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Abstract

Deformation of a spherical droplet or bubble, containing a pair of particles on

its surface is considered when equal but opposite forces are applied to the particles.

The particles are placed opposite each other thus providing a symmetrical problem

which is more amenable to analytical treatment. We extend our previous calculations,

concerning such arrangements with constant contact angles, to situations where now it

is the contact line that is pinned on the surface of the particles. The force–displacement

curves are calculated as the particles are pulled apart and was found to be linear for

small displacements. However, it is also found that the “Hookean constant” for the

pinned contact line problem is different to one derived for systems with a constant

contact angle, being larger if the pinned line is at the equator of the particles.
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Introduction

It is a common observation during the processes of spreading and wetting of solid surfaces by

a liquid, that the advancing and receding contact angles are different to each other and often

also to the equilibrium value of the contact angle.1 In the extreme cases, the three phase con-

tact line can become pinned due to the presence of imperfection, defects and inhomogeneities

on the surface.1–3 In such cases the contact angle is no longer uniquely defined but instead

can take on a range of values determined by the external conditions to which the liquid is

subjected (e. g. external forces). The phenomenon of pinning has significant implications for

the behaviour of small particles at fluid–fluid interfaces and therefore in such processes as

stability of particle-laden fluid interfaces in Pickering emulsions and bubbles,4,5 in degassing

of liquids using particle anti-foaming agents6 and in separation of mineral particles by froth

flotation technique.7

In our previous work8 we calculated the deformation of a spherical droplet, resulting from

the application of a pair of opposite forces applied to two particles located diametrically

opposite each other at the two ends of the droplet. The free-energy analysis was used

to calculate the force–distance curves for the generated restoring forces, arising from the

displacement of the particles relative to each other.

In these previous calculations it was explicitly assumed that the contact line is free to

slide along the surface of the particles. As mentioned, it is often the case that the contact

line is pinned. In experimental studies pinning can be deliberately introduced by modifying

the geometry of the surface.9–11 Pinning is responsible for the hysteresis of the contact

angle1–3 and an unexpectedly slow relaxation of the position of the particles adsorbed at

fluid interfaces towards equilibrium.12,13 It also causes the modification of the detachment

force of particles from fluid interfaces.9–11 Recent AFM measurments with the three-phase

contact line pinned at the probe allowed determination of the size-dependent stiffness of

nanodroplets.14

The aim of this work is to extend the results of our previous study8 to account for the
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practically important and more relevant situations involving contact line pinning.

Model

In order to simplify the analysis, we consider a problem in which a droplet (or bubble) of

radius R (in its undeformed state) has two particles of radius a adsorbed at its surface,

placed diametrically opposite each other. This problem is equivalent to the description of

the common experimental setups in which a particle is adsorbed on the hemispherical droplet

which, in turn, is located on a flat substrate and forms free contact line with that substrate.

The geometry of the system is shown in Figure 1a and follows from the one we used in our

previously reported work.8 The axially symmetric shape of the droplet is described by the

function z(ρ), in the cylindrical coordinate system.

The symmetry of the problem and hence the mathematical formulation is identical to one

of the earlier papers on an axisymmetric capillary bridge by Orr, Scriven and Rivas.15 We

apply equal but opposite forces to each particle as is shown schematically in Figure 1a. The

symmetrical nature of the problem, considered in this way, provides significant simplifications

allowing us to obtain exact analytical expressions for the distortion of the shape of the

spherical bubble, and hence the force vs displacement curves as the particles are pulled away

from each other.

Displacement–force dependence

In this section we derive the explicit expression for the dependence of the external force F

applied to the particles resulting in a displacement ∆r from their equilibrium positions. As

in our previous work,8 the magnitude of the external force can be represented as a derivative

of the free energy of the system, F , with respect to distance 2r between the particles:

F =
dF
d(2r)

. (1)
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Note that this is the external force applied to the particles and as such has the opposite sign

to the force commonly represented in experimental plots,10 where often the capillary forces

pulling the particles back towards their equilibrium positions is reported. It can be viewed

as the adhesive force, with which the particles “adhere” to the droplet.

Since the contact radius ρc (Figure 1b), in contrast with our previous work, is fixed here

according to the assumption of contact line pinning, the only variable contribution to the

free energy is determined by the surface tension γ of the interface between two fluids which

can be written as

F = γS, (2)

where S is the area of the fluid interface. The equilibrium shape of the interface can be

obtained by minimizing the free energy (2) under the constraint of constant volume of the

droplet. Gaseous bubbles can also be considered as incompressible if the particle-to-bubble

size ratio is small and thus the distortion caused in the initial pressure of the bubble during

particle displacement, is sufficiently small.8

The minimization of the free energy of the system under the constraint of constant

volume of the droplet leads to the following results.8 The shape of the droplet is unduloid15,16

described by formula

z(ρ) = ρ+E(ϕ, k) +
cρ20
2ρ+

F (ϕ, k) (3)

where

ρ+ =

√

1− c+
√
1− 2c

2
ρ0 (4)

and

ρ− =

√

1− c−
√
1− 2c

2
ρ0, (5)

with ρ0 and c constants that are determined by the volume of the droplet and the positions

of the particles. Functions F (ϕ, k) and E(ϕ, k) are incomplete elliptic integrals of first and
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second kind, respectively, where

sinϕ =

√

ρ2+ − ρ2

ρ2+ − ρ2
−

, (6)

and

k =

√

1− ρ2
−

ρ2+
. (7)

The cylindrical coordinates ρ and z are defined in Figure 1(a). The distance r of the center

of each particle from the center of the droplet can be expressed in terms of the function z(ρ)

such that

r = z(ρc)−
√

a2 − ρ2c (8)

with displacement of the particle given by

∆r = r − R. (9)

The free energy of the system, up to a constant term, was found to be8

F = 4πγρ+ρ0E(ϕc, k), (10)

where

sinϕc =

√

ρ2+ − ρ2c
ρ2+ − ρ2

−

. (11)

and γ denotes the surface tension. The volume of the distorted droplet can be integrated
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and is found to be given by formula8

V =
4π

3

{[

(

1− c

4

)

ρ20 −
3

2
ρ2c

]

ρ+E(ϕc, k)

−
[

ρ2
−
ρ+
2

+
3

4

cρ20ρ
2
c

ρ+

]

F (ϕc, k)

+
ρc
2

√

(ρ2+ − ρ2c)(ρ
2
c − ρ2

−
)

+
3

2
ρ2cr −

[

a3 − (a2 − ρ2c)
3/2

]

}

. (12)

Note that in deriving Eq. (12) one has to account for the regions occupied by the particles

residing within the droplet. In the case αc > π/2 the volume of two spherical rings with

sphere radius a and cylindrical hole radius ρc is equal to

4π

3

(

a2 − ρ2c
)3/2

. (13)

This corresponds to the volume at ρ > ρc which lies inside the particles and hence is not

part of the liquid. Therefore this volume should be subtracted from the total one, Eq. (12),

to yield the actual volume of the fluid droplet. As the forces are incurred and the shape of

the droplet alters, this volume nonetheless has to remain constant.

Further analysis is simplified if the particle-to-droplet size ratio,

ν =
a

R
, (14)

is small, ν → 0. In this case we can use the series expansions of the elliptic integrals at

φc → π/2 and k → 18

F (ϕc, k) = − ln
(κ+ ξ)ν

4
+ o

(

ν0
)

(15)

6



and

E(ϕc, k) = 1−
{

κ2

2
+

µ2

16

[

2 ln
(κ+ ξ)ν

4
− κ− ξ

κ+ ξ

]}

ν2

+ o
(

ν2
)

, (16)

where we have defined

ξ =

√

κ2 − µ2

4
, (17)

µ =
c

ν
(18)

and

κ =
ρc
a
. (19)

With the constraint requiring the volume of the droplet to remain constant and using the

above expansions, we can obtain the required expressions for the particle displacement, in

the limit of small particles to droplet size ratio

∆r

a
= −µ

4

[

1 + 2 ln
(κ+ ξ)ν

4

]

. (20)

The corresponding free energy of the system is then given by

F(µ) = −2πa2γ

{

κ2 +
µ2

4

[

ξ

κ + ξ
+ ln

(κ+ ξ)ν

4

]}

. (21)

These formulas express parametrically the free energy dependence of the system as a

function of the displacement of the particles. The parameter µ characterizes the deformation

of the droplet from its original spherical shape. Furthermore, we can also express the force as

a function of µ by considering the derivative of the free energy with respect to displacement:

F (µ) =
1

2

(∂F/∂µ)

(∂r/∂µ)
. (22)
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In its explicit form this equals

F = πaγµ. (23)

Expressing the parameter µ from the above formula in terms of the applied force F and

substituting this in the equation for the displacement of the particle, we can write explicitly

the formula for the displacement–force relation as

∆r = − F

4πγ







1 + 2 ln





ρc
4R



1±

√

1−
(

F

2πγρc

)2















. (24)

Here the two signs, ±, correspond to the displacements of the particle before and after reach-

ing the point of maximum force, respectively. The Hookean (“spring”) constant defined as

the ratio of force to displacement for small deviations of particle position from its equilibrium

value is

kH ≡
(

dF

d∆r

)

∆r→0

=
4πγ

2 ln
(

2R
ρc

)

− 1
. (25)

In figure 2 we compare the displacement–force behavior for the cases of pinned contact

line (Eq. 24) and our previous result for a system with a fixed contact angle of π/2, which

is given by formula8

∆r

a
=

√

1∓ Φ

2
− F

2πγa

{

1

2
+ ln

[ a

8R

(

1± Φ +
√

2(1± Φ)
)]

}

, (26)

with

Φ =

√

1−
(

F

πγa

)2

. (27)

Maximum displacement, detachment force and Hookean constant are all higher in the case

of pinned contact line compared to the case of free contact line. It is straightforward to show

using Eq. (24) that Hookean constant in the case of pinned constant line with the contact

radius ρc equals Hookean constant for the case of free contact line8 for larger particles of

radius a = eρc, where e = 2.718 . . . is Euler’s number.
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Detachment of particles

As the external force acting on the particle is made larger, the displacement of the particle

from its equilibrium position increases. The contact line remains pinned at the same position

until a critical value for the particle displacement is reached. Subsequently, two scenarios

are possible. First, the particle can detach from the fluid droplet by the rupture of the fluid

bridge because beyond this critical point there is no stable state of the system with the

pinned contact line. The second scenario involves the transition to free sliding of the contact

line along the particle surface.

In order to establish the criterion which distinguishes these two mechanisms we write

the explicit solution for the displacement–force dependence obtained for the case of the

freely sliding contact line. In the limit of small particle to droplet size ratios the analytical

expression for dependence between the force and the displacement of the particles is given

parametrically by Eq. (23), where now8

∆r(κf) = a

{

√

1− κ2
f −

µ

4

[

1 + 2 ln
(κf + ξ)a

4R

]}

(28)

instead of Eq. (20) for pinned case, and

µ = 2κf

(√

1− κ2
f sin θf − κf cos θf

)

. (29)

Here the angle θf denotes the equilibrium contact angle between the fluid interface and the

flat surface which, in the case of freely sliding contact line, is determined by surface tensions

through Young’s equation. The dimensionless parameter κf is related to the contact radius

ρf , for the freely sliding contact line, and is given by

κf =
ρf
a
. (30)

In Eqs (28) and (23) (in which µ is now a function of κf given by Eq. (29)), κf changes
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between κmin and 1, as ρf alters with displacement of the particle. The minimum value of

κf , κmin, is determined by the solution of transcendental equation

(

d∆r(κf)

dκf

)

κf=κmin

= 0. (31)

If the transition to sliding contact line is possible, it occurs at the displacement of the

particle at which the contact radius ρc of the pinned contact line equals contact radius ρf

corresponding to the freely sliding case. The corresponding displacement is thus given by

Eq. (28) where κf = κ. The applied force at this point, if required, can be obtained by

inverting Eq. (24). Behavior of the system beyond this displacement is then described by

the model relevant to the free contact line.8 Note that the force abruptly decreases with

the transition to the sliding regime, so in principle detachment can still occur at the same

displacement. This regime is similar to the one described by Akbari and Hill,17 who studied

experimentally and theoretically the stability and breakup of liquid bridges with a free

contact line on surfaces with contact-angle hysteresis. Akbari and Hill have identified the

regime in which the stability of liquid bridges is lost during a transition from pinned to free

interface.

In the case when κ < κmin, where κmin is the solution of Eq. (31), there is no longer a

stable solution for the sliding contact line case, and the detachment of the particle occurs

without intermediate transition to a stable sliding regime. The maximum force,

F ∗ = 2πγρc, (32)

is then attained at a particle position given by

∆r∗ =

[

ln

(

4R

ρc

)

− 1

2

]

ρc (33)

obtained from Eq. (24). The corresponding value of the contact angle θ at the same point
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is found to be

θ = αc − [arctan z′(ρ)]ρ=ρc
, (34)

where z(ρ) is given by Eq. (3) and has its derivative (with respect to ρ) as follows

z′(ρ) = −
1
2
cρ20 + ρ2

√

ρ20ρ
2 +

(

1
2
cρ20 + ρ2

)2
. (35)

Substituting Eq. (35) in Eq. (34) and taking the small-particle limit we obtain the following

final expression for this contact angle, θc:

θc = αc + tan−1

(

1√
2

)

. (36)

Comparison with experiment

In this section we compare our results with the experimental data by Ally et al.10 In order

to study the effect of sharp edges on adhesion of solid particle to air–liquid interfaces, Ally

et al. modified spherical colloidal probes with a circumferential cut produced by focused

ion beam milling technique. The interaction of the modified particles with water drops and

bubbles was studied using the colloidal probe technique. When the modified particles were

brought into contact with air–liquid interfaces and subsequently pulled away, the contact

line remained pinned at the edge of the cut. Contact hysteresis between the approach and

retraction components of the measured force curves was eliminated. The contact angle at

the edge then takes on a range of values within the limits imposed by the Gibbs’ criterion.18

These limits determine the adhesion force. As such, the adhesion force is a function of the

particle wettability but also edge geometry.

Figures 3 and 4 compare our theoretical calculations with the experimental data by Ally

et al.10 on the particle being detached for the surface of the air bubble and water droplet,

respectively. The values of the contact angle at detachment, 82◦ and 76◦, calculated using
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Eq. (36), are less than the corresponding values 110◦ and 103◦ calculated by Ally et al.10

from the average values of the adhesion force. The agreement in the displacement–force

dependence is good for the case of the bubble (figure 3). In the case of the droplet (figure 4)

the agreement is worse and the deviation from the theoretical result has the opposite sign to

that for bubble. Moreover, maximum force is smaller and is observed at lower displacement

than predicted by the theory here.

Different sources of the error are possible. The possible errors for the measurements are19

(i) determination of the spring constant of the order of 10%, and (ii) the calibration of the

scanning electron microscope and the determination of the contact line radius ∼ 5%.

Other sources of discrepancy may lie in applicability conditions for equation (24). This

equation is valid if (i) the particle-to droplet size ratio, given by equation (14), is small so

that truncation of the expansions (16) and (15) is justified, and (ii) Bond number, given by

Bo =
(ρw − ρa)gL

2

γ
, (37)

where ρw and ρa are densities of water and air, respectively, and g has the usual value

9.81m/s2, is small enough so that gravity effects can be neglected. Equation (14), is well

satisfied for 0.3µL droplets/bubbles with the adsorbed particles having a size ∼ 2µm, as

used in the experiment.10 However, substituting the diameter of the droplet,

D =
3

√

12V

π
(38)

as the characteristic length L, we obtain Bo = 0.15, which may not be sufficiently small to

allow for neglect of gravity effects.
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Conclusion

We have considered two identical spherical solid particles with sharp edges itched on them,

adsorbed on the surface of, and located at the opposite poles of an incompressible fluid

droplet. The free-energy analysis was used to calculate the force–distance curves for the

generated restoring forces, arising from the displacement of the particles relative to each

other.

The agreement of our results with the experimental data by Ally et al.10 is good in the

case of air bubble in water, but less so in the case of water droplet in air. We attribute the

discrepancy to the effect of gravity which can be expected to give corrections of opposite

signs depending on whether the system involves an air bubble in water or a water droplet in

air. An account of gravity can be introduced in the theory as the extension of the present

work.

Some other possible future extensions may involve different particle locations on a sessile

droplet,20 influence of contact line pinning on the capillary interaction between particles on

a sessile droplet21 and in assessing the stability of Pickering emulsions under the application

of external fields. Finally, the influence of fluid dynamics under fast stretching conditions

and time dependence variation of force as a result22 could be of particular interest in future

studies.

Acknowledgement

The authors thank Prof. Hans-Jürgen Butt and Dr Michael Kappl for providing their exper-

imental data and useful discussions of the results.

References

(1) de Gennes, P. G. Wetting: statics and dynamics. Rev. Mod. Phys. 1985, 57, 827–863.

13



(2) Joanny, J. F.; Robbins, M. O. Motion of a contact line on a heterogeneous surface. J.

Chem. Phys. 1990, 92, 3206–3212.

(3) Pitois, O.; Chateau, X. Small Particle at a Fluid Interface: Effect of Contact Angle

Hysteresis on Force and Work of Detachment. Langmuir 2002, 18, 9751–9756.

(4) Binks, B. P. Particles as surfactants—similarities and differences. Curr. Opin. Coll. Int.

Sci. 2002, 7, 21–41.

(5) Murray, B. S.; Ettelaie, R. Foam stability: proteins and nanoparticles. Curr. Opin.

Coll. Int. Sci. 2004, 9, 314–320.

(6) Dickinson, E. An Introduction to Food Colloids ; Oxford University Press, 1992.

(7) Ata, S. Phenomena in the froth phase of flotation — A review. Int. J. Mineral Processing

2012, 102-103, 1–12.

(8) Ettelaie, R.; Lishchuk, S. V. Detachment force of particles from fluid droplets. Soft

Matter 2015, 11, 4251–4265.

(9) O’Brien, S. B. G. The Meniscus near a Small Sphere and Its Relationship to Line

Pinning of Contact Lines. J. Coll. Int. Sci. 1996, 183, 51–56.

(10) Ally, J.; Kappl, M.; Butt, H.-J. Adhesion of particles with sharp edges to air–liquid

interfaces. Langmuir 2012, 28, 11042–11047.

(11) Feng, D.-X.; Nguyen, A. V. How does the Gibbs inequality condition affect the stability

and detachment of floating spheres from the free surface of water? Langmuir 2016, 32,

1988–1995.

(12) Kaz, D. M.; McGorty, R.; Mani, M.; Brenner, M. P.; Manoharan, V. N. Physical aging

of the contact line on colloidal particles at liquid interfaces. Nature Materials 2012,

11, 138–142.

14



(13) Rahmani, A. M.; Wang, A.; Manoharan, V. N.; Colosqui, C. E. Colloidal particle

adsorption at liquid interfaces: Capillary driven dynamics and thermally activated

kinetics. Soft Matter 2016, 12, 6365–6372.

(14) Wang, S.; Wang, X.; Zhao, B.; Wang, L.; Qiu, J.; Zhou, L.; Dong, Y.; Li, B.; Lü, J.;
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Figure 1: Geometry of the system, where the position of contact line is now fixed on the
surface of particle and thus the value of angle θ alters as particles are pulled away, (a)
position of particles on surface of droplet, (b) the deformation close to a particle.
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Figure 2: Displacement–force diagram for ρc/R = 0.01 (solid line). For comparison, the
curve for the case of free contact line (dashed line) is shown for a 90◦ contact angle. The
size ratio is a/R = 0.01, where a is the radius of the particle.
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Figure 3: Experimental10 (solid) and theoretical (dashed) displacement–force diagrams
for a particle of radius R = 1.90µm on surface of an air bubble with volume 0.3µL. A
circumferential cut is located at distance 0.31R from the pole of the particle. Surface tension
is 0.072N/m. The contact angle at detachment, calculated using Eq. (36), is 82◦.
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Figure 4: Experimental10 (solid) and theoretical (dashed) displacement–force diagrams
for a particle of radius R = 1.85µm on surface of a water droplet with volume 0.3µL. A
circumferential cut is located at distance 0.24R from the pole of the particle. Surface tension
is 0.072N/m. The contact angle at detachment, calculated using Eq. (36), is 76◦.
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Figure 5: Graphical abstract.
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