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Dynamical equations for the vector potential and the velocity potential in incompressible
irrotational Euler flows: A refined Bernoulli theorem
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We consider incompressible Euler flows in terms of the stream function in two dimensions and the vector
potential in three dimensions. We pay special attention to the case with singular distributions of the vorticity,
e.g., point vortices in two dimensions. An explicit equation governing the velocity potentials is derived in two
steps. (i) Starting from the equation for the stream function [Ohkitani, Nonlinearity 21, T255 (2009)], which is
valid for smooth flows as well, we derive an equation for the complex velocity potential. (ii) Taking a real part
of this equation, we find a dynamical equation for the velocity potential, which may be regarded as a refinement
of Bernoulli theorem. In three-dimensional incompressible flows, we first derive dynamical equations for the
vector potentials which are valid for smooth fields and then recast them in hypercomplex form. The equation
for the velocity potential is identified as its real part and is valid, for example, flows with vortex layers. As an
application, the Kelvin-Helmholtz problem has been worked out on the basis the current formalism. A connection
to the Navier-Stokes regularity problem is addressed as a physical application of the equations for the vector
potentials for smooth fields.
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I. INTRODUCTION

The motion of inviscid fluids with unit density governed by
the incompressible Euler equations reads

∂u
∂t

+ (u · ∇)u = −∇p, (1)

and

∇ · u = 0, (2)

where u denotes the velocity and p the pressure field. By using
a simple vector identity, we may write (1), together with (2),
as

∂u
∂t

+ ∇
(

p + |u|2
2

)
= u × ω, (3)

where ω denotes the vorticity. The Euler and Navier-Stokes
equations for incompressible fluids are inherently nonlocal
in nature. This is because of the presence of the pressure
term, which makes fluid motions incompressible through a
potential problem. Actually, the nonlocal character is a serious
obstacle in mathematical analyses of the fluid equations; it
spoils notably a maximum-principle type argument for the
Navier-Stokes equations and methods of characteristics for
the Euler equations.

On top of its nonlocal character, the pressure in in-
compressible flows is cumbersome to handle, because no
closed equation is known for its dynamical evolution. One
approach is to simply to remove this notorious term, say by
solenoidal projection. As an alternative approach, we may
attach importance to the pressure. Indeed, in two dimensions,
given p, we can in principle recover ψ by solving the
Monge-Ampere equation

ψxxψyy − ψ2
xy = 1

2�p,

*K.Ohkitani@sheffield.ac.uk

which relates the stream function ψ and the pressure p. It is
worth seeking a dynamical equation governing the evolution
of the pressure. In this paper, as a first step, dynamical
equations are given for a velocity potential with singular
vorticity distributions in two and three dimensions.

We first consider two-dimensional flows with singular
vorticity distributions (e.g., point vortices) and derive a
governing equation for the stream function. This is achieved by
using complex function theory. Second, dynamical equations
are given for the vector potentials in three-dimensional
incompressible flows under similar conditions and their hy-
percomplex counterpart. These may be regarded as refined
versions of the Bernoulli theorem.

The rest of the paper is organized as follows. We describe
fundamentals of the two-dimensional flows including point
vortices in Sec. II. In Sec. III, a dynamical equation for
velocity potential is derived in two dimensions. In Sec. IV, the
three-dimensional problem is considered, where dynamical
equations for the vector potential and its hypercomplex
counterpart are derived. In Sec. V, a linear stability analysis
of the Kelvin-Helmholtz problem is carried out on the basis
of the new form of equations to justify its usefulness. An
application to the Navier-Stokes regularity issue is also
addressed. Section VI is devoted to a summary and outlook.

II. BERNOULLI THEOREM FOR POINT VORTICES

We consider a system of N point vortices (N � 2)

dxi

dt
= − 1

2π

N∑
j=1

′κj

yi − yj

(xi − xj )2 + (yi − yj )2
,

dyi

dt
= 1

2π

N∑
j=1

′κj

xi − xj

(xi − xj )2 + (yi − yj )2
, (4)

where (xi,yi) denotes the position of each vortex of strength
κi for i = 1,2, . . . ,N and ′ denotes a summation excluding
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i = j . We refer to the book [1] for a comprehensible account
of the point-vortex systems. The complex velocity potential
associated with this system is given by

W = φ + iψ = 1

2πi

N∑
n=1

κnln(z − zn), (5)

where

z = x + iy, zn = xn + iyn (n = 1, . . . ,N ).

The imaginary part is the stream function

ψ(x,t) = − 1

4π

N∑
n=1

κnln[(x − xn)2 + (y − yn)2]

and its real part is the velocity potential

φ(x,t) = 1

2π

N∑
n=1

κn tan−1 y − yn

x − xn

.

After some straightforward algebra we find

∂φ

∂t
= − 1

(2π )2

N∑
m,n=1

′κmκn

(x − xm) · (xm − xn)

|x − xm|2|xm − xn|2

and

∂ψ

∂t
= − 1

(2π )2

N∑
m,n=1

′κmκn

(x − xm) × (xm − xn)

|x − xm|2|xm − xn|2 ,

where x = (x,y), xn = (xn,yn), and ′ implies exclusion of n =
m. It is noted that they make a nice pair of equations: dot vs
cross products in the expressions of their dynamical evolution.
This symmetry suggests that of the governing equations for φ

and ψ in the case of a continuum, as we will confirm below.
If we consider a potential flow u = ∇φ induced by with

point vortices, we have

∂u
∂t

+ ∇
(

p + |u|2
2

)
= 0 a.e., (6)

where a.e. stands for almost everywhere; here we mean exclu-
sion of positions of point vortices (and in three dimensions
below, exclusion of, e.g., those of vortex layers). By the
Bernoulli theorem we find

p(x,t) = 1

(2π )2

N∑
n,m=1

′κnκm

(x − xn) · (xn − xm)

|x − xn|2|xn − xm|2

− 1

2(2π )2

(
N∑

n=1

κn

x − xn

|x − xn|2
)2

+ const.

Here φ and ψ are harmonic everywhere except for vortex
positions. Hence the Liouville theorem does not apply so that
a nontrivial behavior is possible.

It may be in order to make the following remark. If we
define a manifold M by R2\ {vortexpositions}, then ψ , p,
and |u|2 are well defined everywhere on M and have zero
winding numbers around vortex positions. On the other hand,
φ generally has a nonzero winding number.

III. TWO-DIMENSIONAL FLOWS

A. Dynamics of stream function

For smooth flows we recall a dynamical equation for the
stream function [2],

∂ψ

∂t
= 1

π
P.V.

×
∫
R2

[(x − x′)×∇ψ(x′)](x − x′) · ∇ψ(x′)
|x − x′|4 dx′, (7)

where P.V. denotes a principal-value integral.
Liouville theorem states that if a bounded function is

harmonic everywhere in R2, then it must be a constant. In
the case of point vortex systems, this does not apply. Hence
it makes sense to seek a dynamical equation for the velocity
potential.

We begin by noting that (7) still holds valid except for
the locations of point vortices. We also note that there is a
framework of “very weak” solutions for treating point vortices
rigorously [3].

B. Dynamics of velocity potential

We now seek a dynamical equation for φ. To this end, we
first derive an equation for the complex potential and then find
its complex conjugate. The velocity is given by the complex
velocity potential

dW

dz
= φx + iψx = ψy + iψx

and we find

z
dW

dz
= (x + iy)(ψy + iψx)

= (xψy − yψx) + i(xψx + yψy).

Noting that xψy − yψx = xφx + yφy, xψx + yψy =
−xφy + yφx by Cauchy-Riemann equations, we recast (7) as

Im

(
∂W

∂t

)
= 1

π
P.V.

∫
R2

Re

(
(z − z′)

dW

dz

)
× Im

(
(z − z′)

dW

dz

)
dx′

|z − z′|4 a.e.,

where Re and Im stand for the real and imaginary parts,
respectively. In view of the identity

(a + bi)2 = a2 − b2 + 2abi

for any real numbers a and b, we observe that (7) is the
imaginary part of the following equation:

∂W

∂t
= 1

2π
P.V.

∫
R2

(
(z − z′)

dW (z′)
dz′

)2
dx′

|z − z′|4 a.e., (8)

where z = x + iy, z′ = x ′ + iy ′. Note that W (z) is meromor-
phic, that is, analytic dW (z)

dz
= 0 except for poles. Taking the
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real part we find

∂φ

∂t
= 1

2π
P.V.

×
∫
R2

[(x−x′)×∇ψ(x′)]2−[(x−x′) · ∇ψ(x′)]2

|x − x′|4 dx′ a.e.,

or, equivalently

∂φ

∂t
= 1

2π
P.V.

×
∫
R2

[(x − x′) · ∇φ(x′)]2 − [(x − x′) × ∇φ(x′)]2

|x − x′|4 dx′ a.e.

(9)

This is the equation for the velocity potential we are after,
which expresses the evolution of φ in terms of φ and its
derivatives. We note that it makes a symmetric appearance
in comparison with (7). In the complex notations it can be
written as

∂W

∂t
= 1

2π
P.V.

∫
R2

(
dW (z′)

dz′

)2
dx′

(z − z′)2
a.e. (10)

It can be checked that analyticity persists under the dynamical
evolution as follows:

∂

∂t

∂W

∂z
= 0 a.e.

Proof. By regularizing the above to keep the order of
singularity of the kernel at 1/z, we have

∂W

∂t
= 1

2π
P.V.

∫
R2

[(
dW (z′)

dz′

)2

−
(

dW (z)

dz

)2
]

× dx′

(z − z′)2
a.e.

Differentiating with respect to z, we find

∂

∂t

∂W

∂z
= 1

2π
P.V.

∫
R2

[(
dW (z′)

dz′

)2

−
(

dW (z)

dz

)2
]

× ∂

∂z

1

(z − z′)2
dx′ a.e.

= 1

2π
P.V.

∫
R2

[
∂

∂z′

(
dW (z′)

dz′

)2
]

dx′

(z − z′)2
= 0 a.e.,

where the last line follows by integration by parts. �
One interpretation of Eq. (10) is as follows: Given the

complex velocity potential initially

W (z,0) = 1

2πi

N∑
n=1

κnln[z − zn(0)],

if zn = xn + iyn (n = 1, . . . ,N) follow the evolution of the
point vortex system (4), then the corresponding (5) satisfies
(10) and vice versa. In this sense, (10) describes the time
evolution of the meromorphic complex velocity potential for
the point-vortex system.

C. Dynamical equation for the head pressure

Because one of the motivations of this study is seeking
the dynamical equation of the pressure, here we write down a
governing equation for the head pressure defined by

�(x,t) = p + |u|2
2

= −∂φ

∂t
.

Differentiating (9) with respect to t , we have

∂�

∂t
= 1

π
P.V.

∫
R2

{[(x − x′) · ∇φ(x′)](x − x′) · ∇�(x′)

− [(x−x′)×∇φ(x′)](x−x′)×∇�(x′)} dx′

|x−x′|4 , a.e.,

(11)

where

�(0) = −
(

p + |u|2
2

)∣∣∣∣
t=0

.

It is noted that as (11) depends on ∇φ, it is not closed with
respect to �(x,t) but should be coupled with (9).

IV. THREE-DIMENSIONAL FLOWS

A. Dynamics of vector potential

We first derive a set of equations for the vector potential.
For the incompressible three-dimensional Euler equations, we
define the vector potential A by u = ∇ × A and we assume
that it satisfies Coulomb gauge condition ∇ · A = 0. The
dynamical equations for A(x,t) can be written as

∂ A
∂t

= 3

4π
P.V.

∫
R3

[r × (∇ × A(x′))]r · (∇ × A(x′))
|r|5 dx′,

(12)
or equivalently,

∂ A
∂t

= 3

4π
P.V.

∫
R3

[r × (u(x′))]r · u(x′)
|r|5 dx′, (13)

where r = x − x′. It should be noted that (12) is equivalent
to the conventional Euler equations in three dimensions. Note
that the equations for A in three dimensions and ψ in two
dimensions hold generally for smooth flows. We need the
assumption of singularities to consider the velocity potential
φ. A similar formulation is also available for the Navier-Stokes
equations of viscous fluids (see Sec. VI).

Proof. In the vorticity equations

∂ω

∂t
= ∇ × (u × ω), (14)

if we write

u × ω = ∇f + ∇ × g

with ∇ · g = 0, then we have

∂�A
∂t

= �g,

or

∂ A
∂t

= g.
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Here we have set the integration constant to be zero, without
loss of generality. The function g is given by

g = −�−1∇ × (u × ω).

Now by the identity

u × ω = ∇ |u|2
2

− ∇(u ⊗ u),

we compute that

gi = −�−1εipq∂p(u × ω)q

= −�−1εipq∂p

(
∂q

|u|2
2

− ∂j (ujuq)

)
= �−1εipq∂p∂j (ujuq).

By a formula [4]

∂2a

∂xi∂xj

= f (x)

3
δij + 1

4π
P.V.

×
∫ (

δij

|x − y|3 − 3(xi − yi)(xj − yj )

|x − y|5
)

f ( y)d y

for a solution a of �a(x) = f (x), we find

gi = −δpj

3
εipjujuq − εipq

4π
P.V.

×
∫ (

δpj

|x − y|3 − 3(xp − yp)(xj − yj )

|x − y|5
)

× uj ( y)uq( y)d y

(15)

= 3

4π
P.V.

∫
εipq(xp − yp)(xj − yj )

|x − y|5 uj ( y)uq( y)d y,

(16)

which is (12). �
We note that (12) can also be written as

∂Ai

∂t
= εkpqRjRk∂pAq(∂jAi − ∂iAj ), i = 1,2,3.

Here Rj denotes Riesz transform, defined by

Rj [f ](x) = cnP.V.

∫
xj − yj

|x − y|n+1
f ( y)d y

for j = 1,2, . . . n, x ∈ Rn with cn = �( n+1
2 )/π (n+1)/2 (� is

the γ function). For n = 1,2,3 the constants are c1 = 1/π (for
the Hilbert transform), c2 = 1/(2π ), and c3 = 1/π2. We recall
that the Fourier transform of the Riesz transform is given by
R̂j = −ikj /|k|.

B. Hypercomplex representation

We assume that the velocity field has also a scalar potential
u = ∇φ and seek to find the governing equations for φ by
hypercomplexification. For nontrivial flow fields to exist, it is
again necessary to assume that the flow field has singularities
somewhere in the domain, such as vorticity layers, because,
otherwise, Liouville theorem tirivializes φ and A to be
constants.

Consider a quaternion-valued velocity potential

W = φ + iA1 + jA2 + kA3,

and a differential operator

D = i∂1 + j∂2 + k∂3.

Here i,j,k denote a basis for a quaternion z = ix1 + jx2 +
kx3, whose fundamental properties are

i2 = j 2 = k2 = −1

and

ij = k, jk = i, and ki = j.

The conjugate of each element is defined by

i = −i, j = −j, k = −k,

and hence the conjugate of W is

W = φ − iA1 − jA2 − kA3.

For applications of hypercomplex formulations in fluid dy-
namics, see, e.g., [5–7]. See also [8–11] for the methods of
generalized analytic functions.

It is easily checked that, under ∇ · A = 0, the (generalized)
Cauchy-Riemann equation [12]

DW = 0, or, WD = 0

is equivalent to [13]

∇φ = ∇ × A.

Actually, we have

DW = (i∂1 + j∂2 + k∂3)(φ − iA1 − jA2 − kA3)

= i∂1φ + j∂2φ + k∂3φ + (∂1A1 + ∂2A2 + ∂3A3)

− ij (∂1A2 − ∂2A1) − jk(∂2A3 − ∂3A2)

− ki(∂3A1 − ∂1A3)

= i[∂1φ − (∂2A3 − ∂3A2)] + j [∂2φ − (∂3A1 − ∂1A3)]

+ k[∂3φ − (∂1A2 − ∂2A1)] (17)

using fundamental relationships for i,j,k.
We also compute

DW = (i∂1 + j∂2 + k∂3)(φ + iA1 + jA2 + kA3)

= i∂1φ + j∂2φ + k∂3φ − (∂1A1 + ∂2A2 + ∂3A3)

+ ij (∂1A2 − ∂2A1) + jk(∂2A3 − ∂3A2)

+ ki(∂3A1 − ∂1A3)

= 2(iu1 + ju2 + ku3)

and

zDW = −2(x1u1 + x2u2 + x3u3) + 2i(x2u3 − x3u2)

+ 2j (x3u1 − x1u3) + 2k(x1u2 − x2u1).

Hence we have

(zDW )2 = −8i(x2u3 − x3u2)(x1u1 + x2u2 + x3u3)

− 8j (x3u1 − x1u3)(x1u1 + x2u2 + x3u3)

− 8k(x1u2 − x2u1)(x1u1 + x2u2 + x3u3)
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+ 4[(x1u1 + x2u2 + x3u3)2 − (x2u3 − x3u2)2

− (x3u1 − x1u3)2 − (x1u2 − x2u1)2].

Now, similar to the two-dimensional case above, if we consider

∂W

∂t
= − 3

32π
P.V.

∫
R3

[(z − z′)DW (z′)]2 dx′

|z − z′|5 a.e.,

(18)

then we can confirm that its i,j,k components reproduce
correct dynamical equations for A1, A2, and A3. Here a.e.
means exclusion of vortex singularities, e.g., vortex layers.
The equation for the velocity potential is obtained by taking
the real part as

∂φ

∂t
= 3

8π
P.V.

∫
R3

|r × ∇φ(x′)|2 − [r · ∇φ(x′)]2

|r|5 dx′ a.e.

(19)

This is the equation we are after. Equation (18) for the hyper-
complex velocity potential is a three-dimensional counterpart
of (10). Equivalently, we can write

∂W

∂t
=− 3

32π
P.V.

∫
R3

{[(z−z′)DW (z′)]2−[(z − z′)DW (z)]2}

× dx′

|z − z′|5 a.e. (20)

after regularization, by which we can prove that the analyticity
DW (z) = W (z)D = 0 persists as we have done in two
dimensions.

Proof. Writing D = Dz in the integrands to clarify the
argument, we have

∂

∂t
[W (z)D] = − 3

32π
P.V.

∫
R3

[([(z − z′)DW (z′)]2 − [(z − z′)DW (z)]2)Dz]
dx′

|z − z′|5

− 3

32π
P.V.

∫
R3

([(z − z′)DW (z′)]2 − [(z − z′)DW (z)]2)

(
Dz

1

|z − z′|5
)

dx′, a.e.

as the Leibniz formula holds because 1/|z − z′|5 is a scalar, [10]. Note that in the first line of the above equation, the operator
Dz acts from the right. Replacing Dz with −Dz′ in the second term, we find after integration by parts

∂

∂t
[W (z)D] = − 3

32π
P.V.

∫
R3

[([(z − z′)DW (z′)]2 − [(z − z′)DW (z)]2)Dz]
dx′

|z − z′|5

− 3

32π
P.V.

∫
R3

[([(z − z′)DW (z′)]2 − [(z − z′)DW (z)]2)Dz′]
dx′

|z − z′|5 = 0 a.e.

because the integrands flip their sign when z and z′ are interchanged. �

V. APPLICATIONS

A. Kelvin-Helmholtz instability

As an application of the current approach, we work out the Kelvin-Helmholtz instability problem. We linearize (9) around a
steady solution U(x) = ∇φ(x) to write

∂

∂t
δφ = 1

π
P.V.

∫
R2

[(x − x′) · ∇φ(x′)] · [(x − x′) · ∇δφ(x′)] − [(x − x′) × ∇φ(x′)] · [(x − x′) × ∇δφ(x′)]
|x − x′|4 dx′ a.e.

Consider a flow with U(x) = (U (x),0), where

U (x) =
{
U1, for y < 0,

U2, for y > 0;

we then have

(x − x′) · ∇φ(x′) = U (x′)(x − x ′),

(x − x′) × ∇φ(x′) = −U (x′)(y − y ′).

Therefore we find

∂

∂t
δφ = 1

π
P.V.

∫
R2

U (x′)[(x − x ′)(x − x′) · ∇δφ(x′) + (y − y ′)(x − x′) × ∇δφ(x′)]
|x − x′|4 dx′ a.e.,

= 1

π
P.V.

∫
R2

U (x′){[(x − x ′)2 − (y − y ′)2]∂x ′δφ(x′) + 2(x − x ′)(y − y ′)∂y ′δφ(x′)}
|x − x′|4 dx′ a.e.
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We note that if we linearize (7) around (x − x′) · ∇ψ(x′) = U (x′)(y − y ′), (x − x′) × ∇ψ(x′) = U (x′)(x − x ′), we consistently
get the same form of equation for δψ ,

∂

∂t
δψ = 1

π
P.V.

∫
R2

U (x′){[(x − x ′)2 − (y − y ′)2]∂x ′δψ(x′) + 2(x − x ′)(y − y ′)∂y ′δψ(x′)}
|x − x′|4 dx′ a.e.

Hence we can proceed with either equation. To carry out a
linear stability analysis, it is convenient to recast it as

∂

∂t
δψ = (R1R1 − R2R2)U (x)∂1δψ + 2R1R2U (x)∂2δψ,

where Rj , j = 1,2 denotes the two-dimensional Riesz trans-
form. Note also that this equation can be derived directly from
yet another form for (7)

∂ψ

∂t
= εjkRiRj∂kψ∂iψ ;

see [2].
We write the steady flow

U (y) = U1 + U2

2
+ U1 − U2

2
sgn(y), (21)

where sgn(y) = 1 for y > 0, = −1 for y < 0. If only the
first constant term U1+U2

2 is retained, we would have

δ̂ψt = U1 + U2

2

(
−k2

1 − k2
2

|k|2 ik1δ̂ψ − 2
k1k2

|k|2 ik2δ̂ψ

)
= −U1 + U2

2
ik1δ̂ψ.

To handle the second term of (21), we need to evaluate Fourier
transforms of sgn(y)∂1δψ and sgn(y)∂2δψ . We find

̂sgn(y)∂1δψ = 1

(2π )2

∫∫
sgn(y)∂1δψ(x,y)e−i(k1x+k2y)dxdy

= 1

2π

∫
dy sgn(y)e−ik2y

× 1

2π

∫
∂1δψ(x,y)e−ik1xdx︸ ︷︷ ︸
=ik1δψ(k1,y)

= ik1

2π

∫
δψ(k1,y)sgn(y)e−ik2ydy

= −ik1

π
P.V.

∫
δψ̂(k1,p2)

k2 − p2
dp2

= −ik1H [δ̂ψ(k1,·)].
Here use has been made of a fact that ̂sgn(y) = − i

π
P.V. 1

k2
and

the definition of the Hilbert transform H [f ] = 1
π

∫ ∞
−∞

f (y)
x−y

dx.

Similarly, noting that ∂ysgn(y) = 2δ(y), we obtain

̂U (y)∂2δψ = −ik2H [δ̂ψ(k1,·)] − 1

π
δψ̂(k1,0),

where the final term on the right-hand side of the above
equation annihilates upon taking R2. Hence, if only the second
term of (21) is retained, we would have

U1 − U2

2
ik1H [δ̂ψ(k1,·)].

Altogether when both terms are present, we have

∂

∂t
δ̂ψ = ik1

(
−U1 + U2

2
δ̂ψ + U1 − U2

2
H [δ̂ψ(k1,·)]

)
.

(22)
This is the linearized equation for the Kelvin-Helmholtz
problem. To solve it, we take the Hilbert transform with respect
to k2 to write

∂

∂t
H [δ̂ψ(k1,·)]

= ik1

(
−U1 − U2

2
H [δ̂ψ(k1,·)] − U1 + U2

2
δ̂ψ

)
. (23)

Defining f = δ̂ψ , g = H [̂δψ(k1,·)], the governing equations
become

∂f

∂t
= ik1

(
−U1 + U2

2
f + U1 − U2

2
g

)
,

∂g

∂t
= ik1

(
−U1 − U2

2
f − U1 + U2

2
g

)
.

Assuming f = Aeλt ,g = Beλt , we find⎛⎜⎜⎝−U1 + U2

2
ik1 − λ

U1 − U2

2
ik1

−U1 − U2

2
ik1 −U1 + U2

2
ik1 − λ

⎞⎟⎟⎠(
A

B

)
=

(
0

0

)
,

from which

λ = −U1 + U2

2
ik1 ± |U1 − U2|

2
|k1|

is obtained as the eliminant. This completely agrees with the
growth rates obtained by more conventional methods based on
classical Bernoulli theorem [14,15]. Note also that this method
is different from the analysis based on the Birkhoff-Rott
equation. This demonstrates the performance of the current
approach.

B. Navier-Stokes regularity issues

Finally, we note an application of the equations for the
vector potentials to smooth fields. We write the Navier-Stokes
equations as

∂ A
∂t

= 3

4π
P.V.

∫
R3

[r × (∇ × A(x′))]r · (∇ × A(x′))
|r|5

× dx′ + ν�A, (24)

where ∇ · A = 0 and r = x − x′. This may be regarded as a
nonlocal version of the Hamilton-Jacobi equations. This form
of the Navier-Stokes equations has a distinctive property that
the dependent variable A is critical in the sense that its physical
dimension is identical to that of kinematic viscosity ν. This
observation of physical nature led Cole to connect the Burgers
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equations with heat equations, resulting in a discovery of the
Cole-Hopf transformation [16,17].

A blowup criterion is known in terms of velocity [18]; we
have

sup
x

|u(x,t)| � c
ν1/2

√
t∗ − t

for a blowup at t = t∗. Conversely, if supx |u(x,t)| is bounded,
the flow remains smooth up to t . We may consider criteria using
dependent variables with reduced order of spatial derivatives.
In the limiting case, we arrive at supx |A|. It is an open problem
to decide whether supx |A| serves as a criterion for a possible
singularity formation in Navier-Stokes flows.

The integral operator in (24) is of zeroth order and has no
smoothing effect. If a solution to the Navier-Stokes equations
blow up, the integrand is divergent and on heuristic grounds
we expect

∂ A
∂t

	 C
ν

t∗ − t
,

leading to

A 	 νCln
1

t∗ − t
,

where C is a positive constant. If this is the case, supx |A|
serves as a blowup criterion. Pursuing the problem using the
tamer variable A may be useful.

VI. SUMMARY AND OUTLOOK

In order to establish a refined version of Bernoulli theorem,
we have derived the evolution equations for the velocity
potential for flows that allow singular vorticity distributions
in two and three dimensions.

In two dimensions, by viewing the equation for the stream
function as an imaginary part, we have derived the equation for
the complex velocity potential. In three dimensions, first we
have derived dynamical equations for the vector potential. By
regarding it as (i,j,k) elements, we have derived an equation
for hypercomplex velocity potential. The equation for the
velocity potential has been identified as its real part.

By allowing singular distributions in the flow field, we
obtain a closed equation for the velocity potential, which is
directly connected to the pressure. In two dimensions, this
equation offers an alternative governing equation in the form

of a partial integrodifferential equation for the meromorphic
complex velocity potential.

The newly obtained equations for complex (or hypercom-
plex) velocity potentials are valid when we have singularities,
such as point vortices in two dimensions and vorticity layers
in three dimensions. They have been applied to the Kelvin-
Helmholtz instability problem in two dimensions.

Some comments on the potential applications of the current
approach may be in order. For inviscid fluids, there are two
quadratic invariants of motion the energy E and the helicity
H [19]:

E = 1

2

∫
|u(x)|2dx = 1

8π

∫∫
ω(x) · ω(x′)

r
dxdx′,

H = 1

2

∫
u · ωdx = 1

8π

∫∫
r · (ω(x) × ω(x′))

r3
dxdx′.

If we consider vortex filaments with strength κi supported on
closed circuits Ci, i = 1,2, . . . ,N , then the invariants take the
following forms:

E = 1

2

∑
i,j

κiκjLij , Lij = 1

4π

∮
Ci

∮
Cj

dsi · dsj

r
,

H = 1

2

∑
i,j

κiκjαij , αij = 1

4π

∮
Ci

∮
Cj

r · (dsi × dsj )

r3
,

where r = xi − xj , xi ∈ Ci, xj ∈ Cj , and dsi is a line
element along Ci . Note that αij denotes the Gauss linking
number and Lij the Neumann mutual inductance. It is of
interest to study this system with the current approach.

There is a similarity between the current method with
the so-called panel methods in aerodynamics, as a branch
of the boundary element method. In panel methods in its
original formulation, distant velocities for steady flow are
represented by a layer of dipoles, e.g., see Sec. 14.1 of [20]. The
current approach covers more general cases in that it describes
nonsteady flows and the types of singularities are not restricted
to dipoles.
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