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Atomistic modelling of single CQDs

In our atomistic approach the CQD is built with bulk-like structure, starting from its con-

stituent atoms, from its center outwards up to the desired radius. This procedure yields

surface atoms with unsaturated bonds. Atoms with only one (saturated) bond are re-

moved, leaving on the surface only atoms with one or two missing bonds. These surface

dangling bonds are passivated by pseudo-hydrogenic, short-range potentials with Gaus-

sian form, positioned along the line connecting the missing bonding atom and the pas-

sivated atom, at a distance 0 < d < Dbulk (where Dbulk is the bulk bond length) from the
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center of the latter.1,2 This method is not meant to simulate specific ligands, but represents

rather a generic passivation that aims at removing states in the gap.

As it is the case with any non-self-consistent (i.e., non-DFT) method,5 the structure

is not relaxed nor the surface is allowed to reconstruct, since with realistic experimen-

tal sizes, this energy minimization step is prohibitively expensive computationally and

cannot be performed self-consistently.

Tight-binding band structure parameters

When interband coupling is neglected, the effective mass at Γ (q=0) relative to miniband

i of the 2D periodic system can be expressed within the tight-binding model as:3

m∗
i (q = 0) =

h̄2

αiViia2
(S1)

where Vii = 〈ψi(r)|V(r)|ψi(r − r′)〉 represents the coupling between neighboring states

with angular momentum i = s, p,d, . . ., a = 2R+ d is the center-to-center distance between

nearest-neighbor CQDs (or, in other words, the lattice constant, or period, of the array),

and αi is a constant that depends on the specific lattice and state (i).4

In this framework, there is a direct relationship between coupling Vii and correspond-

ing miniband widthWi,5

W1i = γi|Vii| (S2)

(where γ1S = 8, γ1P = 4 in both square and hexagonal lattices, and Vppπ has been ne-

glected). Using Eq. (S2), Eq. (S1) can be expressed as

m∗
i (q = 0) =

βih̄
2

Wia2
(S3)

where βi is a constant that depends on the specific lattice and state i. We find that this

popular relationship is quite accurate, and even in the worst cases (i.e., for small sepa-
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rations, when interband coupling is strongest and its applicability is questionable), this

expression still yields effective masses that are within about 30% of one of the values we

obtained by fitting the calculated band structure around q=0 with a parabola

m∗
i =

h̄2q2i
2(Ei − E0)

(S4)

where i = x,y are two perpendicular in-plane directions (see Table I), Ei is the calculated

energy at q = qi (for qi close to 0), and E0 is the energy at q = 0.
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Dependence of the band-structure parameters on the inter-

dot separation
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S 1: Miniband widths (a) and effective masses at Γ (b) calculated, as a function of inter-dot
spacing expressed both in Å (bottom x axis), and in bond lengths (bl, top x axis), for the
lowermost miniband in 2D arrays of InAs CQDs with R = 1.22 nm. Results relative to
anion-rich and cation-rich surfaces are represented by solid symbols and lines and empty
symbols and dashed lines, respectively.
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Size-dependence of the band structure

The behavior of the parameters presented in Table I as a function of the dot size in the

case of zinc-blende CdSe, is in agreement with the predictions of a general law for the

effective band structure parameters, deduced for arrays of zinc-blende CdSe CQDs in a

recent work:5

Vss ≈ A

(

5
D

)2
( c

D
− 0.1

)

(S5)

where c is the diameter of a cylindrical section linking neighboring dots in the superlat-

tice, A = −26 and D the dot diameter (We find that the choice A = −22.3 gives a better fit

to our results).

The above expression therefore provides through Eq. (S2) an estimate for the mini-

band width in a 2D array of CQDs, that depends only on the dot size and the type of

superlattice. Despite having been derived for c/D > 0.1, Eq. (S5) yields in our case (c = 0)

an estimate for the 1S miniband (87 meV) in good agreement with our calculated value

(76 meV).

We find however, that the values given above for the proportionality factor γi in

Eq. (S2) are only valid in the single-band approximation i.e., when the coupling with higher

bands is negligible. Whilst this treatment is appropriate at large inter-dot separations, it is

not correct for very closely spaced dots, when the separation between s and p minibands

is smaller than the miniband width. In this case the width W1i is modified compared

with the decoupled case: for touching (i.e., one bond length apart) InAs dots with R = 1.2

nm, the full miniband calculation (including 10 higher states) yieldsW1S = 392 meV, (i.e.,

γ1S = 6.8) compared with 463 meV, obtained using (S2) with γ1S = 8 (i.e. considering the

1S state only). The factor 8 is recovered for distances larger than 0.5 nm (or 1.9 bl).

In the case of InAs arrays,instead, the calculated widths are only in qualitative agree-

ment with the size dependence of Eq. (S5). We find that our InAs data are better repro-

S5



duced by the following relationship

Vss(InAs) ≈ 2.126
(

5
D

)9/2

which implies a much stronger size dependence than in Eq. (S5). Although the reduction

in the overlap integral with increasing dot size is an effect common to all materials, result

of the space normalization of the isolated-dot wave functions (i.e., the fact that, as the

overall probability of finding the electron anywhere in the dot - given by the integral

over the dot volume of the wave function squared - is 1, the probability of finding it at

any specific location within the dot - given by the amplitude of the wave function at that

location - decreases with increasing dot volume), the different size dependence we find in

different materials does not simply reflect the general inverse-bulk-effective-mass scaling

rule suggested in ref.5

In the case of wurtzite CdSe CQDs, we find the size dependence to be the same as

that obtained for the zinc blende crystal structure, i.e., Vss = B(5/D)2, but with a slightly

larger value for the proportionality constant (B = 6, compared with A = 2.2).
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Effect of different surface morphologies
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S 2: Miniband widths (a) and effective masses at Γ (b) calculated, as a function of inter-dot
spacing expressed both in Å (bottom x axis), and in bond lengths (bl, top x axis), for the
lowermost miniband in 2D arrays of InAs CQDs with R = 2.0 nm with surfaces termi-
nated by (i) flat In atomic planes (black symbols and lines), (ii) a layer of two As atoms on
top of the In atomic planes (blue symbols and lines), and (iii) two LEGO-like interlocking
As atoms (red symbols and lines). Negative values for the dot-to-dot separation indicate
that the surface outermost atom of one dot penetrates beyond the surface outermost atom
of its neighbours. In this case (iii) however, the surface atoms of neighbouring dots do
not overlap as they are rotated with respect to each other. Details of these three differ-
ent interface morphologies are visualized in the insets, where yellow and green spheres
represent As and In atoms, respectively.
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An order-of-magnitude expression for the mobility

Assuming that the electrons are scattered by fluctuations in the dot size alone,6 we derive

the following expression for an order-of-magnitude estimate of the mobility in the lowest

miniband of a CQD film7

µOM(ρdefects,δR) =
eh̄3

m∗2ρdefectsMA
(S6)

where e is the electron charge, ρdefects is the density of scattering centers (i.e., defect dots

with radius R− δR),

M =
1

K2
q=0

∣

∣

∣

∣

∣

∑
h

∑
k

b∗hbk

∫

φ∗
h(~r)∆V(~r)φk(~r)d~r

∣

∣

∣

∣

∣

2

(S7)

depends on the scattering potential (i.e., the difference ∆V between the potential of a CQD

with radius R and one with radius R− δR),

Kq = ∑
h

∑
k

b∗hbk







δhk + ∑
Rp 6=0

expi~q·~Rp

∫

φ∗
h(~r)φk(~r− ~Rp)d~r







, (S8)

φn are the single-dot wave functions, bn are their tight-binding expansion coefficients, Rp

is the position of the nearest neighbors, A is the unit cell area, and m∗ is the effective mass

of the miniband, obtained using Eq. (S4) (see columns 6, 7 and 8 in Table I).
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