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Study of the Navier-Stokes regularity problem with

critical norms
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Abstract. We study the basic problems of regularity of the Navier-Stokes equations.

The blowup criteria on the basis of the critical H1/2-norm, is bounded from above

by a logarithmic function, Robinson, Sadowski and Silva (2012). Assuming that the

Cauchy-Schwarz inequality for the H1/2-norm is not an overestimate, we replace it by

a square-root of a product of the energy and the enstrophy. We carry out a simple

asymptotic analysis to determine the time evolution of the energy. This generalises

the (already ruled-out) self-similar blowup ansatz. Some numerical results are also

presented, which support the above-mentioned replacement. We carry out a similar

analysis for the four-dimensional Navier-Stokes equations.
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1. Introduction

In this paper we will be concerned with the fundamental problems of the incompressible

Navier-Stokes equations, which read in standard notations

∂u

∂t
+ (u · ∇)u = −∇p+ ν△u, (1)

∇ · u = 0 (2)

with smooth initial data with finite total kinetic energy in R
n, where n = 3 or 4.

The seminal paper of Leray, which initiated mathematical study of the Navier-

Stokes equations [23], has established global existence of weak solutions and local

existence of classical (i.e. smooth) solutions. It has also provided some criteria that

monitor a possible onset of singularity. In spite of lots of effort made since then, we do

not know whether smoothness persists for long time for large initial data.

There are a number of criteria known for possible blowup of solutions at t = t∗, e.g.

by the maximum of velocity magnitude

sup
x

|u(x, t)| ≥ c
ν1/2

√
t∗ − t

or, by the total enstrophy
∫

R3

|ω|2dx ≥ C
ν3/2

√
t∗ − t

.

Hereafter, c, C and so on denote positive constants, which may take different values.

These are subcritical (see below for definition) and specific time-dependence is known for

their lowerbounds, which happens to be the same time-dependence (t∗− t)−1/2. Thanks

to recent progress, blowup criteria are also known for critical norms, such as the L3-

norm and the H1/2-norm. For those critical norms, no specific power-law lowerbounds

are specified, but transcendental (typically, logarithmic) time-dependence is expected.

A possible blowup which satisfies

∫

R3

|ω|2dx ≤ C ′
ν3/2

√
t∗ − t

is called Type I, e.g. [31]. In other words, this class of singularity blows up on the same

order as the ordinary differential inequality predicts, which we denote by

∫

R3

|ω|2dx ≃ ν3/2

√
t∗ − t

.

Any blow-up other than Type I is called Type II. These terminologies have come

from study of Ricci curvature equations. Type I singularities have been ruled out for

axis-symmetric Navier-Stokes equations [31], however, they have not been excluded for

general settings.
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The rest of this paper is organised as follows. In Section 2, we review scale-

invariance and known criteria of blowup for the Navier-Stokes equations. In Section 3,

we recast the well-known enstrophy bound in a form suitable for an asymptotic analysis.

In Section 4, a simple asymptotic theory is presented under the above assumption for the

three-dimensional case. In Section 5, a similar analysis is done for the four-dimensional

case. In Section 6, we give some numerical results in the three-dimensional case. Section

7 is devoted to a summary.

There is a large amount of literature on the mathematical problems of the Navier-

Stokes equations: articles include [21, 15, 1, 20, 17, 8, 28, 16, 26, 22, 35] and books

[36, 5, 9, 14, 34]. For applied mathematical interests, see e.g. [12, 27, 30].

2. Scale-invariance and criticality

2.1. Scale-invariance

We begin by reviewing concepts of scale-invariance and criticality. It is well-known that

the Navier-Stokes equations are invariant under the scaling transforms

x → x/λ, t → t/λ2,

u(x, t) → U (ξ, τ) ≡ λ−1u(x/λ, t/λ2),

p(x, t) → P (ξ, τ) ≡ λ−2p(x/λ, t/λ2),

where λ is a positive parameter. Under the transformations

x = λξ, t = λ2τ ,u = λ−1U ,

the Lq-norm is transformed as
∫

|u|qdx = λn−q

∫

|U |qdξ.

The norm is called supercritical if q < 3, subcritical if q > 3 and critical if q = 3 in

three-spatial dimensions (n = 3). The L3-norm has the physical dimension of ν3.

In three dimensions, the (squared) H1/2-norm

H =

∫

|Λ1/2u|2dx ≡
∫

u · Λudx ≤
(∫

|u|2dx
∫

|ω|2dx
)1/2

is also critical, whose physical dimension is the same as that of ν2. Here Λ = (−△)1/2

denotes the Zygmund operator with its Fourier transform defined by |k|, where k is

wavenumber. We note that an inequality of the form

u · Λu ≥ Λ
|u|2
2

(3)

holds in R
3 and T

3 [7]. We also note that the above integral H has the same physical

dimension as that of the helicity.



4

We will use following notations for the energy

E(t) =
1

2

∫

Rn

|u(x, t)|2dx

and the enstrophy

Q(t) =
1

2

∫

Rn

|∇u(x, t)|2dx,

where n = 3 or 4.

By assuming that H(t) ≃
√

E(t)Q(t), we will derive an asymptotic equation for the

evolution of energy. Under this assumption we may regard
√

E(t)Q(t) as a surrogate

for H(t).

2.2. Self-similar blowup

Leray considered a self-similar blowup solution [23] of the form

u(x, t) =
1

[2a(t∗ − t)]1/2
U (ξ) , ξ =

x

[2a(t∗ − t)]1/2

and derived the so-called Leray equations

U · ∇ξU + a(ξ · ∇ξU +U ) = −∇ξP + ν△ξU ,

∇ξ ·U = 0,

where a(> 0) is a parameter whose physical dimension is the same as ν. This kind of

solution, based on Leray’s scaling ansatz, is of Type I, but there can be other types of

singularities for the Navier-Stokes equations that do not obey such an ansatz.

If such a solution exists on 0 ≤ t < t∗, it satisfies the following identities
∫

R3

|u(x, t)|2dx =
√

2a(t∗ − t)

∫

R3

|U (ξ)|2dξ,
∫

R3

|Λ1/2u(x, t)|2dx =

∫

R3

|Λ1/2

ξ
U (ξ)|2dξ,

and
∫

R3

|∇u(x, t)|2dx 1
√

2a(t∗ − t)

∫

R3

|∇ξU (ξ)|2dξ.

We note that for a self-similar blowup, the total energy converges to zero as t → t∗. We

also note that the product of the energy and the enstrophy is a constant
∫

R3

|u(x, t)|2dx
∫

R3

|∇u(x, t)|2dx =

∫

R3

|U (ξ)|2dξ
∫

R3

|∇ξU (ξ)|2dξ,

because the right-hand side is independent of t due to cancellation of the temporal

factors. This possibility of self-similar blowup has been ruled out: if U ∈ L3(R3) then

U ≡ 0 [25], see also [37]. We note that asymptotically self-similar blowup has also been

ruled out [2, 19, 3, 4].
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Progress has been made recently regarding blowup criteria using critical norms,

such as the L3-norm [13]. It was proved in [13] that for a possible singularity at t = t∗
we have

‖u‖L3(R3) → ∞ as t → t∗.

By a standard embedding

‖u‖H1/2 ≥ C‖u‖L3 ,

it follows that

‖u‖H1/2(R3) → ∞ as t → t∗.

See [32, 33, 29] for this criterion. There is a similar result for the n-dimensional Navier-

Stokes equations [10].

3. Enstrophy bound

By applying standard energy methods to the enstrophy equation

dQ

dt
=

∫

R3

ω · ∇u · ωdx− ν

∫

R3

|∇ × ω|2,

we obtain the well-known enstrophy bound

dQ

dt
≤ C

Q3

ν3
− 5ν

4

Q2

E
, (4)

e.g. [24] and references cited therein. The first term of the above bound is predictable

on dimensional grounds. We note that the instantaneous growth rate (4) is proven to

be optimal and that it is associated with a vortex ring [24].

We make some observations on the bound (4). An inequality expressing the

evolution of the critical norm H, solely in terms of H and ν, is not known. However, it

is possible to write down an inequality for the surrogate EQ, which bounds H ≤ √
EQ

by Cauchy-Schwarz inequality. In fact, by coupling the energy balance equation

dE

dt
= −2νQ (5)

with the above bound (4), we obtain

d

dt
log(EQ) ≤ C

Q2

ν3
(6)

and hence find

E(t)Q(t) ≤ E(0)Q(0) exp

(

C

ν3

∫ t

0

Q(t′)2dt′
)

.

It is of interest to note that Type I singularity

Q(t) ≤ cν3/2

√
t∗ − t
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gives rise to a power-law upperbound for the product E(t)Q(t). In order to obtain a

logarithmic upperbound on E(t)Q(t), an upperbound which blows up more slowly

Q(t) ≤ cν3/2

√

(t∗ − t) log
1

t∗ − t

would be required. (In fact, this cannot takes place because
√
t∗ − tQ(t) → 0 as t → t∗.)

Also, by recasting (6) as
d

dt
log(EQ) ≤ C

(EQ)2

ν3E2
,

we observe that we need the energy E to close the bound for EQ, on top of EQ and ν.

Multiplying (4) by 1
Cν5

E2

Q
, we recast the bound (4) as

1

Cν5

E2

Q

dQ

dt
≤ f 2 − 5

4C
f, (7)

where f(t) ≡ E(t)Q(t)
ν4

is a non-dimensionalised critical criterion. Solving the above

quadratic inequality for f , we get

f ≥ 1

2





5

4C
+

√

(

5

4C

)2

+
4E2

Cν5Q

dQ

dt



 ,

which essentially states that

f & c
E

ν5/2

√

d

dt
logQ.

We know that if initial E(0)Q(0) is small in the sense that E(0)Q(0) = O(ν4), then

global regularity follows. Then we may ask how the solution behaves in time, if EQ is

not small, but goes singular mildly.

4. Asymptotic analysis

In the Cauchy-Schwarz inequality

1

2
‖u(t)‖2H1/2 ≡ H(t) ≤

√

E(t)Q(t),

we distinguish two cases: i) H(t) ≃
√

E(t)Q(t) and ii) H(t) ≪
√

E(t)Q(t). In view of

some numerical supports below, we consider the case i) and will carry out an asymptotic

analysis.

In view of an upperbound [29] derived under the assumption of blowup

‖u(t)‖H1/2 ≤ C log
t∗

t∗ − t
+ ‖u(0)‖H1/2 ,

we have
√

E(t)Q(t) ≤ C

(

log
t∗

t∗ − t

)2

.
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If we denote weak (i.e. transcendental) singularities by‡ f(t) ≤ ’ log
1

t− t∗
’, we find

from (7)
dQ

dt
≤ Cν5 Q

E2
’ log

1

t− t∗
’.

We will carry out a leading-order analysis and interpret its outcome modulo

transcendental factors. To leading-order, we have


















dQ

dt
. Cν5 Q

E2
,

dE

dt
= −2νQ,

(8)

because the energy equality holds prior to the first singularity. It seems impossible

to solve for the energy as a function of time, but it is possible to represent time as a

function of the energy. Actually, by defining e(t) ≡ E(t)

C1/2ν5/2
, we find

log |1− c e(t)|+ c e(t) & c2 (t− t∗),

where t∗ and c are constants.

Proof

By eliminating Q from (8), we have

Ë ≥ Cν5 Ė

E2
,

or, upon normalisation we get

ë ≥ ė

e2
≡ F (e, ė).

Let W ≡ ė, then by

ë =
dW

dt
=

dW

de
ė,

we find

W
dW

de
≥ F (e, ė).

Because W < 0, we have
dW

de
≤ F (e, ė)

W
=

1

e2
,

which is integrated to give
de

dt
= W ≤ −1

e
+ c. (9)

As we will see below, the physically relevant branch satisfies ce(t) − 1 < 0. Hence we

find
1

c

(∫

de

ce− 1
+

∫

de

)

≥ t+ c1,

‡ More generally, any function f such that limt→t∗(t∗ − t)ǫf(t) = 0 with ǫ > 0.
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or

log |1− c e(t)|+ c e(t) ≥ c2 (t+ c1).

The constant c1 is fixed as c1 = −t∗ by the condition e(t∗) = 0 and we arrive at

log |1− c e(t)|+ c e(t) ≥ c2 (t− t∗). (10)

Replacing ≥ with & to allow for a logarithmic factor, we obtain the desired result. �

By Taylor expanding around e = 0, we confirm that e(t) .
√

2(t∗ − t), which shows

that its final behaviour agrees with what the self-similar evolution predicts. However,

this does not necessarily imply that the evolution is self-similar, hence it remains a

non-trivial open problem to rule out the possibility of this asymptotic behaviour .

We define the scaled enstrophy by q(t) = −ė(t), that is, q(t) = 2Q(t)/(c1/2ν3/2).

For the borderline behaviour, by (9) we have e(t) ≃ 1

q(t) + c
, and hence

log

(

q(t)

q(t) + c

)

+
c

q(t) + c
≃ c2(t∗ − t).

This expresses time t as a function of the enstrophy q(t).

In Fig.1 we show time as a function of energy. There are two branches, but only one

of them is physically relevant, because the other one increases energy monotonically. The

realisable region is on or below the lower branch (solid). We observe that it asymptotes

to the self-similar evolution near t = t∗, and that e(t) apparently shows a decay of the

energy over a finite time interval. However, this does not necessarily mean that such

an evolution is actually realised. The corresponding enstrophy is also inserted for a

comparison.

Because the analysis is performed to leading-order, formally the same result is

obtained for the more stringent assumption E(t)Q(t) ≤ C, where C is a constant. In

this case we know that there is no blowup. But it seems hard to deduce the non-existence

from (10).

5. Four-dimensional Navier-Stokes equations

In four dimensions the enstrophy is critical and we can carry out a similar analysis in

a parallel manner as in three dimensions. There are not many papers in this case, but

see [11, 18] and references cited therein.

We need a (squared) second-order Sobolev norm, palinstrophy,

P (t) =
1

2

∫

R4

|∇ × ω|2dx =
1

2
‖u‖2H2

in this case. The four-dimensional Navier-Stokes equations in vorticity form read

∂ωij

∂t
+ (u · ∇)ωij = ωjk

∂uk

∂xi

− ωik
∂uk

∂xj

+ ν△ωij, (11)
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Figure 1. The Evolution of the energy (solid) for the 3D case. The self-similar

asymptote (dotted) is inserted to the lower physical branch. The upper branch

(dashed) is unphysical. The enstrophy is also shown (short-dashed). The horizontal

and vertical lines are included as a guide.

where ωij =
∂uj

∂xi
− ∂ui

∂xj
is the vorticity tensor (i, j = 1, 2, 3, 4). Note that the velocity and

the vorticity are related by the ’Biot-Savart’ law

ui(x) = − 1

2π

∫

R4

(xj − yj)ωij(y)

|x− y|4 dy,

which results from △ 1

4πr2
= −δ(x). By (11) it is straightforward to derive the following

enstrophy inequality
dQ

dt
≤ CPQ1/2 − 2νP.

Unlike the three-dimensional case, it is impossible to split the product PQ1/2 as a sum

of two terms by using the Young inequality, because of the exponent 1 of P .

Defining a non-dimensional function g(t) = E(t)P (t)/ν4 and using Cauchy-Schwarz

inequality

Q(t)2 ≤ E(t)P (t),

we find
E

ν5

dQ

dt
≤ Cg(t)

(

g(t)1/4 − 2
)

. (12)

By assuming that

g(t) ≤ C’ log
1

t− t∗
’ (13)

we obtain

Q(t) . Q(0) + Cν5

∫ t

0

dt′

E(t′)
,

which shows that

lim
t→t∗

∫ t

0

dt′

E(t′)
= ∞
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is necessary for a possible blow-up. This shows that E(t) → 0 when t → t∗ at least as

fast as (t∗ − t) to leading-order.

We determine the time evolution of the energy in more detail below. Let us assume

Q(t)/ν2 ≥ 1, because we are not interested in small initial data, for which global

existence is known. Multiplying (12) by this factor, we have

E

ν5

dQ

dt
≤ Cg(t)

(

g(t)1/4 − 2
) Q(t)

ν2
,

or
E

ν3

d logQ

dt
≤ Cg(t)

(

g(t)1/4 − 2
)

.

Under the assumption of (13), we deduce


















dQ

dt
. Cν3Q

E
,

dE

dt
= −2νQ.

(14)

This system can be solved as before. Introducing a normalisation e(t) ≡ E(t)

Cν3
, we obtain

Li(ce(t)) & c(t− t∗), (15)

where Li denotes the Logarithmic integral defined by

Li(x) ≡















∫ x

0

du

log u
, (x < 1),

−
∫ x

0

du

log u
, (x > 1).

Proof

By elimination of Q from (14) and normalisation, we find that e(t) satisfies

ë ≥ ė

e
≡ F (e, ė).

By W ≡ ė, we have
dW

de
≤ F (e, ė)

W
=

1

e

and
de

dt
= W ≤ log e+ c1 = log(ce),

where c = ec1 . For the physically relevant case of ce(t) < 1 it follows that

de

log(ce(t))
≥ dt,

or
1

c
Li(ce(t)) ≥ t+ c2.
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Figure 2. The Evolution of the energy (solid) for the 4D case. The self-similar

asymptote (short-dashed) is inserted to the lower physical branch. The upper branch

is unphysical. The enstrophy is also shown (dashed). The horizontal and vertical lines

are included as a guide.

Fixing c2 by the condition e(t∗) = 0, we obtain

Li(ce(t)) & c(t− t∗). �

The enstrophy in the borderline case is defined by q(t) = −ė(t), it is related by

Li(exp(−q(t))) ≃ c(t− t∗).

In Fig.2 we show time as a function of energy. Again, there are two branches

and only one of them is physically relevant, because the other one increases energy

monotonically. The realisable region is either on or below the lower branch (solid). We

again observe that it asymptotes to the self-similar evolution near t∗, but that it covers

longer time evolution. The corresponding enstrophy is also plotted. At the moment it

is not known whether we can exclude this scenario or not.

6. Numerical experiments

In order to examine the validity of the assumption used in the asymptotic analysis we

present the numerical results. We solve the three-dimensional Navier-Stokes equations

under periodic boundary conditions. Nonlinear terms are evaluated by the pseudo-

spectral method with 2/3-dealiasing and time-marching was done the fourth-order

Runge-Kutta method. The number of grid points used is N = 2563 with kinematic

viscosity ν = 1 × 10−3 and time increment ∆t = 2 × 10−3. We use two kinds of initial

conditions.

Case 1. Random initial data

The initial energy spectrum is prescribed by

E(k) = ck4 exp(−k2),
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where c is chosen to have unit enstrophy and the phase of Fourier components are

randomised.

Case 2. the Taylor-Green vortex

u =







cos x sin y sin z

− sin x cos y sin z

0






.

In this case we have Λu =
√
3u and u · Λu =

√
3|u|2 ≥ 0, initially.

In Fig.3 we show the time evolution of the energy, the enstrophy and the H1/2-

norm. The energy decays monotonically and the enstrophy increases in the early stage

and attains a maximum around t = 8 and starts to decay. The H(t) shows a similar

growth, but it is much smaller. In Fig.4, we compare the time evolution of H(t) with

that of
√

E(t)Q(t). The ratio r(t) defined by

r(t) =
H(t)

√

E(t)Q(t)

reaches a minimum value around t = 4, but overall it remains on the order of 0.75, or

larger. In Fig.5, we show the PDF of the angle θ between u and Λu at several different

times. The PDF is strongly skewed toward positive values even at t = 0 and this feature

persists at later times.

We now turn our attention to Case 2. The time evolution of the energy, the

enstrophy and the H1/2-norm shown in Fig.6 is similar to Case 1. A comparison of
√

E(t)Q(t) and H(t) is made in Fig.7, which shows that the ratio r(t) remains above

0.7. This again indicates a good performance of the Cauchy-Schwarz inequality. As long

as these numerical experiments with moderate Reynolds numbers, where flows remains

smooth, the ratio r(t) remains of O(1).

In Fig.8, we show the PDF of the angle θ. The PDF at t = 0 is not shown because it

is a Dirac delta function at cos θ = 1. Initially u ·Λu is positive-definite everywhere, but

it acquires negative values under short time evolution of the Navier-Stokes equations.

It is again strongly skewed toward positive values throughout the computation.

7. Summary

In three dimensions, starting from the Leray bound of the form

E2

ν5

d logQ

dt
≤ Cf 2 − 5

4
f, where f(t) ≡ E(t)Q(t)

ν4
,

we have carried out an asymptotic analysis for the time evolution of the energy by

assuming H(t) ≃
√

E(t)Q(t). We note in passing that the time scale which appears on

the left-hand side
E(0)2

ν5
taken initially, gives the time beyond which no singularities

can form. By assuming a weak singularity in f(t), we determine the evolution of the

energy. In the final stage, it behaves just as the self-similarity predicts.
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Figure 3. Time evolution of the

E(t) (solid), Q(t) (short-dashed)

and H(t) (dashed) for Case 1.
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H(t) (solid),
√

E(t)Q(t) (dashed)

and r(t) (short-dashed) for Case 1.
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Figure 5. The PDF of cos θ at

t = 0, 5, 10, 15, 20 for Case 1. The

one at the bottom is for t = 0 and

the rest basically collapses.

We have given a similar analysis for the four-dimensional Navier-Stokes equations,

starting from

E

ν3

d logQ

dt
≤ Cg(t)

(

g(t)1/4 − 2
)

, where g(t) ≡ E(t)P (t)

ν4

and assuming that Q(t) ≃
√

E(t)P (t). We note that the initial time scale which appears

on the left-hand side
E(0)

ν3
is the time beyond which no singularities can form. In five

or higher dimensional spaces, the enstrophy is supercritical and this kind of asymptotic

analysis would not be available.

In both cases, specific forms of time evolution of the energy is determined, which

apparently generalise the self-similar ansatz. It is left for future study to see if and how

we may rule out this kind of singularity formation.



14

0

1

2

3

4

5

6

7

0 5 10 15 20

E
(t
),
H
(t
),
Q
(t
)

t

Figure 6. Time evolution of the

E(t) (solid), Q(t) (short-dashed)

and H(t) (dashed) for Case 2.
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Figure 7. Time evolution of the

H(t) (solid),
√

E(t)Q(t) (dashed)

and r(t) (short-dashed) for Case 2.
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Figure 8. The PDF of cos θ at

t = 5, 10, 15, 20 for Case 2. The

one at the top is for t = 10 and the

rest basically collapses. The PDF

for t = 0 is a delta function at 1,

which is omitted here.
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