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Abstract 

The antimicrobial and wear behaviour of metallic glass composites corresponding to the 

Cu50+x(Zr44Al6)50-x system with x=(0, 3 and 6) has been studied. The three compositions consist of 

crystalline phases embedded in an amorphous matrix and they exhibit crystallinity increase with 

increasing Cu content, i.e., decrease of the glass-forming ability. The wear resistance also 

increases with the addition of Cu as indirectly assessed from H/Er and H3/Er
2 parameters obtained 

from nanoindentation tests. These results are in agreement with scratch tests since for the alloy 

with highest Cu content, i.e., Cu56Zr38.7Al5.3, reveals a crack increase, lower pile-up, prone adhesion 

wear in dry sliding and higher scratch groove volume to pile-up volume. Samples with higher Cu 

content revealed higher hydrophilicity. Time-kill studies revealed higher reduction in colony-forming 

units for E. coli (gram-negative) and B. subtilis (gram-positive) after 60 min of contact time for the 

Cu56Zr38.7Al5.3 alloy and all the samples achieved a complete elimination of bacteria in 250 min. 
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1.  Introduction 

Nosocomial infections (i.e., hospital-acquired infections, HAI) and bacterial resistance to antibiotics 

are topics of utmost importance in [1]. For this reason, numerous studies about the economic and 

social impact of HAI have been performed over the years [2-4]. For example, a European survey 

from 2011–2012 estimated that the total annual number of patients with HAI in European acute 

care hospitals was 3.2 million [5]. The most common method to tackle this challenge in hospitals is 

to clean touch surfaces using chemical products. The major drawback is that the large number of 

touch surfaces requires considerable financial resources to ensure proper surface sterilization. In 

this regard, the self-sterilizing behaviour of antimicrobial materials makes them an appealing 

alternative to tackle this issue. Among these materials, Cu is the most frequently used due to its 

efficiency in “contact killing” and therefore it has been used for multiple applications in healthcare 

[6]. The mechanisms behind the antimicrobial activity of Cu are not completely understood yet but 

it is commonly accepted that the release of ions from the surface plays an important role in this 

effect.  

Most of the studies carried out over the years have focused on using Cu and Cu alloys in the 

crystalline state. The major drawbacks for using these materials are their relatively low hardness 

and low wear resistance. These properties can be increased when the alloys are in an 

amorphous/crystalline state (i.e., metallic glass composites) [7, 8]. This can be accomplished by 

developing new alloys with increased glass forming ability (GFA) through alloying Cu with other 

elements, especially with Zr and Al. However, addition of such elements may result in losing part of 

the antimicrobial ability when these elements are non-antimicrobial.  

Bulk metallic glasses (BMGs) exhibit higher yield strength and lower Young´s modulus than their 

crystalline counterparts resulting in higher wear resistance [8]. This has triggered a growing 

interest in designing novel Cu-based BMGs [9] as touch surfaces. Despite the interest in the topic, 

the number of studies dealing with the antimicrobial behaviour of BMGs is still very small. For 

example, Huang et al. [10] studied the antimicrobial effect against the Gram positive bacterium S. 

aureus of Cu-containing Zr-based BMGs. The authors concluded that the number of colony 

forming units (CFU) on Zr-based BMGs after 4 h of moist contact was about one order of 

magnitude lower than on Ti-6Al-4V alloy. From the point of view of the tribological behaviour of 

metallic glasses, there are numerous studies about the interaction of a cylindrical sample and a 

surface (pin-on disc) or the interaction between a diamond tip and the surface (scratch test) when 

the material is either in bulk shape or as thin film [8, 9, 11-14]. However, studies dealing with the 

ability to tune the wear resistance of BMG composites by controlling the formation of intermetallic 

phases are scarce.  

The aim of this study is to control the composition of Cu-rich BMG composites corresponding to the 

Cu-Zr-Al system to tune the volume fraction of the crystalline phase in order to optimize the wear 

resistance and antimicrobial behaviour. For alloys of the Cu-Zr-Al system, the strength and 

hardness is highest in a partly crystalline state [15]. According to Inoue et al. [15], for this alloy 
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system, the hardness increases with increasing volume fraction of crystalline phase up to a 

maximum critical value beyond which it drops. We have therefore explored in this work composites 

with similar volume fraction of crystalline phase to tune the mechanical performance.  

Regarding the antimicrobial behaviour, the performance of Cu is reported to be attributed to the 

release of Cu+ and Cu++ ions, which is favoured by the presence of ion diffusion paths, such as 

grain boundaries, dislocations, etc [16]. The lack of grain boundaries and dislocations in 

amorphous materials does not make them good candidate antimicrobial materials. However, using 

rapid solidification to favour the formation of fine microstructures (ion diffusion paths) generally 

promotes the antimicrobial behaviour, which also explains the interest in developing BMG 

composites with high volume fraction of crystalline phase. Despite alloys corresponding to the Cu-

Zr system with Cu/Zr ratio of 1.5, such as Cu50Zr43Al7 (at. %), exhibit rather high GFA [17], it is also 

true that their GFA is very composition sensitive, i.e., alloys with similar composition exhibit very 

different GFA [18]. This can result in alloys of different degrees of amorphicity even for similar 

composition and therefore could have large effect on the mechanical behaviour [19], which is in 

agreement with our results obtained using nanoindentation and scratch tests. The antimicrobial 

studies of this work have been performed using Gram-positive and Gram-negative bacteria since 

both types of bacteria can be found on touch surfaces and they exhibit different sensitivity against 

Cu ions [20]. Although some authors have previously studied the antimicrobial behaviour of Cu-

containing metallic glasses [10, 21] the possibility of tuning the antimicrobial performance by 

controlling the formation of crystalline phase has been mostly overlooked.  

 

2. Experimental 

Alloy ingots with nominal composition Cu50+x(Zr44Al6)50-x with x=(0, 3 and 6) were prepared from 

elements with purity higher than 99.9 at. %. The master alloys were re-melted three times in a Zr-

gettered high purity argon atmosphere to attain good chemical homogeneity. Rod samples of 2 mm 

in diameter were obtained from the master alloy by copper mould casting in an inert gas 

atmosphere. The structure of the as-cast and thermally-treated samples was studied by X-ray 

diffraction (XRD), using a Bruker D8 diffractometer with monochromated Cu K_radiation (2 

range 20-90, step size = 0.03). The microstructure was investigated with a scanning electron 

microscope (SEM) (Mira FEM-SEM Tescan) equipped with energy-dispersive X-ray (EDX) 

analysis. To identify the microstructures, at least ten EDX microanalysis were performed for each 

of the phases present in each of the three alloys. To evaluate the mechanical properties, cylindrical 

specimens with 2:1 aspect ratio were tested at room temperature under compression at a strain 

rate of 2×10−4 s−1 in a universal Servosis machine. Nanoindentation experiments were performed 

at room temperature at approximately half the radius distance from the centre in a UMIS 

equipment from Fischer-Cripps Laboratories, in the load control mode and using a Berkovich-type 

diamond tip. Prior to the nanoindentation and scratch test the surfaces were mirror-like polished. 

From the large number of indentations performed (more than 20) and the high load applied 
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(300mN) we have sampled all the existing phases and obtained a statistical mean value. A Teer 

Coating Limited scratch tester model ST220 was used for the scratch tests of the mirror-like 

polished samples. The tests were performed at a load of 30 N at a stage speed of 10 mm/min. The 

scratched surfaces (profile and roughness) were analysed using an Alicona profilometer and the 

profiles were obtained averaging 5 measurements. Contact angle measurements were carried out 

using the sessile drop technique, with a Krüss drop size DSA30 analyser and depositing 1 l of 

deinoized water at a rate of 30 /min. 

For initial antimicrobial tests, E. coli strain K12 (Gram-negative) and Bacillus subtilis strain 168 

(Gram-positive) were incubated (30ºC), with shaking (200 rpm), in 25 ml of Mueller-Hinton Broth 

(MHB) for 16 hours. Cultures were diluted in MHB to an optical density (OD600) of 0.01. The diluted 

cultures were incubated at 37ºC until and they reached an OD600 of  0.3. A quantity equal to 1 l 

of the respective cultures was pipetted off directly onto the ground (4000 grit) surfaces of the 

specimen and control (copper and plastic) samples. Inoculated samples were placed inside a petri 

dish containing moist tissue, sealed and statically incubated for 4 hours at 37ºC, after which they 

were diluted in 99 µl of MHB. Samples were serially diluted, plated onto MH agar and resulting 

colonies were counted after 16 hours of incubation at 37ºC. All tests were done in triplicate and 

mean counts reported. Time-kill experiments were done as above, but a lower initial inoculum 

density was used (ca. 1 x 106 cells/ml) and cell counts were taken every hour 60 mins. 

 

3. Results and discussion 

3.1. Microstructure 

Fig. 1 shows the XRD scans of 2 mm diameter rods of Cu50+x(Zr44Al6)50-x (x=0, x=3 and x=6). For 

the Cu50Zr44Al6 alloy high intensity peaks associated to orthorhombic Cu10Zr7 (a = 0.9347 nm, b = 

0.9347 nm, c = 1.2675 nm), orthorhombic Cu8Zr3 (a = 0.78686 nm, b = 0.81467 nm, c = 0.9977 

nm), B19’ CuZr martensite and also probably austenite B2 CuZr are detected and superimposed 

on a broad halo suggesting that along with the crystalline phases an amorphous phase is present. 

For the Cu53Zr41.4Al5.6 alloy, the intensity of the broad halo decreases while the intensity of the XRD 

peaks, especially those detected at around 40°, increase. A larger number of peaks associated to 

Cu10Zr7 and Cu8Zr3 are also observed. Finally, for the alloy with highest content Cu content (i.e., 

Cu56Zr38.7Al5.3), the broad halo is practically undetectable and the peaks corresponding to Cu10Zr7 

and Cu8Zr3 further increase in intensity, especially the one at about 41.5º. The peaks also tend to 

get narrower, suggesting growth of the crystallite size and additional peaks corresponding to CuZr 

phases, both austenite B2 and martensite B19´, are detected. These results show that, in general, 

the number and intensity of the XRD peaks tend to increase and the intensity of the broad halo to 

decrease with increasing Cu content thus suggesting a decrease in the glass forming ability (GFA). 

The detection of these phases is consistent with previous works on other ZrCu-based BMG 

composites [22-24]. The formation of the stable intermetallic phases Cu10Zr7 [25], Cu8Zr3 and CuZr 
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could be due to strong interaction of Cu and Zr atoms since the enthalpy of mixing (ǻH
mix

) of Zr-Cu 

pair is -23 kJ/mol, stronger than the Cu-Al pair (ǻH
mix 

=-1 kJ/mol) [26].  

To better understand the differences between the three alloy compositions, the microstructures 

were also investigated by scanning electron microscopy at different magnifications. Fig. 2 shows 

the general backscattered SEM images from the cross section of the 2 mm diameter rods of the 

three compositions, acquired at half the radius distance from the centre. For the Cu50Zr44Al6 alloy 

(Fig. 2a), dendrites of different sizes are observed. The brightness of the dendrites tend to get 

darker with increasing size and the are slightly darker than the matrix. For the alloy Cu53Zr41.4Al5.6 

(Fig. 2b) the microstructure changes dramatically since most of the crystalline phases consist of 

large and well-developed dendrites with arms of up to 10 m length. However, small round 

crystalline phases of about 1m homogeneously dispersed in the matrix and also located around 

the dendrites are also present. Not only the size of the dendrites have grown with increasing Cu 

addition, due to the decrease of the GFA, but also the surrounding clear phase associated to CuZr 

has grown and they follow a growth process similar to that previously observed [27]. At this stage 

the volume fraction of crystaline phase seems to be large enough to reach the percolation 

threshold (i.e., volume fraction of the crystalline phase beyond which connectivity between them 

first appears). The alloy with highest Cu content, Cu56Zr38.7Al5.3 (Fig. 2c) exhibits, at the half radius 

distance from the centre, a very similar microstructure to that of the alloy with 53 at. % Cu but the 

dendrites are more evolved. This confirms the decrease of the GFA with increasing Cu content. 

For this composition, and contrary to the alloys with 50 and 53 at. % Cu, no featurless matrix is 

observed and therefore it appears to be fully crystalline. At this stage, the connectivity between the 

crystalline phases is practically continuous. The effect of the percolation on the mechanical 

performance will be analysed in more detail in section 3.2.2. (scratch tests). 

The volume fraction of the crystalline phases present for each composition have been estimated 

from Fig. 2 since these show representative microstructures. The large difference in tonality among 

the crystalline phases enables to estimate their volume fraction: Cu50Zr44Al6 (10 % dendrites), 

Cu53Zr41.4Al5.6 (15 % Cu8Zr3, grey particles 5 % CuZr and white halo 15 % Cu10Zr7) and 

Cu56Zr38.7Al5.3 (40 % Cu8Zr3, grey particles 10 % CuZr and white matrix 50 % Cu10Zr7). The 

percolation threshold (i.e., the volume fraction of crystalline phase for which connectivity first 

appears) is close to that of the composition Cu53Zr41.4Al5.6 and therefore is consistent with the 35 % 

threshold previously reported [28] and this value also is within the range of 30 to 50 % observed by 

Pauly et al. [22]. 

To more clearly identify the crystalline structure of the three alloys, the microstructure at the middle 

radius has been observed at higher magnification (backscattered SEM images of Fig. 3). The 

composition (i.e., at. % Cu, Zr and Al) of the phases labelled on Fig. 3 are listed on Table 1.  

For the Cu50Zr44Al6 alloy (Fig. 3a) dendrites of sizes ranging from less than 1m up to 3 m 

homogeneously dispersed in the matrix are observed. The composition of the large dendrites 

(phase 2a) is Cu50.2Zr35.4Al14.5 at. %, slightly richer in Cu and poorer in Zr than the nominal 
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composition. The Cu/Zr ratio of the large dendrites is about 1.4, and therefore could be attributed 

to Cu10Zr7. The composition of the surrounding matrix, phase 1a (Cu54.3Zr40Al5.6 at. %) is closer to 

the nominal composition and the small differences could be mainly ascribed to the potential 

influence of surrounding small dendrites. These results are consistent with the XRD scans since 

most of the XRD peaks could be attributed to Cu10Zr7. The small intensity peaks corresponding to 

the CuZr phase detected in the XRD scan may be attributed to the  small dendrites (compositional 

analysis was not performed due to their small size) and would indicate that the dendrites get 

enriched in Cu as they grow. 

The intermediate Cu53Zr41.4Al5.6 alloy consists basically of 4 phases of different tonality (Fig. 3b). 

The darkest phase corresponds to the dendrites (phase 3b), which exhibits a complex 

microstructure that seems to consist of two very fine phases of different colour. The composition of 

the dendrites is Cu58.7Zr32.5Al8.8 at. %, however, no ternary intermetallic of similar composition has 

been reported in the literature [29].This suggests that the composition obtained is the result of the 

two fine phases present in the dendrite. These phases would correspond to the intermetallics 

Cu8Zr3 and Cu10Zr7 detected by XRD (Fig. 1). In fact the Cu/Zr ratio for Cu58.7Zr32.5Al8.8 

(58.7/32.5=1.79) is intermediate between that of Cu8Zr3 (2.66) and Cu10Zr7 (1.43). The Al content 

of the dendrites (i.e., 8.8 at. %) is higher than that of the nominal composition of the alloy (i.e., 5. 6 

at. %) thus suggesting that it remains in solid solution. The extension of this solid solution solubility 

would have been promoted by the rapid cooling fabrication process [30]. 

Close to the dendrites there are geometric particles (phase 2b) with a composition of 

Cu42.5Zr46.2Al11.3 at. %. The similar content in Cu and Zr suggest that these particles correspond to 

CuZr, one of the phases detected by XRD. Most of the dendrites and the geometric particles are 

surrounded by a halo of clear tonality (phase 4b) with a composition of Cu53.5Zr42.7Al3.9 (at. %), 

which is poorer in Al than the nominal composition of the Cu53Zr41.4Al5.6 alloy. These results 

suggest that the nucleation and growth of Cu8Zr3 and CuZr phases occur with absorption of Al from 

the surrounding matrix, leaving the halo poor in Al. The composition at the matrix and far from the 

dendrites (phase 1b) is Cu55Zr39.4Al5.7 at. %, i.e., very close to the nominal composition, suggesting 

that this corresponds to the amorphous matrix. 

For the alloy with highest Cu content, i.e., Cu56Zr38.7Al5.3 (Fig. 3c), the dendrites exhibit a very 

homogeneous dark tonality, although in some areas very small white particles are also present. 

The composition of the dendrites (phase 3c) according to the EDX microanalysis is Cu61.2Zr28.3Al10.5 

(at. %) with a Cu/Zr ratio of about 2.16, much closer to that of Cu8Zr3 (2.66) than to Cu10Zr7 (1.43). 

This suggests that the volume fraction of Cu8Zr3 phase inside the dendrites is higher than that of 

Cu10Zr7 phase. The results also show that the dendrites get richer in Cu with increasing content in 

Cu of the alloy.  The geometric particles of grey colour (phase 2c) have similar content in Cu and 

Zr and therefore they can be associated to CuZr. All these particles are embedded in a matrix 

(phase 1c) with composition Cu55.3Zr42.3Al2.4 (at. %), similar to the composition of the halo present 

in the alloy containing 53 at. % Cu and could be attributed to Cu10Zr7. These phases detected are 

similar to those observed by Yokoyama et al. [31] for alloys corresponding to the ZrCuAl system. 
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These results suggest that as the GFA decreases with increasing Cu content, the halo surrounding 

the dendrites expand until they collide and constitute the matrix. Finally, very dark spots distributed 

mostly at the grain boundaries and interfaces are observed. These spots would correspond to 

holes because according to the microanalysis no difference in composition with the surrounding 

matrix could be detected. For all the compositions, the results from microanalysis are consistent 

with differences in atomic weight of the elements (Cu: 63.546, Zr:91.224 and Al:26.9815) [32] 

where a brighter backscattered image indicates a higher concentration of high atomic weight 

elements. The order from brightest to darkest is thus: Zr1/Cu1 (Cu1Zr1)>Zr7/Cu10 (Cu10Zr7)>Zr3/Cu8 

(Cu8Zr3). 

 

3.2. Mechanical behaviour 

The mechanical behaviour of the alloys with 50, 53 and 56 at. % Cu were initially evaluated from 

compression tests. All the compositions were found to be brittle (i.e., the samples fractured in the 

elastic region) and therefore probably failed before the yield stress was reached (data not shown). 

Multiple step drops were detected in the elastic region upon loading, indicating the presence of 

internal flaws, probably porosity. This suggests that uniaxial compression is not a good technique 

to measure certain mechanical properties of these materials and therefore a more local technique 

where small sample volumes are involved in the deformation, was required. Nanoindentation is an 

excellent technique in such circumstances [33]. Furthermore, the wear resistance was assessed 

using scratch testing to compare the performance of the different alloys. 

 

3.2.1. Nanoindentation tests 

The mechanical behaviour of the three different investigated compositions was characterized by 

nanoindentation with a maximum load of 300 mN, large enough to sample all the crystalline 

phases and get average values of the different mechanical properties. Fig. 4 shows representative 

load-displacement (P-h) curves obtained at half the radius of the disk´s cross-section. The 

maximum displacement hmax decreases with increasing the Cu content from hmax=1.485 m for 

Cu50Zr44Al6 to 1.372 m for Cu56Zr38.7Al5.3. This can be ascribed to the increasing volume fraction of 

brittle and mechanically hard intermetallic phases. Remarkably, clear pop-in events are observed 

for the samples containing an amorphous fraction (i.e., 50 at.% and 53 at.% Cu) (see inset), which 

are indicative of shear band activity governing the deformation behaviour of these materials [34, 

35]. 

Table 2 lists the values of the parameters H, Er, H/Er, H
3/Er

2 and hmax for the studied alloys. The 

hardness increases from 8.46 GPa for Cu50Zr44Al6 to 10.15 GPa for Cu56Zr38.7Al5.3 alloy while for the 

intermediate composition (i.e., Cu53Zr41.4Al5.6) the hardness is 9.37 GPa, closer to Cu56Zr38.7Al5.3 

than to Cu50Zr44Al6. These results are consistent with the XRD scans (Fig. 1) since the degree of 

crystallinity for Cu56Zr38.7Al5.3 and Cu53Zr41.4Al5.6 alloys is closer to each other than from Cu50Zr44Al6 

alloy. The hardness is larger than those reported for Zr-based metallic glasses [36, 37] and ZrCu-

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

8 

 

based metallic glasses [38]. The increase of hardness H with the Cu content is presumably 

associated to the brittle and hard Cu10Zr7, Cu8Zr3 intermetallic phases in Cu50Zr44Al6 since for 

Cu50Zr50 the hardness at 300 mN (using the same experimental setup) was reported to be of only 

about 6 GPa [39]. 

The values of maximum displacement also agree with the hardness trend since an increase in 

hardness involves a lower ability to plastic deformation. Another important listed parameter is the 

contact modulus Er, which gives information about the stiffness of the contact between the sample 

and the indenter tip. The values increase from 108 to 123 GPa as the content of Cu increases from 

50 to 56 at. %. For the intermediate composition, the value of Er (i.e., 121 GPa) is closer to that of 

Cu56Zr38.7Al5.3 than to Cu50Zr44Al6, which agrees with the relatively large fraction of crystalline 

phases in both samples. Nonetheless, this behaviour could also be attributed, at least in part, to 

differences in the composition since the Young´s modulus of Cu (i.e, ECu =130 GPa), is higher than 

that of Zr and Al (EZr=68 GPa, EAl=70 GPa) [40]. The value of Er for Cu50Zr44Al6 is not far from 

112.5 GPa, previously reported for an alloy with similar composition [38]. These materials could 

also potentially exhibit good tribological performance, given their high H values and the bright 

appearance obtained after polishing their surfaces. In order to estimate the wear resistance, the 

values of H/Er [41] and H3/Er
2 [42] were assessed since these parameters have been reported to 

be more representative of the wear resistance than the hardness itself. The parameter H/Er
2 

indicates the resistance to plastic deformation [43] and its dependence with the Cu content 

correlates well with that of the displacement values hmax from nanoindentation tests.  The values of 

both H/Er
2 and H3/Er

2 increase with increasing the Cu content. H/Er
2 increases from 0.078 to 0.082, 

for Cu50Zr44Al6 and Cu56Zr38.7Al5.3 alloys, respectively, while H3/Er
2 increases from 0.052 to 0.069. 

These results suggest that the wear resistance of Cu50+x(Zr44Al6)50-x alloys should be maximum for 

the most crystalline composition, i.e., Cu56Zr38.7Al5.3. Hence, this behaviour can be associated with 

the nature and volume fraction of the crystalline phases in each composition.  For further 

assessment of the wear resistance, scratch tests were also performed. 

 

3.2.2. Scratch tests 

In order to assess the wear behaviour of the different compositions scratch tests were performed at 

approximately half the radius distance from the centre. It is important to take into consideration that 

in scratch tests the deformation is more complex than in indentation since the material is not only 

subjected to a compressive load normal to the surface but simultaneously a shear load is acting 

parallel to the scratch direction. The temperature rise upon scratching has not been measured but 

considering the low sliding speed (10 mm/min) and low applied load (30 N) no crystallization is 

expected [44, 45]. This is especially true for alloys corresponding to the Cu-Zr-Al system since they 

exhibit high glass transition temperature (above 400ºC) [46]. 

Differences in wear behaviour among the three compositions were analysed from the morphology 

of the scratches and the cross section profile as shown in Fig. 5. For each composition the pile-up 

size, groove depth at the centre and the maximum depth, the average (Ra) and total roughness 
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(Rz) are indicated in the figure. Fig. 5a shows that the scratch for Cu50Zr44Al6 alloy contains multiple 

lateral cracks in the pile-up separated at a distance of about 25 to 50 m from each other. The 

cracks are relatively short (up to about 50 m) and do not seem to propagate beyond the pile-up 

width. For the Cu53Zr41.4Al5.6 alloy (Fig. 5b) the density of cracks growing from the scratch is much 

smaller and the distance from each other is larger. In addition, they are not confined to the pile-up 

but propagate larger distances, up to 150 m. The largest cracks are detected for the composition 

Cu56Zr38.7Al5.3 alloy since they extend well beyond 200 m and the crack density is also larger than 

for Cu53Zr41.4Al5.6 alloy. Finally, for the composition Cu56Zr38.7Al5.3 (Fig. 5c) the cracks are not only 

longer (they extend well beyond 200 m) but their density is also higher (distance from each other 

from about 50 to 100 m). Moreover, the cracks also propagate towards the inner part of the track 

as shown in the detail (red square). This feature is similar to the brittle tensile cracking observed by 

Bull [47] and therefore the results suggest that the composition Cu56Zr38.7Al5.3 is very brittle. From 

crack analysis it can be clearly observed that the samples embrittle as the Cu content increases. 

For each composition, along with the microscopy images, the 2D cross sectional profiles are 

shown (left panels). The horizontal red line corresponds to the substrate level and it is used as 

reference to measure the pile-up height (maximum) and groove depth, i.e., the depth of the track at 

the centre and maximum depth of the track. All these values have been obtained from 5 different 

measurements at about half the radius distance from the centre. For the Cu50Zr44Al6 alloy the 

height of the pile-up is 4.131.98 m while the depth of the groove at the centre and at the 

maximum depth are 14.081.20 and 22.203.95, respectively. However, as the alloy becomes 

richer in Cu (Cu53Zr41.4Al5.6 composition in Fig. 5b), the height of the pile-up gets smaller and the 

groove depth at the centre and at the maximum depth increase slightly. The maximum height of 

the pile-up is only about 2.651.71 m while the depth at the centre and maximum depth reach 

20.107.1 m and 31.17.08 m, respectively.  

For the alloy with the highest content, Cu56Zr38.7Al5.3 (Fig. 5c), the height of the pile-up decreases 

slightly to 2.100.84 m while the groove depth at the centre (20.002.02 m) and maximum 

deepth (31.425.56 m) are very similar to those observed in Cu53Zr41.4Al5.6 alloy. Differences can 

be also analyzed in terms of scratch groove volume to pile-up volume for the three compositions. 

The values are 5-6 for Cu50Zr44Al6, 15-16 for Cu53Zr41.4Al5.6 and 40-41 for Cu56Zr38.7Al5.3. These 

results are consistent with the trend from XRD scans (Fig. 1) and SEM results (Fig. 2), since a 

small copper increase from 50 to 53 at. % changes the microsctructure dramatically while from 53 

to 56 at. % Cu microstructural diffences relatively small. However, the pile-up height and groove 

depth difference for the alloys with highest content of copper are negligible since they are within 

the error tolerance. The roughness of the groove surface at the track is significant and differences 

for the three compositions have been analyzed. Fig. 5b and 5c show that the profile is more abrupt 

than in Fig. 5a due to the local presence of narrow deep pits and suggests that alloys containing 53 

and 56 at. %  Cu  are more prone to adhesive wear upon dry sliding. The last two compositions not 

only exhibit higher maximum depth than that of Cu50Zr44Al6 alloy but also, the difference of distance 
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between the maximum depth and the depth at the centre is 11 m versus 8 m for Cu50Zr44Al6, 

suggesting that the groove is steeper due to the abrasion generated when the intermetallic  

particles are dragged. In any case, the profiles for the different compositions show common 

features, i.e., the groove depth at the centre of the track is generally smaller than at both sides 

probably because the brittle intermetallic particles (abrasive debris) pulled out by the tip tend to 

slide to both sides of the tip upon scratching and they are afterwards dragged along the track. 

To better assess differences of wear mechanism among the three compositions, the morphological 

features from the track surface have been analyzed in detail (see magnified SEM images of Fig. 6). 

For each composition representative 2D cross sectional profiles obtained along the track centreline 

for a distance of 100 m are also shown, but SEM images where taken from a smaller and 

representative distance. The alloy containing 50 at. % Cu (Fig. 6a) exhibits a relatively smooth 

smeared groove surface without signs of abrasion and  consisting of a wavy profile (see inset) with 

roughness features ranging from a maximum of hight of 2 m to a minimum depth of -1 m. These 

features suggest ductile plowing and plasticity [48]. As the composition gets richer in Cu, the 

groove surface tends to turn rougher. For the composition Cu53Zr41.4Al5.6 (Fig. 6b) clear signs of 

significant detachment outlined by a sharp contour (chipping) (see small arrows) is observed, 

suggesting that adhesive transfer to the diamond tip has taken place. Small pits of about 1 m size 

are also detected (wider arrow) which could be associated to the pulling out of the intermetallic 

particles due to adhesion of these particles to the diamond tip upon scratching. These results 

suggest that the particle-matrix interface is relatively weak. While the dendritic particles exhibit a 

rough enough contour to remain mechanically attached to the matrix, those particles that exhibit 

rather rounded shapes can slide and be pulled out more easily.  

The cross sectional profile (inset of Fig. 6b) exhibits a more rough pattern with grooves that tend to 

be deeper than for Cu50Zr44Al6 alloy (for the representative profile of Fig. 6b the groove can be as 

deep as 3 m). The large area of transferred particles are smeered across the surface as they are 

dragged forward by the scratch diamond leading to some surface roughnening and adhesive wear. 

The smaler intermetallic particles are harder and generate abrasive damage as they slide across 

the surface. 

For Cu56Zr38.7Al5.3 alloy (Fig. 6c) signs of detachment (small arrow) and pits (large arrow) are also 

detected observed but the volume fraction of pits is larger and the surface is more grooved than for 

the Cu53Zr41.4Al5.6 alloy, which is consistent with the presence of a larger volume fraction of brittle 

crystalline phases. Additionally, microcracks are oberved across the track. There is also evidence 

for smearing of material along the sample surface in the track. These features suggest that the 

material has been subjected to adhesive wear, although abrasive wear also takes place as 

deduced from the grooved surface similarly to that observed in Zr-based BMGs [49].  

The roughness of the profile becomes even more prominent with maximum groove depth up to 

about 7 m (see inset). Comparing the amplitude and spacing of the serrations one can observe 

that they tend to increase with increasing copper content. 
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It is interesting to observe that the depth of the grooves shown in Fig. 5 is larger for the alloys 

which are more brittle (highest Cu content). A priori, one might expect that the wear resistance 

should be higher in the mechanically harder alloys (i.e., Cu-rich), where the track depth should thus 

be smaller. This is opposite to our observations. This inconsistency with the hardness results 

(Table 2) can be attributed to the differences in the stress conditions of the material upon 

indentation and scratching (compression and shear forces). Namelly, scratching is more sensitive 

to the properties of the matrix and the amount (and size) of precipitates, since a softer matrix would 

easily allow easier dragging of the precipitate particles. For Cu56Zr38.7Al5.3 the size of the crystalline 

particles (dendrites and rounded particles) is larger, they are very abundant and detach more 

easily from the matrix than for the alloys depleted in Cu and the precipitate particles tend to dettach 

more easily in this case, causing larger grooves. The complexity of the microstructure for these 

alloys could explain the co-existence of multiple wear mechanisms. Cu50Zr44Al6 (i.e., ductile 

plowing and plasticity detected as a smeared surface), Cu53Zr41.4Al5.6 (i.e., adhesive wear with 

some abrasive wear and stripping) and Cu56Zr38.7Al5.3 (i.e., highest adhesive wear and highest 

stripping along with similar abrasive wear to Cu53Zr41.4Al5.6 alloy). As far as the authors are 

concerned there is a lack of literature available for scratch tests using diamond tip of BMG 

composites for this alloy system and therefore it is difficult to compare the data. 

The percolation threshold for these composites is not far from that of Cu53Zr41.4Al5.6 (35 vol. %) 

which could mainly explain the large difference in mechanical performance and wear mechanism 

between the alloys containing 50 to 53 at. % Cu (Fig. 6a and b). Once the percolation threshold is 

achieved it is known that the crystalline phases of the material loses its ductility causing an abrupt 

change in the mechanical properties of the metallic glass [50]. As the critical crystallinity is 

reached, the viscosity and elastic modulus of the alloys increases suddenly, while the fracture 

stress, yield strength and ultimate strength are reduced [50, 51]. This effect is in agreement with 

the results obtained in nanoindentation and scratch tests. As the Cu 53 at. % alloy reaches the 

percolation threshold, the Young’s modulus increases to 121 GPa, in contrast with the 108 GPa 

obtained in the Cu 50 at. % alloy. However, for 53 and 56 at. % Cu the connectivity between the 

crystalline phases is not that different as could be inferred from the similar morphology of the track 

(Fig. 6b and 6c) and the small increase in the reduced Young’s modulus (123 GPa). At the same 

time, the increase in crystalline volume fraction leads to the embrittlement of the material, 

demonstrated by the appearance of cracks and lower pile up for the 53 and 56 at. % Cu alloys. 

The embrittlement enhancement when percolation of the crystalline phase takes place suggests 

that the intermetallic phases are inherently brittle [28].  

 

3.3 Wettability and Antimicrobial tests 

To assess the potential interest of these alloys for antimicrobial applications not only antimicrobial 

tests were performed but also the wettability was studied since this provides useful information 

about the ability for bacterial adhesion on surfaces [52]. The wettability can be analysed by 

measuring the contact angle of sessile droplets. Fig. 7 shows the average water contact angle on 
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the three alloys: 101.8 for Cu50Zr44Al6, (Fig. 7a), 99.8 for Cu53Zr41.4Al5.6, (Fig. 7b) and 90.2 for 

Cu56Zr38.7Al5.3 (Fig. 7c). The angle 101.8 is not far from 106.6 detected in a fully amorphous 

Cu48Zr42Ti4Al6 at. % metallic glass thin film [53]. The decrease of the contact angle suggests that 

the material becomes more hydrophilic with increasing Cu content and therefore this should favour 

the adhesion of bacteria on the surface. This large effect is probably mostly associated with a 

change in the crystallinity rather than compositional change since similar differences in contact 

angle are reported when comparing Zr-based and Cu-based metallic glasses [53], i.e., alloys with 

very different compositions. However, the differences in Cu-content for the Cu-Zr-Al alloys studied 

here is of only 6 at. %. 

The antimicrobial behaviour of the alloys was assessed from reduction in bacterial cells over the 

time for different initial bacterial densities. When 2.4 x 108 bacterial cells were applied to the 

surface of the samples, there was no reduction observed with sample Cu50Zr44Al6 when compared 

to the control samples. After 4 hours of contact with the Cu53Zr41.4Al5.6 sample, E. coli and B. subtilis 

numbers were reduced by ca. 50% and 70% respectively. The Cu56Zr38.7Al5.3 sample reduced cell 

numbers by ≥ 90% for both species (results not shown). For initial inoculum density of ca. 1x106 

cells/ml, the time-kill curves were obtained for Cu53Zr41.4Al5.6 and Cu56Zr38.7Al5.3 samples up to 250 

min (Fig. 8). Both alloys displayed a > 3-log10 reduction in colony-forming units (cfu)/ml which is 

consistent with a bactericidal mode of action and with studies investigating bacterial surface 

contact with copper containing materials [54, 55]. In this study, E. coli was less resistant to contact 

killing than B. subtilis. This observation agrees with mode-of-action studies for copper-mediated 

killing of E. coli and B. subtilis, as B. subtilis produces endospores that are resistant to copper alloy 

surface killing [56]. The antimicrobial mode of action of copper is described as being reliant on 

three key properties: 1) copper oxidizes in air of moderate humidity, 2) the copper oxides formed 

are soluble in the aqueous phase, and 3) the copper ions are toxic to bacteria resulting in damage 

of intracellular components [57]. The antimicrobial properties of the samples investigated in this 

study are explained by their differing microstructures: the samples become more crystalline as the 

copper content increases, which should favour the release of Cu+ and Cu++ cations through easier 

diffusion paths in crystalline than in amorphous structures. Furthermore, as the copper content 

increases, the samples become less hydrophobic and therefore the bacteria-surface contact area 

increases resulting in an improved rate of killing (Fig. 8).  The findings in this study suggest that 

increasing the antimicrobial properties of copper metallic glass composites can be achieved by 

manipulating the microstructure of the alloy through composition control. Among the three 

compositions studied, maximum antimicrobial behaviour and wear resistance is attained by the 

Cu56Zr38.7Al5.3 composition and therefore it could be potentially interesting for the healthcare sector 

for which optimum performance is desired. 

 

4. Conclusions 

In this study, the antimicrobial activity and tribological behaviour of Cu-based BMG composites 

were investigated. The presence of an increasing content of hard intermetallic phases in the 
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Cu53Zr41.4Al5.6 and Cu56Zr38.7Al5.3 alloys results in an increasing embrittlement of the Cu50Zr44Al6 

alloy. This is suggested by the cracks, lower pile-up, prone adhesion wear in dry sliding and higher 

scratch groove volume to pile-up volume revealed in the scratch test. The wear resistance also 

increases with increasing Cu content as indirectly assessed from H/Er and H3/Er
2 parameters. The 

results from the sessile drop technique show lower contact angle values with increasing Cu 

content, which favours adhesion of bacteria to the substrate. The Cu56Zr38.7Al5.3 alloy shows 

improved increase in contact killing for B. Subtilis and E. Coli during the first hour of interaction, 

which can be useful to prevent bacteria spreading on touch surfaces. 
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Figures captions 

 

Fig. 1. XRD scans for samples (a) Cu50Zr44Al6  (b) Cu53Zr41.4Al5.6 and (c) Cu56Zr38.7Al5.3 alloys. 

 

Fig. 2. Backscattered SEM images taken from the middle radius for a) Cu50Zr44Al6, (b) 

Cu53Zr41.4Al5.6 and (c) Cu56Zr38.7Al5.3 alloys. 

 

Fig. 3. Magnified backscattered SEM images taken from the middle radius for a) Cu50Zr44Al6, (b) 

Cu53Zr41.4Al5.6 and (c) Cu56Zr38.7Al5.3 alloys. 

 

Table 1. Composition in at. % of the areas labelled on Fig. 3 and phases to which they can be 

attributed. 

 

Fig. 4. Load-displacement (P-h) nanoindentation curves for a) Cu50Zr44Al6 (b) Cu53Zr41.4Al5.6 and (c) 

Cu56Zr38.7Al5.3 alloys. 

 

Table 2. Summary of the mechanical properties of the Cu50Zr44Al6. Cu53Zr41.4Al5.6 and Cu56Zr38.7Al5.3 

alloys after nanoindentation using a maximum load of 300 mN. The values of hardness (H), 

reduced Young´s modulus (Er), H/Er , H
3/Er

2 ratios and maximum indentation depth (hmax) are given 

in the table. 

 

Fig. 5. Images showing the scratches at the middle radius of the samples a) Cu50Zr44Al6 (b) 

Cu53Zr41.4Al5.6 and (c) Cu56Zr38.7Al5.3 alloys along with their corresponding 2D cross sectional 

profiles and numerical values. 

 

Fig. 6. Images showing the central area of the scratches at the middle radius of the samples a) 

Cu50Zr44Al6 (b) Cu53Zr41.4Al5.6 and (c) Cu56Zr38.7Al5.3 alloys along with their corresponding 2D cross 

sectional profiles and numerical values. 

 

Fig. 7. Average water contact angle on Cu-Zr-Al alloys (a, b and c).  

 

Fig. 8. Time-kill curve of E. coli K12 and B. subtilis 168 exposed to Cu-Zr-Al alloys for up to 250 

min.  
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Fig. 4 
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Fig. 5 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

24 

 

 

 

Fig. 6 
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Fig. 7 
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Fig. 8 
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Table 1 

 

 

  
 

1a 

Matrix 

1b 

Matrix 

1c 

Halo 

2a 

Large 

Dendrites 

2b 

Geometric  

particles 

2c 

Geometric  

particles 

3b 

Dendrites 

3c 

Dendrites 

4b 

Halo 

Cu 54.3±0.3 55.0±0.6 55.3±0.7 50.2±0.8 42.5±3.0 39.6±1.8 58.7±3.0 61.2±1.2 53.5±1.0 

Zr 40.0±0.3 39.3±1.2 42.3±0.7 35.4±1.3 46.2±2.8 48.1±1.3 32.5±3.3 28.3±1.1 42.7±0.8 

Al 5.6±0.3 5.7±0.7 2.4±0.4 14.5±0.5 11.3±1.3 12.3±0.6 8.8±0.5 10.5±0.2 3.9±0.7 

Phase  
Nominal 

composition 

Nominal 

composition 
Cu10Zr7 Cu10Zr7 CuZr CuZr 

Cu8Zr3 

+Cu10Zr7 
   Cu8Zr3 Cu10Zr7 
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Table 2 

 

 

Property Cu50Zr44Al6 Cu53Zr41.4Al5.6 Cu56Zr38.7Al5.3 
H(GPa) 8.460.45 9.370.28 10.151.87 
Er (GPa) 107.963.57 121.191.87 123.366.89 

H/Er 0.0780.007 0.0770.003 0.0820.020 
H3/Er

2 (GPa) 0.0520.006 0.0560.007 0.0690.046 
hmax (m) 1.4850.035 1.4030.017 1.3720.081 
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Highlights 

 

- The wear resistance increases with the addition of copper from 50 to 56 at. %. 

 

- The contact angle values decrease with increasing Cu content. 

 

- Maximum antimicrobial behaviour and wear resistance is attained by the 

Cu56Zr38.7Al5.3 composition.  
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