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We consider the problem of estimating multiple phases using a multi-mode interferometer. In this
setting we show that while global strategies that estimate all the phases simultaneously can lead to
high precision gains, the same enhancements can be obtained with local strategies where each phase
is estimated individually. A key resource for the enhancement is shown to be a large particle-number
variance in the probe state, and for states where the total particle number is not fixed, this can
be obtained for mode-separable states and the phases can be read out with local measurements.
This has important practical implications because local strategies are generally preferred to global
ones for their robustness to local estimation failure, flexibility in the distribution of resources, and
comparatively easier state preparation. We obtain our results by analyzing two different schemes:
the first uses a set of interferometers, which can be used as a model for a network of quantum
sensors, and the second looks at measuring a number of phases relative to a reference, which is

concerned primarily with quantum imaging.

INTRODUCTION

Quantum metrology has the potential to revolution-
ize a diverse range of fields from biological imaging [1]
to navigation [2, 3], and already plays a crucial role in
enhancing the precision of gravitational wave detectors
[4]. In many practical applications it is necessary to esti-
mate multiple parameters [5-8], and hence it is important
to understand the potential enhancements that quantum
metrology can provide in this setting [9-11]. It has al-
ready been shown that in a multi-mode (multi-path) in-
terferometer, measuring all phases simultaneously with
a mode-entangled state can enhance the precision [9].
However, in stark contrast to this, in other applications
of quantum metrology multi-mode entanglement can be
detrimental, such as when measuring coupled phases [12]
or when loss is considered [13]. Furthermore, from a prac-
tical point of view, large multi-mode-entangled states are
notoriously difficult to produce and are fragile to exper-
imental imperfections and photon losses.

In this paper we compare local and global strategies for
estimating multiple parameters in optical interferometry.
We call an estimation procedure a local estimation strat-
egy if 1) the input probe state is separable with respect
to different optical modes and ii) the measurement of the
state can be implemented with only local operations. In
a local strategy, each parameter can be estimated indi-
vidually. In contrast to this, we define a global estimation
strategy to simply be any estimation procedure which is
not local; in a global strategy the parameters are esti-
mated simultaneously.

Previous work has shown that a global estimation
strategy that estimates all phases simultaneously can
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FIG. 1. The general problem under consideration consists

of M optical modes with independent linear phase shifts
0;, i = 1,...,M. In optical interferometry the parameters
to be estimated, ¢;, are given by some function of the M-
dimensional vector 8, as described in the main text. For ex-
ample the ¢; could be phase differences between arms.

give high precision gains over standard quantum metrol-
ogy protocols [9]. However, in [9] only states with a
fixed number of photons were considered. In this pa-
per we relax this constraint and allow for both fixed-
number states and indefinite-number states. In this more
general setting we demonstrate that the same precision
enhancements exhibited by the global strategies can be
obtained with mode-separable states and local measure-
ments alone. Local strategies offer a number of advan-
tages over their global counterparts including robustness
to local estimation failure, more flexibility in the distri-
bution of resources, and more realistic methods of state
preparation [14-18], measurement and control.

Our results are obtained by analysing two different
multi-parameter estimation schemes which cover a va-
riety of practical applications. Firstly, we consider a col-
lection of (possibly entangled) interferometers which can
be used as a model for a network of quantum sensors.



This scheme is also relevant to applications such as grav-
itational wave astronomy in which multiple parameters
of a gravitational wave will be measured simultaneously
[5]. Secondly, we analyze a model for quantum-enhanced
imaging [6-8], introduced by Humphreys et. al. [9],
whereby many phases are measured relative to a single
global reference. In both of these schemes we provide
mode-separable states that allow individual phases to be
measured with a precision beyond the simultaneous es-
timation strategy. While previous work has shown that
large enhancements are possible in multi-parameter esti-
mation [9, 19, 20], the exact origin of this enhancement
was not known. Here we shed some light on this by pre-
senting phase precision bounds that explicitly show that,
in multi-mode optical systems with commuting phase
generators, the crucial resource for enhanced metrology
is a large number variance within each mode, which can
be obtained without multi-mode entanglement.

MULTI-PARAMETER ESTIMATION

Consider the problem of estimating the general vector
¢ consisting of d parameters ¢;, ¢ = 1,...,d. The pre-
cision bound on estimating each parameter ¢; is given
by the Cramér-Rao bound (CRB) as 6¢? > p~1(F 1)
where p is the number of repetitions of the experiment
and F is the quantum Fisher information matrix (QFIM)
[21, 22]. For a pure state |¢g) which depends on ¢ the
QFIM is defined by

Fim = %<'¢)¢|(L1Lm + Lle)|'(/)¢>? (1)

where L; is the symmetric logarithmic derivative, given
by

Ly = 2(|100) (Vo] + [19) (0t0e]) (2)

where [0j9¢) = a%lww [9, 23]. Consider the case when
[Yg) = U(p)|tp) for some ¢-independent initial probe
state |¢) and U(¢p) = exp(i Zle $:0;) where the O;
are Hermitian and mutually commuting operators, i.e.,
[0;,0,] = 0 Vi,j. Then it can be shown that Fj,, =
4Cov(Ol, Om), where

Cov(Oy, 0m) = (010,) — (O)(Onn) (3)

is the covariance between the two operators O, and Om,
and the expectation values are taken with respect to the
input state |¢) (this simple QFIM formula will be appli-
cable throughout). The variance, given by | = m, will be
denoted Var(O;) = Cov(Oy, Oy).

The general scheme for optical multi-parameter esti-
mation considered herein is shown in Fig. 1. There are
M optical modes with independent linear phase shifts.
The unknown phase shifts are imprinted with the uni-
tary operator U(0) = exp(i Z]Ail 6;n;) and the problem
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FIG. 2. A network of quantum sensors may be modelled as d
parallel interferometers. The parameters to be measured are
the phase differences in each interferometer.

-_  J

is to estimate some number d < M of independent pa-
rameters ¢; which are functions of the 6, as will become
clear when we introduce specific examples below.

PARALLEL INTERFEROMETERS

The first scheme we consider is a set of parallel inter-
ferometers in which the aim is to measure the phase dif-
ference between the two arms in each interferometer, as
shown in Fig. 2. One interesting future application is in
gravitational wave astronomy, which will aim to simulta-
neously measure a number of parameters associated with
gravitational waves, such as polarisation and direction of
origin, and to do so will require multiple interferometers
[5].

This parallel interferometer model is a special case
of the scheme in Fig. 1 for an even number of modes
M = 2d, where specifically we take the it inter-
ferometer to consist of modes 2i — 1 and 2i (i =
1,...,d). The aim is to estimate the d parameters
¢; = ¢;— where ¢;+ = 03,1 + 03;. The phase-
shift operator U(0) can be re-parameterised in terms
of @ = (d1-,...,Pg—, P14,-..,Pg+), giving U(p) =
exp(i Z?Zl(qér O,- +¢;+0,;+)), where the generating op-
erators are Oii = (Ngi—1 & No;)/2. Hence, although
the estimation is only of d parameters, the relevant
QFIM is for the 2d-dimensional ¢ and has the form
Fitjr = 4COV(Oii,Oji)7 where the two + signs may
be chosen independently.

This estimation problem has a symmetry between
the interferometers and, furthermore, there is a sym-
metry between the arms in each interferometer as nei-
ther plays a special role. We therefore consider states
that are symmetric with respect to swapping interferom-
eter labelling, and symmetric with respect to swapping
the modes in each interferometer. Using the shorthand
Ci,; = Cov(n;,n;) and V; = Var(f,;), these symmetry
assumptions imply that the variances of all the modes
are equal, i.e., V; = Vj for all i and j and this value
may be denoted V. Furthermore, they imply that the
covariances between any two modes from the same inter-
ferometer are equal, i.e., Coj_1 2; = Coj_1,2; for all 7 and



4 and this value may be denoted Clytra. Given these nat-
ural symmetries it can be shown (see Appendix A) that
the precision bound for estimating each parameter ¢; is
given by

1

2
6(;51 = 2(V - CIntra) . (4)
In the literature a single phase-precision parameter §® =
Zle 0¢; is sometimes considered, e.g., see [9, 19], which
here may be trivially calculated to be 6® = dd¢;, but
throughout this paper we will consider the precision
bounds of individual phases d¢;. From Eq. (4) it is clear
that the only parameters which directly affect the phase
precision are the state’s photon number variance and the
correlations between the two modes in an individual in-
terferometer. Hence, entanglement between interferome-
ters provides no direct improvement in the phase preci-
sion. It is therefore not necessary to entangle quantum
optical sensors in networks, nor entangle multiple gravi-
tational wave interferometers, which in both cases would
be challenging.

It is instructive to rewrite Eq. (4) in terms of the Man-
del Q parameter and the two-mode correlation param-
eter J;;, which are defined by Q; = (V; — 7;)/n; and
Jij = Ci;/+/ViV;j respectively. We denote the Mandel-
Q parameter for any mode by Q (all modes have the same
Q), and the two-mode correlation between the two modes
in any of the interferometers by J, where J = Chptra/V.
Then for all ¢ the phase precision is given by:

5¢? > !

= on(l+9Q)(1-J) (5)

where 7 is the average number of particles in any single
mode (i.e. i = i; = (N;) for any ). For single-parameter
estimation this was shown in Ref. [24]. This may also be
rewritten in terms of the average total photon number N
using N = 2df. The 2-mode correlation term is bounded
by —1 < J <1 and hence only provides at most a factor
of 1/4/2 improvement in the phase precision.

We now compare local and global phase estimation
strategies with examples of both multi-mode-entangled
and mode-separable states. If we consider each inter-
ferometer individually, the standard quantum-enhanced
precision is the well-known Heisenberg scaling of §¢? >
1/(2n)? = d?/N?, where this precision for each individ-
ual phase has now been written in terms of the total
photon number N used to measure all of the phases.
Consider a generalised entangled coherent state (GECS)
given by

[Wares) = Ny Z fja(ag)\O% (6)

aeM

where D,(a) = exp (aa’ — a*a) is the displacement op-
erator acting on mode a, M is the set of M = 2d modes,

|0) is the multi-mode vacuum state and N is a normal-
isation factor required due to the non-zero overlap of a
coherent state with the vacuum. We find

S s > d ~ d
T Ny (loglP +1) Ny (Ng+1)°

(7)

where Ny = |a,y)?/(1 4 (2d — 1)e*|°‘y|2) is the total av-
erage number in the GECS and the approximation uses
N, = |ay|? which holds for |ay| > 1. This is a scaling
of O(d/N?) which is an O(d) improvement over the ex-
pected quantum enhancement. This suggests that, con-
trary to the evidence of Eq. (5), a global strategy does
provide an improvement over the local estimation strat-
egy. However, a local strategy can do just as well or even
better, as we will now see.

Consider a multi-mode but mode-separable unbalanced
cat state (UCS), given by [Wyes) = Ne (Jae) 4 ]0)) %%
where v is a real parameter and again A, is the normal-
isation. We find that

0tes 2 : ~ s (8)

Nc (|ac|2+1_%) Nc (%Nc—’—l)’

where N, = 2d|o|2/(v2 + 1 4 2ve~zlcl’) is the total
average photon number and the approximation is for
lae] > 1. For v = 1 (an ordinary cat state) we find
that the precision bound scales as O(d?/N?), as perhaps
expected of the local strategy. However, if we instead
take 2 to scale with d then it has the form O(d/N2).
More explicitly, setting photon numbers equal N, = Ng,
then (for |acl, |oy| > 1) we have §¢2 < d¢2,.s When
v? > 2d (this analysis also holds without taking the
large photon number limit). This shows that for large
enough values of v the UCS can attain a better preci-
sion than the GECS. Moreover, with local estimation
the CRB can be saturated by mixing the two modes of
each interferometer on a beam-splitter and photon num-
ber counting on the output modes, as this is the opti-
mal measurement for standard two-mode interferometry
with any path-symmetric input state [25]. With a global
estimation strategy, in general a much more experimen-
tally challenging many-mode measurement is necessary,
further reinforcing the advantages of the local strategy.
Before further discussion on the conclusions of the paral-
lel interferometer scheme, we will now show that similar
conclusions can be drawn for a ‘quantum imaging’ prob-
lem.

MULTI-MODE QUANTUM-ENHANCED
IMAGING

Consider measuring d phase shifts relative to a single
reference mode, as described by Humphreys et. al. [9],
which is relevant for a range of applications, including
quantum enhanced imaging [6-8]. This is again a special



case of Fig. 1 for M = d + 1 modes, whereby the aim is
to estimate the d dimensional vector parameter ¢ where
¢; = 0; —0441. For simplicity (and following Humphreys
et. al. [9]) we set 0441 = 0 in which case the generator
of ¢; is simply 7;, and therefore F;; = 4Cov(n;, ;) (see
Appendix C for a discussion of the role of reference beams
in this scheme). As in the case of the parallel interferom-
eters, there is a clear symmetry to this problem, and in
this case it is natural to assume symmetry between the d
probe modes (but not necessarily between the reference
mode and the others). This implies that V; = V; for all
i and j, which is denoted V, and that C;; = Cp,,, for
all i # j and m # n, which we denote by C. Using this
assumption, it is shown in Appendix B that the precision
bound for estimating each parameter ¢; is given by

, Vot (d—2)C
VOV [d-10)

9)

Again, the QFIM can be expressed in terms of the
Mandel-Q parameter of any mode and the two-mode cor-
relation J = C/V, which gives a phase-precision of

fd,J)
1+9(1-J)
where 7 is the average photon number in a single mode
and the function f(d,J) is given by
1+(d-2)J
1+ d-1)J"

2
00; = = (10)

f(d,J) = (11)
When there are many interferometers (d > 1) then
f(d,J) =~ 1, and hence the phase precision has a very
similar form to that for the parallel interferometers case
given in Eq. (5). As always, |J| < 1 and hence as be-
fore multimode correlations can only provide, at most, a
small constant factor improvement.

In order to explore this further and to understand the
relationship to previous work [9, 19], examples are now

considered. Humphreys et. al. [9] introduced the gener-
alised NOON state (GNS), given by

1

Vd+9?

+10,0,...,N,0) ++/0,0,...,0,N)),

W ns) = (IN,0,...,0,0)+]0,N,...,0,0)+...

where the real parameter 7 is a weighting on the refer-
ence mode to be optimised. For each phase, the precision
bound is §¢2. > (d +v?)(1 + v?)/4y*>N?, which is op-
timised for v = d'/* but for which the simpler choice
of v = 1 provides the same scaling enhancement. The
optimal case gives 0¢2 > (1 + V/d)?/AN?. This is
an O(d) enhancement over the expected quantum en-
hancement [9] (separate NOON states give a precision
§¢2.on = d2/AN?) which again suggests that a global
strategy does provide an improvement over the local es-
timation strategy. However, this conclusion only holds

if we restrict ourselves to states with a fixed total num-
ber of photons. We now relax this constraint and con-
sider states with a fixed average number of photons (fixed
total-number states are a subset of this). In this larger
class of states we will demonstrate that the same pre-
cision enhancements exhibited by the GNS can be ob-
tained with mode-separable states and local measure-
ments alone.

A mode-separable which can improve over the GNS is a
collection of single-mode unbalanced ‘NO’ (UNO) states,
given by

[huno) = Ny (IN) +1]0) . (12)

Choosing v = 1 returns the same scaling as using sepa-
rate NOON states. However, if we take v = \/d +~2 — 1,
or simply v o v/d, then we obtain exactly the same
precision scaling enhancement as the global estimation
strategy with the GNS. Furthermore, the multi-mode
correlations in the GNS die off with increasing d, as
J=-1/(d+~*-1).

In this ‘quantum imaging’ setting the optimal measure-
ment required to saturate the CRB for the global estima-
tion strategy is again, in general, some many-mode mea-
surement. The specific optimal measurement depends
on the particular input state [26], e.g., see Ref. [9] for
the details in case of a GNS input. However, with the
local strategy, the optimal measurement is simply a col-
lection of one-mode measurements on each probe mode,
performed after each probe mode has been mixed in some
way with the phase reference - the precise procedure
again depends on the particular probe state employed.
This further highlights the advantages of local estima-
tion strategies.

It is now clear that, for quantum-enhanced optical
multi-parameter estimation, the essential property re-
quired of a pure probe state is large correlations within
each mode, and this can be obtained without multi-
mode entanglement. The cause of the apparent scal-
ing improvement for the global strategy is that the GNS
exhibits the scaling @ = O(di) = O(N) rather than
Q = O(n), i.e., the uncertainty in the photon number of
each mode grows with the number of modes d, for fixed n.
However, the Q function is simply a local property of each
mode, and the desired scaling can also be obtained by a
judicious choice of a single-mode state. Generally, for any
path-symmetric pure state of M modes |¥), consider a
pure single-mode state [¢(¥)) = >0 [(n|¥)||n), with
(n|¥) taken with respect to any mode. Then, by con-
struction, |¥) and the M-mode-separable state [¢)®"
contain the same average number of photons and for any
mode Q(|¥)) = O(|)®™). Hence the phase-precision as
a function of 7 (in either scenario considered herein) for
a general multi-mode state exhibits at most a small con-
stant factor (at best v/2) improvement over the separable
analogue (although note that the separable analogue can



be modified to beat the multi-mode state, for example by
tuning v in the UNO or UCS). This argument applies to
any global estimation strategy, and hence to the exten-
sion of Ref. [9] by Liu et. al. [19] to quantum imaging
with a generalised entangled coherent state (GECS).

DISCUSSION

We have shown that in optical multi-parameter esti-
mation there is no fundamental improvement in using
a global strategy to estimate all of the parameters si-
multaneously. Local strategies are just as effective, and
this has important practical implications because local
estimation strategies, which use separable states and lo-
cal measurements, have a number of advantages. For
example, local strategies have greater flexibility in the
distribution of resources and are more robust to local es-
timation failure. Furthermore, single mode states with a
large number variance can be made in experiments [14—
17], and realistic schemes have been proposed to pro-
duce separable states which improve over the shot noise
limit by more than a factor of 4 [18]. By comparison,
multi-mode-entangled states with large photon numbers
are notoriously difficult to make — the largest two-mode
optical NOON state that has been made experimentally
contains only 5 photons [27].

The QFT alone is not always a reliable method for
deriving precision scaling bounds that are truly attain-
able in practice, and a proper consideration of the prior
information and the required number of experimental
repetitions is needed. Indeed, states with arbitrarily
large QFI for a fixed number of photons have been
reported in the literature [28], and this effect is relevant
here. A further discussion of this is given in Appendix
C. However, the precision scaling with photon number
is often not of direct relevance in an experiment, and
a more relevant measure is the absolute precision that
can be obtained given an allowed total photon number
through the interferometer [4, 29, 30]. As already noted,
there are a range of practical states which improve on
the absolute precision of NOON states [14, 18], and
these are candidates for the multi-parameter paradigm
using the local estimation strategy considered herein.

To conclude, we have considered the problem of multi-
parameter estimation in optical interferometry, and we
have shown that local estimation strategies where each
phase is estimated individually can surpass the precision
attained in a global scheme where all the phases are es-
timated simultaneously. These results hold for quantum
sensing, in which a number of phases are measured rel-
ative to a reference, and also for a set of parallel inter-
ferometers, which can serve as a model for a network
of sensors. Local strategies offer many practical advan-
tages over their global counterparts, including flexibility,

practicality and control. Therefore, in the optical sys-
tems considered here, local strategies should be consid-
ered as strong candidates for the practical implementa-
tion of multi-parameter estimation.

Acknowledgements

We thank Animesh Datta for helpful suggestions. This
work was partly funded by the UK EPSRC through the
Quantum Technology Hub: Networked Quantum Infor-
mation Technology (grant reference EP/M013243/1).

APPENDIX A: PHASE PRECISION
DERIVATIONS, PARALLEL
INTERFEROMETERS

We begin with the quantum Fisher information matrix
(QFIM) equation from the main text:

Fitjr = 4COV(O¢¢ , Oji ),

where the two &+ signs may be chosen independently and
where OA,L‘:E = (figi—1 £ Ng;)/2. Now, assume that the
input state is symmetric both between and inside inter-
ferometers. As interferometer i consists of modes 2i — 1
and 21, this implies that

Vi#j Clotra = 021'—1,21‘ = C2j—1,2ja
Vi, j V=V,=V;,

using the short-hand introduced in the main text that
Ci,; = Cov(ni,nj) and V; = Var(i;). These equalities
state that the covariances between any two modes from
the same interferometer are equal and the variances of
all the modes are equal. A further implication of the
symmetry assumptions is that

021'—1,]' = C2m—1,na

whenever j # 2i —1,2i and n # 2m — 1, 2m (as a covari-
ance is symmetric this covers all remaining cases), and
this value may be denoted Crpte, as it represents any cor-
relations between interferometers. Note that total path
symmetry can be enforced by letting Crytra = Crnter, but
there is no need to make this assumption (and it is not
automatically sensible given the symmetry of the prob-
lem).

The QFT is now simplified under these assumptions.
The elements of the QFI matrix when the two indepen-
dent + symbols take the same sign (i.e., both are positive
or negative) can be expanded to

Fixjr = Coi_12j-1+ Coj o5 £ Coi 051 & Coi_1 05,

where the + symbols in this equation are now not inde-
pendent (i.e., they all take the upper or lower symbol).



Similarly, the elements of the QFI matrix when the two
independent + symbols take the opposite signs (i.e., one
is positive and the other is negative) can be expanded to

Fitjz = Coi_12j-1 — Coj o5 £ Coi 051 F Coj_1,2j,

where again the + symbols in this equation are now not
independent. Using these equations and the assumptions
given above, it is easily confirmed that

]:iij:F =0, ]:z'*j* =0, i # J.

The final terms for ¢ # j are all equal and given by
Fitj+ = 4Clnter-
Consider then ¢ = j. It is easily confirmed that
Fitix =0,

which are the final non-diagonal terms of the QFIM. Fi-
nally, consider the remaining ¢ = j terms, which are the
diagonal elements of the QFIM and are given by

fiiii =V+Vx CIntra =+ CIntra'
Hence, all of the diagonal terms are one of the two values
]:iiii = 2(V + CIntra)7

which holds for all 7. Hence, combining all of these terms
into the QFIM gives

~(2(V = Crawa) 0
7= ()

where I is the d x d identity matrix and M = A\(I + wZ)
where A = 2(V + Citra — 2CInter)s W = 2Cmgter/(V +
Crotra — 2CInter) and Z is the d x d matrix of all ones.
The inverse of any matrix with the form of M is given
by

_ 1 w
Ml:)\<ﬂ_1+wdz)’ (13)

as may be easily confirmed directly by noting that 72 =
dZ. However, we are not actually interested in these
terms (the parameters of interest are ¢; = ¢; , we are
not attempting to also estimate the ¢;). The inverse of
F may then simply be written as

B — 1 1 0
N 1_ <2(V%Intra) Ml) . (14>

This gives the phase precision bound for the terms of
interest (the ¢;) to be
1
87 > o,
! 2(V - CIntra)
as stated in Eq. (4). Note that this is independent of d
and as required it agrees with the single parameter (i.e.,

single-interferometer) estimation case (d = 1), e.g., see
Ref. [14].

APPENDIX B: PHASE PRECISION
DERIVATIONS, QUANTUM IMAGING

We begin with the QFIM from the main text F;; =
4Cov(n;, ;) = 4C; ;. The assumption of path-symmetry
between the d (probe) modes, as stated in the main text,
implies that V; = Vj for all ¢ and j, which is denoted V,
and that C; ; = Cy, , for all i # j and m # n, which we
denote by C. Then it immediately follows that F;; = 4V
for all 4 and F;; = 4C for all 7 # j. Hence the QFI matrix
may be written in the form

F =4V -C) <H+VCCI>,

where again Z and [ are the d x d matrix of all ones and
the identity respectively. The inverse of such a matrix is
given in Eq. (13), and using this formula we have

]_'71

= 4(v1—0) (H_ v+(§— 1)CI>'

This then implies that for all 7, the phase precision bound
for ¢; is

V4 (d—2)C
O oW T - 10)

as stated in Eq. (9). Note that for the single parameter
estimation case (d = 1) this reduces to 1/4V as expected.

APPENDIX C: THE QFI AS A FIGURE OF
MERIT

The QFT alone is not always a reliable method for de-
riving precision scaling bounds that are truly attainable
in practice. In general, the precision as obtained by the
Cramér-Rao bound (CRB), 6¢? > u~1(F 1), is achiev-
able given a certain level of prior knowledge of the phase,
and an asymptotically large number of repetitions, p. In-
deed, the unbalanced cat state (UCS), given in the main
text by [Wyes) = No (Joe) +1|0))®??, has already been
considered in optical quantum metrology and, as shown
in [28], it has an unbounded precision for fixed 7. This
can be seen by considering Eq. 8 and allowing v to grow
without bound. The root of this strange effect is that the
QFT is a measure of how a probe state transforms with
an infinitesimal change in the parameter to be estimated
and does not take into account any further important de-
tails such as the level of prior knowledge required of each
phase, or the number of experimental repetitions required
to obtain this precision. For single-parameter estimation,
it is known that states such as the UCS cannot in prac-
tice provide a “sub-Heisenberg” scaling [31, 32]. These
results have been extended to the multi-parameter case,



and it has been shown that a sub-Heisenberg scaling can-
not be achieved here either [33, 34].

Despite this, the scaling with photon number is often
not of direct relevance in an experiment, and a more rel-
evant measure is the absolute precision that can be ob-
tained given an allowed total photon number through the
interferometer [4, 29, 30]. In single parameter estimation
squeezed cat states, which have a large Q, have recently
been shown to obtain an improved absolute precision over
NOON states [14], and we expect these results to be ap-
plicable in the multi-parameter case. The squeezed cat
states can saturate the CRB from a flat prior knowledge
in the region 0 < ¢ < 7/2 using a conceptually simple
measurement scheme, which is optimal for most values
of the phase shift ¢ [14].

Another limitation of the QFI is that, for indefinite
number states, the QFI sometimes assumes the pres-
ence of an external reference beam [21]. In particular,
in our quantum imaging section, the states with variable
photon number may require additional reference beams
to perform the final measurement (note that this is not
an issue for the parallel interferometers, in which each
phase already has a reference). One possible measure-
ment scheme for the single-mode states (UNO and UCS)
is to include one additional reference mode for each probe
mode. These additional reference modes would contain
identical states as the probes (UNO or UCS), and the
measurement scheme would be to mix the probe state
with its reference at a beam splitter, followed by photon
number counting [25]. However, this will double the num-
bers of photons used. To overcome this, we can adjust the
UCS and UNO so that they have half the photon num-
ber whilst retaining the same precision (for example, this
can be done by adjusting N and v in the UNO). In this
way we can always equal the precision attained by the
GNS with the same number of photons. Alternatively,
in many experiments the main concern is to reduce the
number of photons through the sample because the sam-
ple itself is fragile [1, 29], and in this case we need not
count the reference modes in our total resource count.
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