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Abstract: Discussions on how to make effective use of advance information on target changes are discussed
relatively rarely in the predictive control literature. While earlier work has indicated that the default solutions
from conventional predictive control algorithms are often poor, very little work has proposed systematic al-
ternatives. This paper proposes an embedding structure for utilising advance information on target changes
within an optimum predictive control law. The proposed embedding is shown to be systematic and beneficial.
Moreover, it allows for easy extension to deal with more challenging scenarios such as unreachable set points
and guarantees of convergence/stability in the uncertain case.

Keywords: OMPC, guaranteed stability, feedforward, constraint handling
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1 Introduction

Model Predictive Control (MPC) has been widely and successfully applied (Qin and Badgwell
2003, Richalet et al. 1978, Fallasohi et al. 2010), primarily because of its ability to handle input
and state constraints and multivariable processes in a systematic fashion. Nevertheless, there are
some aspects of the algorithm which lack comprehensive systematic approaches and in particular
one of these is the effective use of advance information of the target (Goodwin et al. 2011,
Dugham and Rossiter 2016). While original work on MPC (Clarke and Mohtadi 1989) argued
that advance information was included within the optimisation and therefore assumed this was
helpful, it has been noted subsequently (Rossiter and Grinnell 1996, Valencia-Palomo et al. 2014)
that in fact this information is often not used systematically and thus can lead to a degradation
in performance rather than an improvement.
The reason for this apparent contradiction is relatively simply to understand. In a traditional

MPC approach using either open-loop or closed loop predictions (Scokaert and Rawlings 1998,
Rossiter et al. 1998), the degrees of freedom (d.o.f.) are focussed on immediate transients. If
advance knowledge of the set point changes means that such changes are many samples in the
future, these are not contemporaneous with the d.o.f. and thus the d.o.f. are ineffective in using
this information (Valencia-Palomo et al. 2014).
The above arguments pertain to the constrained case as well as the unconstrained case. More

recent work in the literature has focussed on issues linked to the interaction between set point
changes and feasibility (Shead et al. 2010, Ferramosca et al. 2009, Limón et al. 2008). Specifically,
feasibility issues tend to apply most to dual-mode MPC approaches as these include a terminal
constraint, that is, the predicted state nc steps into the future must be within a specified set
in order to be sure that the predicted trajectories satisfy constraints. A significant change in
the target implies a significant change in the terminal constraint and it may not be possible to
find a trajectory that satisfies this terminal constraint, as well as transient constraints; this is
denoted as infeasibility. Infeasibility due to target changes can take two forms: (i) the target is
infeasible only in transients (Rossiter et al. 1996, Rao and Rawlings 1999, Rossiter 2006, Limón
et al. 2008) and (ii) the target is permanently unreachable Rawlings et al. (2008), Shead et al.
(2010).
A key point to note is that the literature has mainly focussed on what will be denoted here

as a regulation problem in that it is assumed the target is fixed. Even when the target changes,
this change occurs instantaneously and is assumed fixed in the future. Therefore, there is no
advance knowledge of target changes deployed in the proposed algorithms. Where advance infor-
mation has been deployed in a simplistic manner through the cost function, the default solution
is often poor. This paper investigates the potential improvements in performance that are pos-
sible if advance information is deployed more effectively and also answers questions over how
much advance information is useful as well as effective structures for embedding this informa-
tion systematically. The paper makes three key contributions, but in related areas. Section 2
will summarise key algorithms, definitions and concepts in the literature associated to dual-
mode MPC. Section 3 first investigates the issue of how much advance knowledge is useful in the
unconstrained case and then proposes a mechanism for how this information can be embedded
effectively thus forming a solid foundation for the constrained case. Hence, this section proposes
a new formulation of dual-mode MPC to exploit future target information in a systematic and
insightful way. Section 4 extends the new formulation for constraint handling scenarios to those
where the desired target is infeasible, either in transients and/or steady-state and again shows
the benefits of the proposed embedding structure for advance information. Section 5 focusses on
robust design and demonstrates how the proposed embedding structure enables straightforward
extensions for parameter uncertainty thus enabling simple MPC algorithms which have robust-
ness and convergence guarantees during constraint handling. Finally, it is emphasised here that
the focus here is on simple insights which can be easily understood and implemented. Hence, it
is noticeable that the proposed approach requires only a conventional quadratic programming
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optimisation, thus one that can be deployed easily within a standard industrial MPC algorithm.

2 Background on MPC tracking algorithms

This section summarises the key modelling assumptions, notation and some typical MPC algo-
rithms in the literature which make use of information about target changes.

2.1 System model and constraints

This paper will use a state space model:

xk+1 = Axk +Buk, yk = Cxk + pk (1)

where xk, yk, uk, pk are states, process output, process inputs and output disturbance respectively
at sample k and A,B,C are matrices defining the model. Assume constraints, at every sample,
on input and states as follows:

u ≤ uk ≤ u; x ≤ xk ≤ x (2)

More complex constraints can also be included without any change to the algorithms and con-
cepts presented here.

2.2 Performance index

A typical MPC strategy proposes a sequence of candidate future input moves which are expected
to give the best predicted performance, where performance is assessed using a defined perfor-
mance index. Usually, MPC utilises only the first move of the control candidate sequence and
ongoing measurement and optimisation are used to continually improve the planning at each
sample. A common performance index (e.g. Rossiter (2003)) penalises the weighted squares of
both predicted tracking errors and the control deviations from steady-state, that is:

J =

∞∑

i=1

(xk+i+1 − xss|k+i+1)
TQ(xk+i+1 − xss|k+i+1) + (uk+i − uss|k)

TR(uk+i − uss|k) (3)

where uss|k, xss|k are the estimated steady-states of the input and states which enable y → rk
asymptotically, rk being the desired target at sample k. Unbiased definitions of uss|k, xss|k and
their linear dependence on current disturbance estimate pk and target rk are well known in the
literature (e.g. (Muske and Rawlings 1993)) and can be defined for suitable Kxr,Kur as follows:

[
xss|k
uss|k

]

=

[
Kxr

Kur

]

(rk − pk) (4)

Remark 1 : This paper focuses on infinite horizon algorithms due to their superior a priori
stability properties. To simplify the presentation of the algebra, the disturbance estimate pk
is omitted from the equations hereafter; it is straightforward to include where required and is
included in some of the numerical illustrations.

2.3 Degrees of freedom (d.o.f) and autonomous models for prediction

It is common to define the degrees of freedom within the predictions as the first nc predicted
control increments (or moves), that is uk, · · · , uk+nc−1. For convenience, with infinite horizon
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algorithms the d.o.f can be equivalently parametrised (Rossiter et al. 1998) as perturbations ck
about a nominal stabilising control law.

uk − uss|k = −K(xk − xss|k) + ck; i < nc

uk − uss|k = −K(xk − xss|k); i ≥ nc
(5)

The predicted state and input evolution is conveniently captured by combining (1,4,5). Hence,
with Φ = A−BK, a one-step ahead prediction model is:

xk+1+i = Φxk+i + [I − Φ]Kxr(rk+1+i) +Bck
uk+i = −Kxk+i + [KKxr +Kur](rk+1+i) + ck

(6)

It is convenient to describe the predictions (6)using an autonomous model formulation (Kou-
varitakis et al. 2000) whose states also include any information available about the d.o.f. ck and
the future target rk at sample k. Such a model is given as follows:

Zk+1 = ΨZk; Zk = [xTk , c→
T

k
, r
→

T

k+1
]T ; Ψ =





Φ [B, 0, .., 0] [(Φ− I)Kxr, 0, ..., 0]
0 Dc 0
0 0 DR



 (7)

c
→k

=








ck
ck+1
...

ck+nc−1







; r

→k
=








rk+1

rk+2
...

rk+na







; r

→k+2
=









0 I 0 · · · 0
0 0 I · · · :
: : : : :
0 0 0 · · · I
0 0 0 · · · I









︸ ︷︷ ︸

DR

r
→k+1

; c
→k+1

=









0 I 0 · · · 0
0 0 I · · · :
: : : : :
0 0 0 · · · I
0 0 0 · · · 0









︸ ︷︷ ︸

Dc

c
→k

(8)
Readers will note that within the definitions of DR, Dc assumptions have been embedded into
the prediction model that rk+na+i = rk+na

, that is we know the set point only na steps into the
future and also ck+nc+i = 0, i ≥ 0 (as required by (5)).

2.4 Admissible sets

The predictions from autonomous model (7) are defined as feasible if they satisfy the constraints
(2) for all future samples. For convenience, these constraints are represented as a set of matrix
inequalities. Standard algorithms are available in the literature for determining these inequalities
(e.g. Gilbert and Tan (1991) or recent variants such as Pluymers et al. (2005a)). At this point
it is worth introducing an acronym Maximal Controlled Admissible Set (MCAS) which in this
paper is taken to be largest volume region in x-space for which one can determine a choice for
d.o.f. c

→k
such that the predictions of (7) satisfy constraints. In mathematical terms, (for suitable

M,N,P, d) the set is denoted as SMCAS where:

SMCAS = {x : ∃ c
→k

s.t Mxk +N c
→k

+ P r
→k+1

≤ d} (9)

Of particular relevance to this paper is the observation that the MCAS shape and position
changes as r

→k+1
changes (e.g. Rossiter (2006)).
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2.5 An Optimal MPC algorithm

A typical infinite horizon MPC algorithm (here denoted as OMPC for optimal MPC) minimises
the performance index (3) subject to constraints (9) and using an input trajectory/d.o.f. as
specified in (5). Of the optimised c

→k
, only the first value ck is deployed and the optimisation is

repeated at every sample. This section gives a brief summary of the algebra required for such
an algorithm.
The deviations in states and inputs relative to their estimated steady-state values can be

expressed in terms of the augmented state Zk as:

xk − xss|k =
[
I, 0, .., 0

]
−

[
0 0 [Kxr, 0, 0, ..0]

]

︸ ︷︷ ︸

Kxss

Zk (10)

uk − uss|k = −
[
K, 0, .., 0

]
−

[
0 0 [Kur, 0, , ..., 0]

]

︸ ︷︷ ︸

Kuss

Zk (11)

Substituting (7), (10),(11) into the performance index (3) one can express J in terms of the
augmented state as:

J =
∞∑

i=0

ZT
k+i[Ψ

TKT
xssQKxssΨ+KT

zssRKzss]Zk+i (12)

It is straightforward to show that this reduces to the following equivalent form:

J = ZT
k SzZk; Sz =

∞∑

i=0

(Ψi)TWΨi (13)

Critically, a simpler method of computing Sz is via a Lyapunov equation so that W =
ΨTKT

xssQKxssΨ+KT
zssRKzss and Sz = W +ΨTSzΨ.

Algorithm 1: In summary, the OMPC algorithm is given as follows. At every sample, first
perform the optimisation:

min
c
→k

J = ZT
k SzZk s.t. Mxk +N c

→k
+ P r

→k+1
≤ d (14)

Then, use (5) and the first value ck of the optimum c
→k

to determine the current system input
uk.

In many cases the OMPC algorithm is effective, but it is known to contain a number of
weaknesses which are tackled in this paper. Three of these are:

(1) Infeasibility, that is occasions where xk ̸∈ SMCAS can occur due to rapid changes in rk, pk
and also due to uncertainty. This is more common where the underlying loop control law
K is well tuned, which of course is a desirable choice. If xk ̸∈ SMCAS , the algorithm is
undefined so an alternative control law is required.

(2) Typical approaches in the literature use na = 1, that is they assume no advance knowl-
edge of set point changes. A simplistic inclusion of future information ( r

→k+1
with na > 1)

into the algorithm is often detrimental (Valencia-Palomo et al. 2014).
(3) Algorithm modifications (e.g. Kothare et al. (1996)) which cater explicitly for param-

eter uncertainty tend to require significant online computation and often conservative
assumptions on feasible regions and thus are inconsistent with typical industrial code.
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3 Effective use of advance information assuming feasibility

3.1 Ignoring advance knowledge of the target

Most of the literature using OMPC algorithms ignores advance knowledge of target changes,
that is, it tacitly assumes that for the purposes of prediction and optimisation, na = 1 and
rk+i = rk+1, ∀i > 0. This also means that, within the predictions, xss|k, uss|k are constant.
Moreover, it can be shown that (Rossiter 2003) in this case the optimum unconstrained choice of
the d.o.f. is c

→k
= 0. The proof is not important here, but rather this gives a useful observation

which is a helpful insight for the control operator and as we develop the contributions of this
paper. When na = 1, that is no advance knowledge, optimisation reduces to minimising the
weighted norm of the input perturbations c

→k
so the magnitude of c

→
is a direct indicator of the

impact of constraints on the input choices. If c
→k

= 0, constraints are not affecting the choice of

control inputs.

3.2 Impact of advance knowledge in the unconstrained case

This section will show that when na ̸= 1, the OMPC algorithm may lose the useful link between
the value of c

→k
and constraints. Moreover, the section derives the explicit impact of the future

target values on the control law (that is the control feedforward term). This is straightforward
algebra but is useful hereafter and also gives insight.

Theorem 3.1 : The use of performance index (13) allows the user to formulate the explicit
dependence of the control law on future target information.

Proof: The matrix Sz can be decomposed into its individual block elements which show the
links between the states xk, r→k+1

, c
→k

within the cost function:

Sz =





Sx Sxc Sxr

ST
xc Sc Scr

ST
xr ST

cr Sr



 (15)

Use the decomposition of (15) to expand (13):

J = xTk Sxxk + 2xTk Sxc c→k
+ c

→
T

k
Sc c→k

+ r
→

T

k+1
Sr r→k+1

+ 2xTk Sxr r→k+1
+ 2 c

→
T

k
Scr r→k+1

(16)

However, it is well known (e.g. Rossiter (2003)) that Sxc = 0. Moreover, within the optimisation
of J one can ignore the terms based on Sx, Sxr as these contain no d.o.f. and hence:

argmin
c
→k

J ≡ argmin
c
→k

{ c
→

T

k
Sc c→k

+ 2 c
→

T

k
Scr r→k+1

} (17)

Next, minimising J w.r.t c
→k

one finds:

dJ

d c
→k

= 0 ⇒ c
→k

= −S−1
c Scr

︸ ︷︷ ︸

Pr

r
→k

= Pr r→k+1
. (18)

Hence, the feedforward term, in the unconstrained case, is given by Pr and the dependence on
r
→k+1

is explicit. �

A key point to note therefore is that with the use of na > 1, the optimum values of input
perturbations ck are no longer zero, even in the unconstrained case, and now depend explicitly
on the future target values as well as constraints.
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Remark 2 : The summation of the block elements of the matrix Pr must be equal to zero. This
follows immediately from the observation that if the future target is constant then the optimum
unconstrained value is c

→k
= 0 and hence Pr r→k+1

= 0. This is a useful check for coding errors.

3.3 Potentially negative effects of using advance target knowledge with OMPC and
systematic choices for na: the unconstrained case

The results of optimising performance suggested that the optimum value of c
→k

depends upon

future target values, through the feedforward Pr, and the obvious inference is that one should
get better performance by using this information and moreover using as large a na as possible.
Surprisingly however, this intuitive expectation is incorrect. In fact, including the feedforward
term can cause a deterioration in closed-loop performance as will be shown in this section.
More specifically, this section seeks to give more systematic guidance on how much feed forward

information is useful and leads to improved performance and also, what constitutes too much
feed forward information which cannot be used effectively and thus can be counter productive.
In fact, as the reader will see, the best choice of na is linked to both the system dynamics and
nc.
This subsection demonstrates a trial and error method (Algorithm 2 (Dugham and Rossiter

2016)) and a short cut algorithm (algorithm 3) to select the best amount of the advance knowl-
edge for different systems. While this may seem somewhat simple or lacking rigour, both have
the advantage of being easy to code/implement in practice which is a core aim of this paper
contribution and moreover gives insights that allow easy extension to the constraint handling
case.

Algorithm 2: For values na from 1 to ny, simulate the process (for a specified target) and
compute the runtime cost J using performance index (3) by summing terms over the entire
runtime (until all terms have converged to zero). Plot the runtime cost vs na. Select the smallest
na giving an acceptable runtime cost on the basis that a smaller na may be preferable if the loss
in performance is minimal compared to a larger na.

Algorithm 3: Determine the closed-loop settling-time ns using a measure such as settling to
within 10% of steady-state. Choose na = n∗

a = nc + ns/2.

The following examples demonstrate how easily these algorithms can be applied and moreover,
the fact that the optimum answer is highly dependent on both closed-loop dynamics and nc.
Consider the following systems:

A =

[
0.8 0
0.2 0.2

]

, B =

[
0.2
0.8

]

; C =
[
1.9 −1

]
(19)

A =

[
1 −0.09
1 0

]

, B =

[
1
0

]

; C =
[
1 −0.1

]
(20)

In both cases, closed-loop simulations are performed with a range of values of nc, na. The
responses for model (19) are in figure 1 and for model (20) are in figure 2. Table 1 also summarises
the performance using runtime cost (3). In summary:

(1) It is clear that advance information can be used systematically and affects behaviour.
(2) Up to a limit, choosing na > 1 improves performance compared to na = 1 but if na is

chosen too large, such as na ≫ nc, then closed-loop performance will not improve and
indeed can deteriorate (Valencia-Palomo et al. 2014). We should note however, that in the
constraint free case, because OMPC is built around an optimal control law, performance
will not deteriorate with large na, but it would do so when constraints became active.
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Table 1. Variation of performance indices for step changes in target over the runtime for a range of na and comparison to proposals

from Algorithms (2,3).

System (19) nc = 2, R = 0.1, ns = 18 Alg. 2 Alg.3
na 10 11 12 12 11
J 2.21 2.14 2.10 2.10 2.14
System (19) nc = 5, R = 0.1, ns = 18 Alg. 2 Alg.3
na 13 14 15 15 14
J 2.06 2.04 2.02 2.02 ‘ 2.04
System (20) nc = 2, R = 10, ns = 8 Alg. 2 Alg.3
na 5 6 7 7 6
J 1.64 1.60 1.58 1.58 1.60
System (20) nc = 5, R = 10, ns = 6 Alg. 2 Alg.3
na 7 8 9 9 8
J 1.58 1.57 1.57 1.57 1.57

(3) It is possible to use trial and error (Algorithm 2) to choose an optimum value of na for a
given set point profile but this would cumbersome to implement in practice whereas the
simple guideline of n∗

a ≈ nc+ns/2 suggested by Algorithm 3 is seen to be fairly effective
in the unconstrained case and would be easier to deploy in general.

0 5 10 15 20 25 30 35 40 45 50
-0.5

0

0.5

1

1.5

target
nc=2,na=1,J=2.74
nc=2,na=5,J=1.64
nc=5,na=10,J=1.58
nc=5,na=15,J=1.56

Figure 1. Closed-loop step responses for system (19) with various na, nc.

3.4 Optimising and embedding the use of feed forward information

Before consideration is given to the constrained case, it is important to get the unconstrained
case right as this will be the foundation for including constraints later. The previous section
and some earlier work (Valencia-Palomo et al. 2014) gave an indication of a possible start point
which is to determine the feedforward term Pr separately from the online optimisation, that is to
determine a choice of Pr which is known to be optimal in the unconstrained case; such a choice
would depend on assumptions about the dynamics with the feedback loop and choices for both
na, nc.
The proposal hereafter is to embed the optimised feedforward and then add d.o.f. around this

for constraint handling, as required. The results are straightforward, but given for completeness
as they build a foundation for the next sections.
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0 5 10 15 20 25 30 35 40 45 50
-0.5

0

0.5

1

1.5

target
nc=2,na=1,J=2.74
nc=2,na=5,J=1.64
nc=5,na=10,J=1.57
nc=5,na=15,J=1.57

Figure 2. Closed-loop step responses for system (20) with various na, nc.

Theorem 3.2 : Minimisation of performance index (17) gives the same optimum c
→k

as the

following optimisation.

c̃
→

= argmin
c̃
→

J̃ = c̃
→k

Sc c̃→k
; c

→k
= c̃

→k
+ Pr r→k+1

(21)

Proof: A parameterisation of the input perturbations ck which includes the optimum feedfor-
ward (18)) and further d.o.f. for constraint handling can be defined as:

c
→k

= c̃
→k

+ Pr r→k+1
(22)

Hence the term c̃
→k

is the deviation from the unconstrained optimum. The cost function is given

by substituting (22) into (17). Hence

J ≡ [ c̃
→k

+ Pr r→k+1
]TSc[ c̃→k

+ Pr r→k+1
] + 2[ c̃

→k
+ Pr r→k+1

]TScr r→k+1
(23)

From (18) it is known that the unconstrained optimum choice is c̃
→k

= 0 and therefore the

performance index must be a quadratic with no-affine term. Therefore, for some constant C,

J = [ c̃
→k

]TSc[ c̃→k
] + C (24)

which implies minimising J and minimising J̃ must give the same c̃
→k

. ⊔⊓

Corollary 3.3: An equivalent MCAS for control perturbations (22) is straightforward to con-
struct. This follows directly from substitution of (22) into (9).

Mxk +N c
→k

+ P r
→k+1

≤ d ⇒ Mxk +N [ c̃
→k

+ Pr r→k+1
] + P r

→k+1
≤ d (25)

Now the constrained optimisation can focus on the computation of just c̃
→k

as the bias term

to deal with advance information systematically is fully embedded! Specifically, c̃k ̸= 0 will be
required iff constraints are active and the magnitude of c̃k is an indicator of how far one is from
the unconstrained optimal associated to the advance knowledge scenario!
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Algorithm 4: The constrained OMPC algorithm with systematic incorporation of advance
knowledge can now be summarised as:

min
c̃
→

J̃ = c̃
→

T

k
Sc c̃→k

s.t. Mxk +N c̃
→k

+ [NPr +Q] r
→k+1

≤ d (26)

The optimised c̃k is used in conjunction with (22,5) to determine uk.

3.5 Summary

The key point here is that, the default OMPC algorithm has the nice property that a choice
of c

→
= 0 implies that the unconstrained optimal is feasible and thus one has a clear view on

the impact of constraints as there is a direct link to the magnitude of c
→
. However, including

advance knowledge destroyed this link (see eqn.(22)). By re-parameterising the degrees of free-
dom in terms of c̃

→
this nice property is recovered and moreover, the nominal optimal solution,

incorporating advance knowledge, is embedded within the predictions. Hence the required on-
line optimisation, a standard quadratic program (QP), is solely dealing with constraint handling
and not trying to achieve mixed objectives of performance optimisation and handling advance
information alongside constraint handling.

4 Unreachable targets and advance knowledge

The previous section focussed on effective use of advance knowledge when target changes are
feasible so that optimisation (26) always has a solution. This section extends the discussion to
scenarios where infeasibility occurs, that is, where the change in the steady-state xss|k, uss|k is
too rapid, so the prediction class (5) is not sufficiently large to meet constraints. Infeasibility
can take two common forms:

(1) Transient infeasibility. That is, the target is reachable asymptotically but a much larger
nc is required (Rao and Rawlings 1999) to find a feasible solution. Assuming nc cannot
be increased, an alternative algorithm is needed to maintain feasibility and convergence.
A common proposal (Rossiter et al. 1996, Rossiter 2006, Limón et al. 2008, Shead et al.
2010)) is to include extra d.o.f that capture changes in the steady state. A contractive
constraint may be deployed to ensure convergence.

(2) Persistent infeasibility or so called unreachable targets (Shead et al. 2010, Rawlings et al.
2008). In this case, the target cannot be reached, even asymptotically, without violating
some constraints and thus an alternative parameterisation allowing changes to the target
steady-state is needed, again along with a modified objective.

A key point to note here is that the majority of the work in the literature tackling these two
issues assume that na = 1; in this paper proposals are given which embed advance knowledge
(i.e. na > 1) while also taking account of transient or permanent infeasibility and moreover,
while retaining a simple QP based optimisation.

Remark 3 : Reference governor approaches (Gilbert et al. 1994, Aghaei et al. 2013) have
analogies to both the above in that a governor deploys a transient change in the target to
maintain feasibility. However these will be discussed no further as their focus is on simplicity so
they often lead to a loss in performance.
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4.1 Input parameterisation for unreachable targets

In the case where the asymptotic target is unreachable, then the input parameterisation of (5)
is invalid, that is, infeasible. The proposal here is to replace this parameterisation with:

uk+i − uss|k+i = −K(xk+i − xss|k+i) + ck+i, i ≤ nc

uk+i − uss|k+i = −K(xk+i − xss|k+i) + c∞ i > nc
(27)

Lemma 4.1: The inclusion of the term c∞ within the input parameterisation of (27) leads to
a constant offset between the predicted steady-state output and the desired target.

Proof: Substitute the asymptotic input parameterisation of (27) into the model dynamics
(1,4). It is clear that if c∞ = 0 there is no offset and hence

lim
k→∞

xk = xss = Kxrrk+na
⇒ lim

k→∞
yk = rk+na

(28)

Using superposition one can then determine that with (27)

lim
k→∞

yk = rk+na
+ δy∞; δy∞ = [C(I − Φ)−1B]−1

︸ ︷︷ ︸

G∞

c∞ � (29)

Corollary 4.2: The inclusion of c∞ is equivalent to deploying an artificial target r̂ which is
deviated from the true target by δy∞. Hence, one can also find an equivalent c∞ for a specified
artificial target r̂ as follows:

c∞ = G−1
∞ (r̂k − rk+na

)) (30)

Lemma 4.3: Minimising performance index (3) with with input parameterisation (27) and
na = 1 gives the same optimising values for ck as minimising the following cost:

Jc = c
→

T

k
S c
→k

+

∞∑

i=1

cT∞Sc∞ (31)

Proof: Minimising the true performance index J has been shown earlier (Theorem 3.1) to be
equivalent to minimising:

Jc =
∞∑

i=0

cTk+iSck+i (32)

Then, noting that in effect parameterisation (27) implies ck+nc+i = c∞, i > 0 the result drops
out. The r

→k+1
has been excluded from Jc because here na = 1. �

Corollary 4.4: Combining input parameterisation of (27) with the observation of Theorem 3.2
and Lemma 4.3 one can form an equivalent cost function for na > 1 of the form:

J̃c ≡ c̃
→

T

k
S c̃
→k

+

∞∑

i=1

cT∞Sc∞ (33)

Equivalent means the optimum control law from minimising J̃c is the same as the optimal control
law from minimising Jc.

In summary, one key point of this section is to show how an additional d.o.f. can be added
which allows the MPC algorithm to cater for unreachable points. Moreover, this d.o.f. has been
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added in such a way that gives clarity to the impact of constraints in that, the optimised values of
c̃k are zwero, if and only iff the unconstrained optimal is feasible. Nevertheless, a more significant
contribution is to show how optimal trajectories, which include advance knowledge of targets,
can also be embedded effectively. The c̃

→
terms indicate the deviation from the unconstrained

optimal, with advance knowledge, during transients and the c∞ term gives the deviation from
the unreachable target.

4.2 Objective function with steady-state offset

It is well recognised (Rossiter et al. 1996, Rawlings et al. 2008) that the performance index of
(33) is not useful in itself because whenever c∞ ̸= 0 this Jc is unbounded and hence minimising
Jc is equivalent to minimising the offset component of cT∞Sc∞. Indeed one could choose simply
to do that, but such an objective would effectively ignore the impact of transient behaviour on
overall performance and thus may lead to relatively poor decisions. Consequently, there is a need
for a performance index which captures the following requirements:

(1) Has an objective measure of transient performance.
(2) Is always feasible and thus includes the d.o.f. c∞ to allow deviation from unreachable

asymptotic targets.
(3) Includes advance information about target changes.

The key proposal here is to build on the performance index of (33) which already includes
transient performance and implicitly has included information about advance knowledge through
the deployment of c̃k. However, we desire a reduced emphasis on the asymptotic predicted error
so that this does not swamp the transient terms.
A performance index Jp which gives a balance between transient behaviour and expected

asymptotic offset is:

Jp = W1(c
T
∞Sc∞) + c̃

→

T

k
S c̃
→k

(34)

where W1 is a weighting matrix to be selected. Here, the term (cT∞Sc∞ penalises asymptotic

offset and the term c̃
→

T

k
S c̃
→k

penalises transient performance, including information on r
→k+1

.

The weighting W1 allows the user to determine the emphasis they wish to place on each term.

4.3 Constraint handling

The dynamics now include an additional term as compared to (7), that is the term ck+nc+i =
c∞, i ≥ 0 and hence the autonomous model and inequalities capturing constraint information
need minor modifications to include this. Define the autonomous prediction model as follows:

Zk+1 = ΨZk; Ψ =







Φ [B, 0, .., 0] 0 [(Φ− I)Kxr, 0, 0..., 0]
0 Dc Ec 0
0 0 I 0
0 0 0 DR






; Zk = [xTk , c̃→

T

k
, c∞, r−→

T

k
]T (35)

Dc, EC are shift matrices for c̃k, c∞ analogous to that in (8).
Using model (35) it is straightforward to apply the admissible set algorithm (Pluymers et al.

2005a) to find a the new MCAS (denoted SMCASU for MCAS Unreachable) of the following
format:

SMCASU = {x : ∃( c̃
→k

, c∞) s.t Mxk +N c̃
→k

+ V c∞ + P r
→k+1

≤ d} (36)
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However, readers should note that a standard admissible set algorithm may not terminate in
finite or reasonable time due to the implied steady-state being on a constraint boundary by
virtue of c∞ ̸= 0 and thus some termination condition needs to be added.
The proposed OMPC algorithm can now be summarised.

Algorithm 5: An OMPC algorithm with both advance knowledge handling and the potential
to manage unreachable targets is summarised in the following optimisation.

min
c̃
→

,c∞

W1(c
T
∞Sc∞) + c̃

→

T

k
S c̃
→k

s.t. ( c̃
→k

, c∞) ∈ SMCASU (37)

Use the optimised c̃
→

in conjunction with (22) to determine ck and implement the first move uk
of the control law as defined in (27).

4.4 Guarantees of feasibility and performance

This section establishes that algorithm 5 has guarantees of recursive feasibility and asymptotic
convergence to a point which minimises the weighted offset.

Lemma 4.5: The proposed OMPC algorithm 5 with advance knowledge handling maintains
feasibility irrespective of changes in the target.

Proof: The proof follows in a straightforward fashion from the assumption of feasibility at
start up and the inclusion of c∞. If there were no change in target, that is rk+na+1 = rk+na

, then
one can use standard MPC arguments to show that the optimum (assumed feasible) solution
from sample k can be carried forward to sample k+1 and thus feasibility is retained. In the case
where rk+na+1 ̸= rk+na

, one can always introduce a non-zero value of c∞ such that the implied
artificial target r̂k+na+1 = rk+na

, thus again retaining feasibility. �

Theorem 4.6 : The proposed algorithm 5 is convergent to the point which minimises the
weighted offset.

Proof: At steady-state the optimised values for ck are all identical and therefore the optimi-
sation is capped by:

min
c
→k

,c∞
Jp ≤ cT∞[(W1 + nI)S]c∞ (38)

Any optimised value of ck such that cTk Sck < cT∞Sc∞ would be a contradiction of the system
being in steady-state and thus, noting the relationship of (30), the optimisation has minimised
a weighted norm of the offset. �
It is not the purpose of this paper to consider guarantees in the presence of disturbances as

that case is altogether much more demanding. The focus here is on a simple approach to deal
with the basic requirements. However, it is worth noting that the flexibility afforded in c∞ is
often sufficient to deal with any transient infeasibility caused by changes in disturbances.

4.5 Numerical example with an unreachable target

This section gives numerical examples which demonstrate the efficacy of algorithm 5 for handling
both advance knowledge and unreachable targets in a single simple optimisation.
A common scenario is the infeasibility of terminal constraints due to a too fast or too large

change of asymptotic target. These examples demonstrate how the proposed algorithm smoothly
introduces an artificial target during transients but moves to the correct steady-state asymptoti-
cally. Moreover, it is clear that the algorithm continues to embed information about target moves
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Table 2. Performance indices for step changes in target for example system (39) using Algorithm 5.

J with na = 1 J with na = 3 J with na = 5
Example (39) 42.05 38.62 31.92

in a systematic fashion, thus improving performance compared to more conventional approach
with na = 1.
Consider the system and constraints

A =

[
0.8 0.1
−0.2 0.9

]

, B =

[
0.1
0.8

]

; C =
[
1.9 −1

]
; − 1 ≤ u ≤ 1.35;

[
−0.8
−2.5

]

≤ x ≤

[
4
4

]

(39)

with r = 1, nc = 2, na = 1, R = 0.1I,Q = CTC.

• Figure 3 shows responses when the target is reachable in steady-state, but not in transients,
with the use of na = 1.

• Figure 4 shows responses when the target is reachable in steady-state, but not in transients,
with the use of na = 5.

• Figure 5 shows responses when the target is unreachable (now r = 1.1) in steady-state with
the use of na = 5.

It is clearly shown in figures 3, 4 and table 2 that algorithm 5 provides effective control for
a constrained system both with no advance knowledge (na = 1) and with advance knowledge.
Readers will note that for figures 3,4 the term c∞ (lower figure) is non-zero during transients
only, as expected whereas it remains non-zero permanently in figure 5. The term c̃k is also
non-zero demonstrating the benefits of incorporating advance information systematically, even
within these challenging scenarios.

Figure 3. Closed-loop step responses for system (39) using Algorithm 5 for unreachable target in transient with na = 1.

5 Robust MPC with tracking

This section demonstrates how the results of the earlier sections can be extended to deal with
parameter uncertainty, while retaining guarantees of recursive feasibility and convergence. This
is significant as the algorithm proposed here utilises an online optimisation which is a straight-
forward QP with a potentially small number of decision variables. Typical approaches to robust



November 28, 2016 11:38 International Journal of Control Journal˙nov2016˙final

16

Figure 4. Closed-loop step responses for system (39) using Algorithm 5 for unreachable target in transient with na = 5.

Figure 5. Closed-loop step responses for system (39)using Algorithm 5 for unreachable target in steady state for na = 5.

MPC often require much more demanding algebra and optimisations (Cheng and Jia 2004,
Rakovic and Mayne 2005, Chisci et al. 2001).
The proposal here is to build on the robust invariant set approach developed in Pluymers

et al. (2005a) and later demonstrated to be effective with a simple dual mode MPC algorithm
for regulation Pluymers et al. (2005b). This section will demonstrate how the basic approach
can be extended to cater for both tracking scenarios and unreachable set points.

5.1 LPV system model and input predictions

Consider the discrete time LPV system

xk+1 = A(k)xk +B(k)uk. (40)
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A(k), B(k) are matrices defining the model. Parameter uncertainty is quantified with
[A(k) B(k)] ∈ Ω = Co {[A1 B1], ...., [Am Bm]} , where Co refers to convex hull of the extreme

models, in which [AB] ∈ Ω, hence with 0 ≤ λi ≤ 1,
∑

λi = 1 and [AB] =
∑L

i=1 λi[Ai Bi].
The dual-mode predictions for system (40) with control law (27) can be described as:

xk+1 = Φ(k)xk + [I − Φ(k)]Kxr(rk+1) +B(k)ck
uk = −Kxk + [KKxr +Kur](rk+1) + ck

(41)

where Φ(k) = A(k)−B(k)K. It is noted that [A(k)B(k)] ∈ Ω ⇒ Φ(k) ∈ Co {Φ1, ....,Φm}.

5.2 The state feedback controller K

It is common in the robust literature (Kothare et al. 1996) for the state feedback controller
K to be determined on line so that K is varying every sample. The aim here is to combine
this with the ideas summarised in the previous section and maintain algorithm simplicity and
thus here assume that K is fixed (for example as in Kouvaritakis et al. (2000)). Nevertheless
(Pluymers et al. 2005a) there must exist an invariant set for the uncertain unconstrained closed-
loop dynamic xk+1 = Φ(k)xk. This can be checked using the following condition.

∃P = P T > 0 s.t. ΦT
i PΦi ≤ P, i = 1, ....,m. (42)

Algorithms for identifying a K to satisfy (42) and simultaneously optimise a nominal cost func-
tion are readily available but one could equally argue that the corresponding K for the nominal
case may also be preferred, if it satisfies (42).

5.3 The closed loop dynamics

It is important to capture the variability in the closed-loop trajectories due to the uncertainty in
the model parameters. One can capture this uncertainty efficiently with a set of linear inequalities
(Pluymers et al. 2005a), as long as the dynamics and constraints can be captured in appropriate
form. The basic algorithm requires a one step ahead state evolution equation (analogous to (35))
and a statement of constraint dependence on the state at each sampling instant.

Lemma 5.1: The uncertain system predictions of (41) can be captured in a single mode au-
tonomous model of the following form.

Zk+1 = Ψ(k)Zk; Zk = [xTk , c̃→
T

k
, c∞, r−→

T

k
]T ; Ψi =







Φi [Bi, 0..., 0] Γi.G∞ Γi

0 DC EC 0
0 0 DR 0
0 0 0 DR







(43)

where Γi = [Bi, 0, ..., 0]Pr + [(Φi − I)Kxri, 0, .., 0] and Ψ(k) ∈ Co{Ψ1, ...Ψm}. These predictions
are stable and must converge to the specified artificial target of r̂.

Proof: The definition of Ψi is analogous to (35). Quadratic invariance of the closed-loop
dynamic Φ(k) is sufficient to ensure the quadratic invariance of the augmented dynamic Ψ(k) as
the additional dynamics in Ψ(k) as compared to Φ(k) relate to the variables c̃

→k
, c∞, r

→k
. These

dynamics are governed solely by shift matrices and thus must converge to fixed, possibly non-
zero, values. The asymptotic control law is defined as uk − uss = −K(xk − xss) + c∞ and by
definition c∞ is the value that ensures the associated steady-state output is r̂ (if c∞ = 0 then
the system converges to rk+na

). �
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5.4 The derivation of a robust MCAS

It is shown in Pluymers et al. (2005a) that one can define a robustly invariant set to guarantee
robust stability for the regulation case. This paper extends this set for tracking scenario by
deploying a similar concept but with the autonomous model of (43) which includes as states
both the degrees of freedom c̃

→k
and also the future target values r

→k
, c∞. A major difference is

convergence to a non-zero steady-state.

Lemma 5.2: : Constraints at each sample instant can be summarised with the following in-
equalities:

GZk ≤ f (44)

for appropriate G, f .

Proof: This follows from a straightforward substitution from all constraint equations such
as (2) and expression in terms of state variable Zk. The definitions of G, f , one row for each
constraint, follow automatically.

G =



















−K [I, 0.., 0] αi.G∞ αi

K −[I, 0.., 0] −αi.G∞ −αi

0 0 [0, 0.., 0,Kuri].G∞ [0, ..0,Kuri]
0 0 [0, .., 0,−Kuri].G∞ [0, .., 0,−Kuri]
C 0 0 0
−C 0 0 0
0 0 [0, .., 0, CKxri].G∞ [0, .., 0, CKxri]
0 0 −[0, .., 0, CKxri].G∞ −[0, ..0, CKxri]
0 0 0 I
0 0 0 −I



















; i = 1, 2, · · · (45)

where f =
[
ūT , uT , ūT , uT , x̄T , xT , x̄T , xT , r̄T , rT

]T
and αi = [1, 0, ..., 0]Pr+[KKxri+Kuri, 0, .., 0]

�.

Theorem 5.3 : One can deploy the algorithm of Pluymers et al. (2005a) with sample con-
straints (44) and autonomous model (43) and the algorithm will converge, as long as condition
(42) is satisfied.

Proof: It is known from condition (42) combined with the convergence to fixed values within
nc, na steps of states ck, rk, that the predictions of (43) must converge to a fixed steady-state.
The algorithm of Pluymers et al. (2005a) shows therefore that asymptotically, adding predictions
for higher horizons results in redundant constraints beyond a certain horizon and therefore the
algorithm will terminate. �
Let the robust MCAS (denoted SRMCAS) be given as:

SRMCAS =
{

x : ∃ c̃
→k

, c∞ s.t Mx+N c̃
→k

+ V c∞ + P r
→k

≤ d
}

(46)

Readers should note that where the steady-state is on a boundary strict convergence may re-
quire a tolerance to be deployed. This will occur with unreachable set points which, by definition,
imply the asymptotic steady-state is on a boundary.

5.5 Robust tracking MPC algorithm

This section summarises the proposed robust tracking MPC algorithm with advance knowledge.
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Algorithm 6: Define the performance index as in (34). Define the robust MCAS as in (46).
Perform the quadratic programming optimisation:

min
c∞, c̃

→k

J s.t. Mx+N c̃
→k

+ V c∞ + P r
→k

≤ d (47)

Implement the first block element of c̃
→k

in (27) to compute the control law.

Algorithm 6 gives guaranteed convergence and recursive feasibility, including cases of un-
reachable set points because, by definition, the satisfaction of RMCAS of (46) ensures recursive
feasibility. In consequence, one can use conventional approaches (Rawlings et al. 2008) to show
that ck converges to a weighted minimum. Convergence of c̃

→k
implies convergence of the state

xk due to condition (42) and dynamics (43).

5.6 Numerical examples

This section demonstrates that the proposed algorithm 6 is both robust to parameter uncertainty
and handles advance information about the target effectively. Conversely, an algorithm which
does not embed the parameter uncertainty gives less effective performance and indeed could lose
feasibility. For ease of comparison, the paper uses the uncertain system model that was presented
in Lim et al. (2014).

A = Co

{[
0.8 0.0
21.8 1.4

]

,

[
0.8 0.0
16.9 1.3

]}

;B = Co

{[
0.0
0.2

]

,

[
0.0
0.2

]}

(48)

The system input/state constraints are:

−2.5 ≤ u ≤ 3.5;
−0.5 ≤ uss ≤ 0.5;

[
−0.5
−5

]

≤ x ≤

[
0.5
5

]

(49)

A nominal model A = 0.5A1 + 0.5A2 and B = 0.5B1 + 0.5B2 is used to define the feedback
controller K =

[
93.58 5.76

]
as the LQ-Optimal for Q = diag(1, 0.01), R = 0.01.

• Figure 6 demonstrates algorithm 6 for system (48) with no advance knowledge (na = 1). It is
seen that although the target (r = 1) is unreachable during transients (c∞ ̸= 0), nevertheless
the algorithm performs well and converges to the correct steady-state without any constraint
violations.

• Figure 7 presents algorithm 6 with advance knowledge (na = 3). The target is unreachable
during transients but again the algorithm performs well handling both the advance target
information effectively and avoiding constraint violations. The response is faster compared to
the response figure 6 which did not use advance knowledge. Moreover, the response requires
less control effort. The performance benefits, of using advance knowledge with the proposed
robust MPC algorithm are further evidenced in table 3, which compares the runtime costs.

• Figure 8 uses advance knowledge (na = 3) and a target r = 1.3 which is unreachable at steady
state. Algorithm 6 performs well handling both the advance target information effectively and
avoiding constraint violations while the output reaches the nearest value to the desired target
which is the minimum value (G∞c∞).
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Figure 6. Closed-loop for step response of system (48) with algorithm 6 and with no advance knowledge.

Figure 7. Closed-loop for step response of system (48) with algorithm 6 and with advance knowledge.

Table 3. The Run Time costs for System na = 1, na = 3.

System (48) nc = 2, R = 0.01
na 1 3
J 1.262 0.256

6 Conclusions

This paper has made three main contributions. Following a brief review of the literature on
approaches to tracking within MPC, it is clear that very few papers have utilised advance
information on target changes and the common assumption is that no advance information is
available.
First it is shown, perhaps surprisingly, that the default inclusion of advance knowledge is not

often helpful and thus this paper proposes a pragmatic algorithm for determining how much
advance knowledge is likely to be useful and moreover, a corresponding ’fixed’ feed forward
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Figure 8. Closed-loop for step response of system (48) with algorithm 6 and with advance knowledge for an unreachable
target at steady state.

design.
An argument is made that during constraint handling, it is better to construct predictions

which embed the default optimal unconstrained feedforward rather than entering the future
target values directly. This ensures the optimal behaviour is embedded and gives transparency
to the role of the degrees of freedom. The efficacy and simplicity of this approach is demonstrated.
At times, the desired target will be unreachable and in such scenarios a default MPC algorithm

becomes ill-defined. This paper proposes a simple alternative which caters for both transient
and permanent infeasibility in the target without the need to change the algorithm online.
Moreover, it has shown how, even in this case, the systematic embedding of advance information
is straightforward and beneficial.
Finally, the paper has shown how all the previous contributions can be extended in a straight-

forward manner to cater for parameter uncertainty and thus give robust guarantees of feasibility
and convergence while utilising a simple QP optimisation online.
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