemodel to study human brain
diseases and increasingly used for high-throughput drug screens
(39,40). The large sphingolipid accumulation and microglial dys-
function during larval stages shows the potential to use the gba1

mutant zebrafish as a tool for phenotypic drugdiscovery to identify
new disease modifying therapies for neuronopathic GD and to aid
in the identification of novel PD toxins that may act synergistically
in conjunction with gba1+/−. There is growing evidence of lyso-
somal impairment in PD in general and decreased activity of
GCase in particular, even in the absence of GBA1 mutations
(32,41–44). Augmenting CNS GCase activity has been proposed as
a promising therapeutic strategy for PDand otherGD-related synu-
cleinopathies (45). A further promising aim for zebrafish in vivo
high-throughput screens could therefore be to identify compounds
which would upregulate neuronal GCase activity.

Materials and Methods
Zebrafish husbandry

All larval and adult zebrafish were housed at the University of
Sheffield; experimental procedures being in accordance with

Figure 8.Mitochondrial dysfunction and autophagy in gba1−/− zebrafish. Therewas a 50% decrease (P < 0.05) in complex III (A) and complex IV (B) activity in gba1−/− brains

at 12 wpf. Therewas also a decrease in the protein levels of the complex I subunit NDUFA9 (C, P < 0.01) and the complex IV subunit Cox4i1 (D, P < 0.01). LC3-II was increased

2-fold in gba1−/− brains at 12 wpf compared with wild-type (WT) (E, P < 0.01). (F) A representative western blot of LC3-II protein levels in wild-type and gba1−/− zebrafish

brains. *P < 0.05; **P < 0.01.
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UK Home Office Animals (Scientific Procedures) Act 1986 (Project
license PPL 70/8437, held byDrOliver Bandmann). Adult zebrafish
were housed at a density of 40 per tank,whereas on a cycle of 14 h
of light, 10 h of dark. Adults and embryos were kept at constant
temperature of 28°C.

gba1 stable mutant line

A stable loss of function allele was generated with the TALEN
genome editing system targeting an mwoI restriction enzyme
site located within exon seven of gba1. A pair of TALENs binding
5′TCTGTACCCTGATTACTT (right TALEN) and 5′ATGCGCTGG
GTGGAGTCCA (left TALEN) were chosen by the TALEN targeter
(https://boglab.plp.iastate.edu/node/add/talen). TALEN mRNA
was generated and injected into one cell stage Zebrafish embryos.
F0 mosaic founders were identified and outcrossed to wild-type
TL adults. A (heterozygous) allele was identified in the F1 gener-
ation containing a 23 bp deletion (gba1+/−) and outcrossed again
to TL until the F3 generationwas reached. Zebrafish homozygous
for this 23 bp deletion (gba1−/−) used for all experiments were
generated from an incross of F3 gba1+/−. All zebrafish were geno-
typed using primers F-5′AAAGCAGCACGATATGTCCA and R-5′
ATGTCATGGGCGTAGTCCTC. DNA was amplified and analyzed
on a 2% agarose gel.

Gene expression analysis

RNA was extracted from 20 zebrafish embryos/zebrafish caudal
hypothalamus by 40% (P < 0.01; Fig. 7B) and the posterior tubercu-
lum by ∼30% (P < 0.01; Fig. 7C). brains (two per replicate) at spe-
cific time points using TRIzol® (Life Technologies™). A Verso
cDNA synthesis kit (Thermo Scientific) was used to generate
cDNA. Quantitative real-time PCR (qPCR)-based quantification
of gba1 expression was undertaken using primers F-5′GGCA-
CAGGCTCTATCTGCTC and R-5′TCTAGAAACCTGATATAGT.
SYBR (Life Technologies™) green was used for all qPCR experi-
ments, with ef1a as a reference gene (ef1a primers: F-5′
TGGTACTTCTCAGGCTGACT and R-5′TGACTCCAACGATCAGCT
GT). For microRNA expression analysis, RNA was harvested
from embryos and brain tissue as previously described. RNA con-
centrationwas accurately quantified using the QuantiFluor™ RNA
system (Promega) and the Qubit® fluorometer (Life Technologies).
100 ng of total RNA was reverse-transcribed and subsequently
qPCR was performed using Taqman miRNA assays (Applied Bio-
systems). A Taqman probe (sequence: 5′UUAAUGCUAAUCGU-
GAUAGGGG) was used to quantify miR-155 levels.

Lysosomal enzyme analysis, assessment
of mitochondrial respiratory chain function
and mass spectrometry

All lysosomal enzyme assays were performed on homogenates
of whole zebrafish brain at 12 wpf with a protein concentration
of 1 mg/ml and at 28°C unless otherwise stated. All assays were
stopped with 1 M glycine NaOH buffer pH 10.4 and used 1 n
4-methylumbelliferone (Sigma) as a standard to calculate
the final result. Chitotriosidase activity was measured using
4-methylumbelliferyl-β--N,N′,N″-triacetyl-chitotriose (Sigma)
in McIlvaine citrate–phosphate buffer pH 5.2. β-Hexosaminidase
activity wasmeasured using 4-methylumbelliferyl-2-acetamido-
2-deoxy-β--gluco-pyranoside (Sigma) inMcIlvaine citrate–phos-
phate buffer pH 4.5. Beta-galactosidase activity was measured
using 1 m 4-methylumbelliferyl--galactopyranoside dissolved
in McIlvaine citrate–phosphate buffer pH 4.1. GCase activity was

measured with 5 m 4-methylumbelliferyl-β--glucopyranso-
side (Sigma) in McIlvaine citrate–phosphate buffer pH 5.4 in the
presence and absence of conduritol B epoxide at 37°C.

Mitochondrial complex activities I–IV were assessed in whole
brain homogenates at 12 wpf as previously described (46).

Mass spectrometry for the detection of sphingolipid metabo-
lites was undertaken at 5 dpf and 12 wpf as previously described
(47). Larvae were genotyped as previously described (48). Geno-
type larvae were then frozen in liquid nitrogen in groups of 20
per genotype (wild-type, gba1+/− and gba1−/−) and stored at −80°
C prior to mass spectrometric analysis. Mass spectrometry was
then also undertaken in brains of juvenile zebrafish (12 wild-
type, 10 gba1+/− and 10 gba1−/−) at 12 wpf.

Assessment of dopaminergic nervous system

Dopaminergic neurons were first counted at 5 dpf using whole
mount in situ hybridization (WISH) staining with a probe for tyro-
sine hydroxylase (TH) (n = 10 embryos per genotype and biological
replicate). Dopaminergic neurons were counted by eye using an
axioplan compound microscope (Zeiss) at 20× magnification as
previously described (46). The counter was blinded to the geno-
type and condition. The dopaminergic neuron count was as-
sessed by counting the distinct neuronal subgroups one, two,
four and five in the diencephalon, defined according to the Rink
and Wullimann classification (49,50). The mean neuron count of
each control group was normalized to 100% and all other group
counts expressed as a percentage of the control group. Juvenile
zebrafish were culled and brains fixed in paraformaldehyde
(PFA) to enable dopaminergic neuronal cell count at 12 wpf in
wild-type, gba1+/− and gba1−/− zebrafish. Dopaminergic neurons
were stained using a TH1 antibody (Mouse monoclonal anti-TH,
DiaSorin Inc.) and then counted in the posterior tuberculum and
caudal hypothalamus as previously described (51).

Movement analysis

Locomotion was quantified using Viewpoint analysis software
version 3, 22, 3, 9 (Viewpoint). Fish were filmed individually
from the side, for 10 min following 10 min acclimation time.
Low-speed movements were defined as <5 cm/s. Medium-speed
movements were defined as 5< X <7 cm/s. High-speed move-
ments were defined as movements >7 cm/s.

Microglial activation

gba1+/− were crossed to Tg(mpeg1:GFP-CAAX) (mpeg1,sh425), simi-
lar to a previously published protocol (52). Details on the trans-
genesis methods are available from the authors. All subsequent
embryoworkwas generated from an incross of gba1+/− andmpeg1
and imaged at 4 dpf. High-resolution imaging was performed
using an inverted UltraViewVoX spinning-disk confocal micro-
scope (PerkinElmer Life and Analytical Sciences). Imaging was
performed to a depth of ∼150 µm from the dorsal surface of the
brain using 2 µm z-sections. Volumetric and shape factor ana-
lyses were performed using Volocity 6.3 (PerkinElmer Life and
Analytical Sciences) software, using intensity of fluorescence to
identify individual cells. Measurements of vacuole diameter
were performedmanually using the line tool. Data for the assess-
ment of microglial shape and vacuole count were pooled
form three independent experiments including a total of 177
wild-type, 94 gba1+/− and 82 gba1−/− microglial cells from 15
wild-type, 9 gba1+/− and 7 gba1−/− larvae. All measurements
were performed blind to the gba1 genotype. Following
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microscopy and image analysis, embryos were genotyped for the
gba1 mutation (as described earlier).

Histology

For H&E and PAS staining, zebrafish were fixed in Bouins fixative
for 2 weeks and embedded in paraffin. Ubiquitylation was as-
sessed in zebrafish fixed in 10% buffered formalin solution for
1–2weekswith subsequent decalcification for 7 days in ethylene-
diaminetetraacetic acid. Coronal or sagittal sections were made
of ∼4 μm thickness. Each zebrafish was sectioned completely
and every 10th and 11th slidewas used for subsequently staining
with either H&E or PAS. Ubiquitin immunohistochemistry (IHC)
was performed with antigen retrieval by pressure cooker at pH
6, using a polyclonal anti-ubiquitin antibody (Dako Z 0458) at a
1:1000 dilution, standard ABC methods and diaminobenzidine
(DAB) as chromogen. Prepared microscope slides were viewed
by a board-certified pathologist (A.M.), using conventional
bright-field microscopy.

Sample preparation for IHC and confocalmicroscopy to inves-
tigate microglial activation in juvenile zebrafish brains was car-
ried out as reported previously (53). Zebrafish were perfused
and brains post-fixed in 4% PFA, followed by cryoprotection
in PBS-sucrose. Fourteen micrometer thick cryosections were
mounted on glass slides, treated with PBS-T (0.3% Triton-X) for 1
h, blockedwith 10% goat serum in PBS for 2 h and then incubated
overnight at 4°C with primary antibodies diluted 1:20 (7.4.C4,
purified from hybridoma clone; #92092321, HPA Culture Collec-
tions, UK), 1:500 (P0) in PBS with 1% goat serum (54). Primary
antibodies were detected using Alexa-488 (anti-mouse), and
Alexa-555 (anti-rabbit) conjugated secondary antibodies (Life
Technologies, Grand Island, NY) diluted 1:1000 in carrier buffer
and sections counter labeled with 4′, 6-diamidino-2-phenylin-
dole (DAPI). Images were acquired using an Olympus Fluoview
confocal microscope and multi-field collages made with Adobe
Photoshop.

Western blotting

Mitochondrial primary antibodies: TOMM20 (Santa Cruz), TIMM9
(Abcam), NDUFA9 (Abcam), COX4i1 (Abcam), ATP5A (Abcam),
β-ACTIN (Sigma-Aldrich). Horseradish peroxidase (HRP)-linked
secondary antibodies were used (Sigma-Aldrich). LC3 primary
antibodies: Rabbit anti-LC3 (Novus Biologicals; NB100–2220)
used at 1:1000 dilution; mouse anti-actin (Sigma A5316) used at
1:500 dilution. Secondary antibodies: Polyclonal goat anti-rabbit
immunoglobulins/HRP (Dako P0448) used at 1:5000; polyclonal
goat anti-mouse immunoglobulins/HRP (P0447) used at 1:5000.
Beta- and Gamma-synuclein primary antibodies: mAb α/β-Synu-
clein (Syn205, Cell Signaling; 1:1000) or pAb γ1-Synuclein (1:1000).
γ1-Synuclein polyclonal antibody was raised to the peptide
DFSHGGMEGGEGGEGY by immunization of rabbits (New England
Peptide) and affinity purified as previously described (54). IRDye-
800 and IRDye-680 (LI-COR, Lincoln, NE) conjugated secondary
antibodies (1:10 000) enabled the blot to be imaged using anOdys-
sey Infrared Imager (catalog no. 9120; LI-COR) with a wide linear
range.

Statistical tests and analysis

Graphpad prism V.5 software (Graphpad) was used for statistical
analysis and all errors bars shown denote the mean ± SE of the
mean. All experiments were performed in biological triplicate

unless otherwise. All data were analyzed with either T test,
one-way ANOVA or two-way ANOVA.

Supplementary Material
Supplementary Material is available at HMG online.
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