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Visual-Tactile Map Calibration Using an Adaptive Filter Based Model

of Cerebellar Function

Tareq Assaf1, Emma D.Wilson2, Jason Welsby1,

John Porrill2 and Martin J.Pearson1

Abstract— We present an adaptive filter model of cerebellar
function applied to the calibration of a tactile sensory map to
improve the accuracy of directed movements of a robotic ma-
nipulator. This is demonstrated using a platform called Bellabot

that incorporates an array of biomimetic tactile whiskers, ac-
tuated using electro-active polymer artificial muscles, a camera
to provide visual error feedback, and a standard industrial
robotic manipulator. The algorithm learns to accommodate
imperfections in the sensory map that may be as a result of
poor manufacturing tolerances or damage to the sensory array.
Such an ability is an important pre-requisite for robust tactile
robotic systems operating in the real-world for extended periods
of time. In this work the sensory maps have been purposely
distorted in order to evaluate the performance of the algorithm.

I. INTRODUCTION

The sense of touch will enable mobile autonomous

platforms to explore, navigate and interact safely and

robustly in unknown, unstructured environments. Sub-

dermal (skin covered) and extra-dermal (whisker) tactile

sensing are the two main paradigms of how the sense of

touch has evolved in nature. Each are based on similar

cutaneous structures and mechanoreceptors embedded in the

skin, however, whiskers also comprise of a passive, flexible

rod (hair) that protrudes out of the derma. Emulating the

sensory capacity of touch in robotics is highly challenging

with technological and physical issues being the major

constraints. In the past decade, thanks to material science,

progressive miniaturisation of electronics and technical

advancements, the attention for this sense has thrived and

a growing community is actively investigating different

approaches to solve a wide range of issues related to touch.

These include object recognition [1], navigation [2], and

neuro-physiological model validation [3].

Whiskers are relatively robust to damage, they have no

sensors along their length and deflections are processed by

sensors at the base, which extends their perceptual range

and protects the delicate sensory apparatus at the base from

damage. These characteristics make whisker-like sensors

an attractive solution for exploring environments where

other sensory modalities such as vision and audition cannot

be relied upon (e.g. in confined and visually occluded

environments). Whiskers are mechanically simple and

inexpensive elements that are fundamentally expendable

as well as being relatively compliant and low-weight. A

1Bristol Robotics Laboratory, University of Bristol and University of the
West of England, Bristol, UK. tareq.assaf@brl.ac.uk

2Sheffield Robotics, University of Sheffield, Sheffield, UK

Fig. 1. The BellaBot platform consists of an array of 20x DEAP
actuated tactile whiskers mounted onto a small 5 DoF industrial manipulator.
The location of contacts made by the whiskers as they move through the
environment are represented internally using a head centric map of space.
This map is used to plan the motion of the robot such that the camera
mounted at the centre of the whisker array is directed toward the point of
contact as shown in the 2 lower video frames.

damaged whisker can simply be replaced (or ‘regrown’

in the natural case) cheaply and quickly. These features

make whisker like sensors ideal for developing robots with

tactile, touch sensors both in terms of maintenance costs and

intrinsic safety in both human-robot and robot-environment

interactions.

In recent years, a growing number of studies have focused

upon different aspects of tactile sensing using whiskers

from the mechanical [4], control [5] and capability [6]

perspectives. Many bioinspired whiskered robots have also

been developed to support these studies (see [4] for review).

In this work we investigate adaptive sensorimotor learning

using our current whiskered robotic platform “Bellabot”

which has an array of 20 whisker-like tactile sensors,

actuated using Di-electric Electro-Active Polymer (DEAP)

technology, and attached to a 5 degrees-of-freedom industrial



robotic arm (see figure 1). Here, we focus on the calibration

of a head centred topographic map of whisker sensory

space to improve the accuracy of directed motor commands

toward points of interest in the map. Such a calibration is

needed to adapt the sensorimotor map that represents the

whisker array to variations caused by damaged or substituted

whiskers over time. A bio-inspired adaptive control scheme,

based on the adaptive filter model of the cerebellum [7], is

used for map calibration in real-time robot experiments.

The following section describes the key components of

the platform used in this study and an overview of how the

adaptive filter algorithm has been applied to sensory map

calibration. The methods section describe the experimental

set-up, movement strategy of the robot and the modes

of learning used to generate the results illustrated in the

following section. The paper concludes with a discussion

of the results and highlights directions for future work.

II. BACKGROUND

A. Platform

The robot platformBellabot was developed as part of the

Bella project (full name: Bioinspired Control of Electro-

Active Polymers for Next Generation Soft Robots, funded by

EPSRC grant number EP/I032533/1). It consists of a custom

built structure, or head, that holds an array of 20 whisker-like

tactile sensors mounted into individual DEAP based assem-

blies (see figure 2). The whiskers were 3D printed using an

EnvisionTec machine from their proprietary photo-cure ma-

terial called nanocure-25. The whiskers were 110 mm long,

with a circular cross-section 1.3 mm diameter at the base

tapering linearly to 0.3 mm at the tip. A small Neodynium

magnet is fixed at the base of each whisker which, in turn, is

held in an artificial follicle assembly by a polyurethane plug

that acts as a universal joint and return spring. When at rest

the magnet at the base of the whisker is positioned directly

above a tri-axis Hall effect sensor IC (Melexis MLX333). As

the magnet is displaced by deflections of the whisker shaft,

the Hall effect IC generates 2 signals proportional to the

magnitude of displacement in 2 orthogonal axes (referred to

throughout as x and y). These signals are sampled at 500Hz

and passed via USB to the main control computer mounted

externally to the Bellabot platform. Motor commands to

move each whisker are subsequently relayed from the main

control computer and converted to the high voltages (∼4KV)

required to energise the DEAP actuators, described more

fully in [8]. The DEAP actuators enable the whiskers to

actively rotate at their base through ±20◦, generating motion

analogous to the rhythmic whisking behaviour observed in

small mammals such as rat [5]. This method of whisker

actuation was incorporated into the platform as part of a

broader exploration of cerebellar inspired adaptive control

applied to non-linear, time varying plant [9], [10]. The head

is attached as the end-effector to an industrial manipulator

(ABB - IRB120), hereafter referred to as the neck. In this

study, as explained in the introduction, we focus on utilising

an adaptive filter algorithm to calibrate a whisker sensory

Fig. 2. An individual DEAP actuated whisker module. a) view from
above highlighting EAP membrane b) view of electronics and assembly
from side. c) Exploded CAD rendering of the overall assembly without the
EAP membrane.

map representing the head space of Bellabot. To enable

this we have modelled the orienting behaviour observed in

whiskered mammals, whereby the animal will rapidly direct

its tactile fovea (typically snout) toward points of unexpected

whisker contact [11]. In the mammalian brain this ability

is orchestrated by a structure called the superior colliculus

that uses a head centric map of multi-modal sensory space

to initiate motor primitives to rapid attend to prey or avert

from predators [12]. The Bellabot implementation of this

behaviour uses a map of the surface of the volume occupied

by the tactile whisker array, i.e., the plane represented by

interpolating between the whisker tips. As the whiskers are

whisked (driven by the DEAP actuators at their base) their

angle of rotation is monitored using miniature Hall effect

shaft encoders. In addition, the odometry from the neck is

also monitored allowing a simple geometric transform to be

applied between the individual whisker sensor frames and

the global frame required for directing the neck and head

toward points of whisker contact, i.e., orienting. The same

approach to directing the exploratory attention of a whiskered

robot has been demonstrated before [13], however, here we

directly address how the accuracy of such orients can be

improved. The problem partly lies in the assumptions made

in constructing the geometric transforms; firstly, all contacts

are assumed to occur at the tip of the whisker; secondly, the

whiskers are assumed to be rigid beams of known length; and

thirdly, the whisker tips are assumed to be coaxially aligned

with the whisker base. In reality each of these assumptions

can fail due to poor manufacturing tolerances, accumulated

damage, droop caused by gravity, bending of the whisker

shaft during contact, and so on. To accommodate these

inaccuracies we propose to iteratively calibrate the sensory

map such that successive orients become more accurate

irrespective of the originally fixed geometric assumptions



made in the transformation between frames. The details of

the algorithm used are presented in the following sub-section,

suffice to say here that a measure of error from each orient

is required to train the algorithm. This was derived from

images taken by a standard USB camera mounted at the

centre of the whisker array (see figure 1). Upon completion

of the orient by the robot toward the point of contact an

image was captured of the the known contact object, a small

ball fixed to the end of a rod as shown in figure 1 and in

the supplementary video. The difference in desired position

(centre of image) to actual position of the ball was then

passed to the calibration algorithm as the error.

B. Adaptive filter model of map calibration

As mentioned in the introduction, a bio-inspired adaptive

control scheme based on the adaptive filter model of the cere-

bellum [14], [15], [7] was used to calibrate a 2D topographic

map [16] of the whisker sensory space.

During active whisking the whisker rotation and vibration

sensory streams were continuously recorded [8]. Vibration

signals were thresholded to remove the noise generated by

self-motion (or re-afferent noise) by setting signals below

threshold to zero. Detected targets (i.e. when vibration sig-

nals on individual whiskers were above threshold for a num-

ber of samples) were then written into the topographic map

using a 2D Gaussian to provide a probabilistic representation

of the target location (Fig. 3a). The Gaussian centre was

placed at the assumed tip of the contacted whisker, with

the centre of the head defined as the origin of the map.

Errors in the target (ball) position were only provided in

two dimensions (in-plane with the camera), therefore, the

estimated perpendicular distance to a detected target was

fixed.

The cerebellar algorithm was used to shift the topographic

map of the estimated target location to improve the accuracy

of subsequent orients. This was done by implementing a

global bias in the x− and y− directions. For a given sensory

map with a target center at estimated location x = (x, y), the

cerebellar bias input z = (δx, δy) will make it look as though

the target has center x+ z. In effect the cerebellum ‘slides’

the map activity across the map by an amount z = (δx, δy).
The cerebellar bias was calculated as a sum of the

weighted (Fig. 3c) parallel fibre signals. The parallel fibre

signals, p in the cerebellar algorithm [15], [7], were assumed

to carry normalised, coarse coded versions of the topographic

map (Fig. 3b), i.e., the map representing the sensory space

was decomposed into a regularly distributed array of 64

(8x8) nodes (each representing a parallel fibre) with the total

cerebellar bias calculated as:

δx =
∑

wxp (1)

δy =
∑

wyp (2)

The weights wx and wy of each parallel fibre are learnt

over trials (from initially zero) using the covariance learning

rule [17]. Here we assume the climbing fibre teaching signal

inputs to the adaptive filter model carry signals related to the

x, y components of target acquisition error so the learning

rule for estimating these weights can be written as

∆wx = −βexp
′ (3)

∆wy = −βeyp
′ (4)

where β is the learning rate, and ex, ey the target errors

acquisition in the x and y directions respectively.

Fig. 3. Mapping example. a) Topographic map. b) Coarse coded map. c)
Example of estimated x, y weights for the m

th parallel fibre

III. METHOD

Fig. 4. Maps of whisker sensory space in head centric frame. a) 2D
projection of base locations of whiskers 1-8 occupying the inner circle, and
9-20 the outer circle. The asterisk at the origin indicates the location of
the camera. b) 2D representation of the arcs generated by each whisker tip
during whisking, each point indicating 5

◦ of travel. c) 3D projection of the
surface created through interpolation of whisker tip locations.

To generate training data and to evaluate the performance

of the adaptive filter, the contact ball was mounted onto

a portable adjustable clamp stand and positioned in front

of the Bellabot platform. The Bellabot was programmed to

cyclically perform 4 sequential behaviours:

• Explore: The whisker array would whisk at a fixed rate

whilst the neck moved the head forwards until a contact

was made by one of the whiskers.

• Recoil: The whiskers would stop whisking and the neck

would move the head backwards a short distance for

safety.



• Orient: The head would be moved such that the centre

mounted camera is directed toward the estimated point

in space as determined by the head-centric topographic

map of whisker sensory space. At the end of the orient

an image is captured from the camera.

• Reset: the Bellabot would return to its original start

configuration before switching back to the Explore

behaviour.

Between behavioural cycles the contact ball was either left

in position such that the same whisker would be touched

again or was relocated to touch another. The supplemental

video associated with this paper shows an example of the

cyclical behaviour of Bellabot during a typical experiment. It

begins part way through a recoil and orient following which

the contact ball is relocated, the Bellabot then resets before

repeating the cycle. The images taken at the end of each

orient phase were processed to extract an error vector which,

in turn, was used to train the adaptive filter and thereby

modify the map. To evaluate the performance of the system

a set of trials were conducted using known errors in the map,

i.e., the true geometric mappings between the whisker tips

and world frame, as shown in figure 4, were purposefully

misaligned or morphed. These morphed maps were classed

into 4 different types as described below and summarised for

reference in figure 5. Note that for clarity, only the whisker

tip locations of the 8 whiskers that occupy the inner circle

of the array are shown.

-200 -100 0 100 200
-200

-100

0

100

200
Type 1

Groundtruth whisker tip

Morphed whisker tip

-200 -100 0 100 200
-200

-100

0

100

200
Type 2

-200 -100 0 100 200
-200

-100

0

100

200
Type 3

-200 -100 0 100 200
-200

-100

0

100

200
Type 4

Fig. 5. 2D representation of whisker tip locations in head centric space for
each of the morphed maps used to test the adaptive filter algorithm. Type 1)
uniform expansion; Type 2) uniform rotation; Type 3) uniform expansion
and rotation; Type 4) random rotation with uniform translation

• Type 1) The magnitude of the polar coordinates of the

true whisker base locations were increased by 30mm,

i.e., uniform expansion.

• Type 2) The angle of the polar coordinates of the true

whisker base locations were increased +π/4 radians

(clockwise direction), i.e., uniform rotation

• Type 3) The whisker base coordinates were both uni-

formly expanded and rotated as above.

• Type 4) The whisker base coordinates were expanded

by 20mm and rotated by a random angle (±π radians).

IV. RESULTS
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Fig. 6. Summary of corrections made to the estimates of whisker tip
locations by the adaptive filter applied to the 4 morphed map types. Each
row represents a morphed map type (1-4), the left panels show the evolution
of whisker tip estimates in head space from original morphed location
toward ground truth following each whisker contact event. The right panels
summarise the final trained weight vectors associated with each of the 64
parallel fibres that represent the whisker sensory space.

The training data for the adaptive filter was gathered

by repeatedly performing the behavioural cycles described

in the methods section using two different protocols. The

first was referred to as tapping, whereby the contact ball

remained in position between cycles for a fixed number

of iterations (typically 15). The second involved randomly

relocating the contact ball such that it will be touched by a

different whisker in subsequent cycles. The results shown in

figure 6 summarise the corrections made by the filter to the



estimate of whisker tip locations following repeated contact

with the whisker array for all 4 morphed map types using the

tapping protocol. In all cases the algorithm was successful in

reducing the errors introduced into the map, irrespective of

the tapping or random protocol adopted. This is illustrated

in the figure by the trend of the whisker tip estimates (red

crosses) moving from the morphed whisker tip locations

toward their ground truth locations. Accordingly, the change

in the weight vector space of the adaptive filter reflects this

adaptation, effectively distorting the original erroneous map

into a better representation of the real-world. Figure 7 shows

how the weight vectors (x− horizontal, y− vertical) of the

filter elements, representing the parallel fibres, change as the

whiskers made contact with the ball. This data was captured

during the tapping experiments using morphed map type

3 (expanded and rotated), with the vertical bars indicating

when the ball was relocated to touch a new whisker.
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Fig. 7. Top) Averaged RMS errors between the original morphed map
(Type 3) and the actual map as determined through visual feedback follow-
ing orients toward contact with the ball by the whisker array. The vertical
bars indicate when the ball was relocated between behavioural cycles to
make contact with another whisker. Bottom) Evolution of the weight vectors
associated with each of the 64 parallel fibres that constitute the adaptive filter
model of the cerebellar algorithm during the same experiment as shown in
the error plots above.

V. DISCUSSION

An adaptive filter model of cerebellar function has been

applied to sensory map calibration and demonstrated as

a plausible candidate for further investigation. The results

show that even with a relatively coarse encoding of the

sensory space, here represented using just 64 parallel fibres,

the algorithm is capable of significantly reducing the error

introduced from a variety of distorted map morphologies.

Of these morphed maps the algorithm performed less well

when presented with the random rotation type (type 4) as

opposed to the uniform distortions of type 1-3 which is

concordant with prior expectations. However, the evident

reduction in map error for type 4 was greater than expected

considering the resolution afforded by the limited number

of parallel fibres in the filter. The experiments also revealed

what was at first interpreted as a systematic error for whisker

number 8, whereby, following training the learnt tip location

was consistently offset from its assumed ground truth. On

closer inspection it was found that the algorithm was actually

correcting for an intrinsic bend in this whisker as shown

in figure 8. The filter was, therefore, correcting for the

false assumption that the tip of the whiskers were co-axially

aligned with their bases which provides an intriguing insight

into the potential of this approach.

The principle direction for improvement in future work

Fig. 8. Photograph taken from directly above the head of Bellabot
highlighting the intrinsic bend in whisker number 8 that was accommodated
into the calibrated map

stems from the observation that the reduction in error for the

estimates of whisker tip locations of whiskers in the outer

circle (9-20) were marginally less than the inner circle (1-

8). This has been interpreted as the effective non-linearity

introduced by the 2D projection of the 3D whisker tip

surface being more pronounced for the more distally located

whiskers in the outer circle of the array (see figure 4c). This

could be accommodated by introducing a non-linearity into

the algorithm, either by replacing the currently linear parallel

fibre elements with a non-linear operator, or through a non-

uniform parallel fibre representation of the sensory space.

In conclusion, perhaps the most exciting outcome from this

preliminary investigation has been that through only a small

extension of an existing model of cerebellar functionality

originally applied to motor learning, we have demonstrated

that it is also well disposed to the task of sensory map

calibration.
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