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ABSTRACT: We study experimentally and theoretically nonlinear propagation of ultrashort 

long-range surface plasmon polaritons in gold strip waveguides. The nonlinear absorption of the 

plasmonic modes in the waveguides is measured with femtosecond pulses revealing a strong 

dependence of the third-order nonlinear susceptibility of the gold core on the pulse duration and 

layer thickness. A comprehensive model for the pulse duration dependence of the third-order 

nonlinear susceptibility is developed on the basis of the nonlinear Schrödinger equation for 

plasmonic mode propagation in the waveguides. The model accounts for the intrinsic delayed 

(noninstantaneous) nonlinearity of free electrons of gold as well as the thickness of the gold film, 

and is experimentally verified. The obtained results are important for the development of active 

plasmonic and nanophotonic components. 
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Plasmonic nanostructures represent a unique platform for many linear and nonlinear optical 

applications.1 A great variety of plasmonic waveguides for integrated optics,2,3 nanofocusing,4,5 

sensing,6,7 lasing and amplification of light8,9 has been proposed. In particular, special attention 

has recently been paid to the nonlinear optical properties of plasmonic waveguides, hybrid 

plasmonic waveguides, and other elements important for future nanophotonic communication 

approaches.10–12 Bulk metals, thin metal layers, and plasmonic metamaterials have been 

investigated in the nonlinear regime.13–15     

The nonlinear propagation of surface plasmon polaritons (SPPs) in plasmonic waveguides can be 

studied in terms of either the second-order nonlinearity,16,17 or the third-order nonlinearity.18,19 

The latter is particularly important because it is present in all materials. In metals, it mainly 

arises due to hot-electron contributions from changes of the intrinsic electronic temperature after 

absorption of the incident light. Typically, the electron relaxation time in noble metals is on the 

few-picosecond scale,18,19 implying that their nonlinear susceptibility can depend on the laser 

pulse duration if it is shorter than or comparable with the electron relaxation time.20 The majority 

of the experimental data on the third-order nonlinear susceptibility of gold were collected near 

the interband transitions in a wavelength range of 532-630 nm for pulse durations between 100 fs 

and 1 ns.20 Most results were obtained with the z-scan method, reporting very high values of the 

third-order susceptibility in the range of 10-16-10-15 m2/V2.21–24 However, the linear propagation 

losses of SPPs in Au-based waveguides, which are also related to the same interband transitions, 

are very high (~30-40 dB/mm) in this wavelength range.25 

On the other hand, nanophotonic and plasmonic devices are extensively exploited in the infrared 

(IR) wavelength range.2,3 The propagation losses of long-range SPPs (LRSPPs) in Au-based 

waveguides can be ~2-5 dB/mm at the telecommunication wavelengths.25 Meanwhile, the third-
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order susceptibility of gold, (3)
Au , in the IR wavelength range arises mainly from the intraband 

electron transitions and is much smaller than in the visible range.18,19 Therefore, a conventional 

z-scan method may not be sensitive enough for nonlinear measurements in ultrathin gold layers. 

Nevertheless, the third-order nonlinearities of gold can be large enough to affect the signal 

propagation in a LRSPP waveguide due to the field localization near the metal interfaces and 

long propagation distance LSPP.
26,27 

The third-order susceptibility of a gold film, which affects transmission (reflection) of light 

through (from) a film as well as propagation of plasmonic modes on the film interfaces is known 

to depend on both the pulse duration and thickness of the film.20 The goal of this paper is to 

quantify such dependences in experiment and theory on nonlinear propagation of the LRSPP 

modes in Au strip waveguides. The nonlinear propagation is conditioned by the third-order 

susceptibility of gold,18,19 and we use the nonlinear Schrödinger equation28 for LRSPPs to study 

their propagation evolution. We measure the nonlinear absorption of the LRSPP mode in gold 

strip waveguides and present new experimental data on the imaginary part of the third-order 

susceptibility of gold for 200 fs pulses at a wavelength of 1030 nm. Since the same plasmonic 

waveguides were previously characterized with 3 ps pulses at a wavelength of 1064 nm,26 the 

data can be directly compared to obtain an experimental dependence of the third-order 

susceptibility of gold on both the gold layer thickness and light pulse duration in the 

femtosecond-picosecond range. The obtained dependences confirm a significant increase in the 

third-order susceptibility for picosecond pulses over femtosecond ones due to better temporal 

overlap of longer pulses with the transient profile of the excited electron gas.18,19 The data 

confirm that the ultrafast intrinsic “delayed” (i.e. noninstantaneous) temporal response function 

of free electrons in gold18,19 is instrumental in modeling of the ultrashort LRSPP propagation 
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with a nonlinear Schrödinger equation, with the continuous wave (cw) value of the third-order 

susceptibility being a single free parameter. We also report thickness scaling laws describing the 

enhanced nonlinearity in gold strip waveguides. 

The LRSPP waveguides studied here were fabricated using procedure described earlier [26]. A 

silicon wafer with a thick (approximately 6.5 ȝm) layer of silicon dioxide on top was used as a 

substrate. Standard ultraviolet lithography was applied to pattern a photoresist layer. A metal 

layer and adhesion layers were then deposited by sputtering. After removing the photoresist 

layer, the waveguides profile and metal layer roughness were measured with an atomic force 

microscope. The root mean square value for the roughness of the deposited metal layers is 0.67 

nm. The metal layers are continuous that was also verified by using a scanning electron 

microscope. Finally, a cladding layer of silicon dioxide (approximately 5.5 µm) was deposited 

on top using a standard plasma-enhanced chemical vapor deposition method. The final 

waveguides consist of a thin gold layer with thickness tAu = 22, 27 and 35 nm, sandwiched 

between 26 nm- thick tantalum pentoxide adhesion layers, and silicon dioxide claddings (Figure 

1a). The linear and nonlinear optical properties of tantalum pentoxide are well-known,29,30 and its 

use provides smaller propagation losses in plasmonic waveguides than metallic adhesion 

materials, such as titanium.31 This symmetric arrangement provides a substantialpropagation 

length of LRSPPs of about 0.3-0.5 mm at a wavelength of 1030 nm depending on the gold layer 

thickness tAu.
27    

Femtosecond pulses of 200 fs duration at a wavelength of 1030 nm were used to excite LRSPPs 

(see Supporting Information for the experimental setup details). The linear propagation loss of 

the LRSPP mode in the waveguides increases by a factor of 2 as the gold layer thickness 

increases from 22 nm to 35 nm, similar to the previous measurements at 1064 nm.26 At the same 
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time, the end-fire coupling loss per two (in- and out-coupling) facets of the waveguides changes 

insignificantly. The obtained values for the linear propagation loss per unit length Į at 1030 nm 

are about 10% higher than the corresponding values at 1064 nm26 as expected for the reduction 

of material (Ohmic) losses with the wavelength.2,25,32 The values of the propagation loss Į and 

coupling loss C are shown in the Supplementary Information, Table S1. Although the values of 

the coupling loss C for the free-space lens coupling are around 7 dB per two facets, i.e. 

approximately 3 dB higher than the corresponding values for the fiber coupling,26 the free-space 

coupling method used here is preferred to exclude dispersion effects when operating with 

femtosecond pulses.28 

 

Figure 1. (a) Sketch of the LRSPP waveguide. (b) Nonlinear transmission dependences for 200 

fs pulses at a wavelength of 1030 nm in the strip plasmonic waveguides with tAu = 22, 27, and 35 

nm. 

The nonlinear propagation of the LRSPP mode in the waveguides was characterized by tuning 

the average input power Pin in the range 1-55 mW (as described in Supporting Information). The 

electron thermalization rate in gold18,19 is much larger than the laser repetition rate used in the 

experiment (frep = 200 kHz), implying that each laser pulse interacts individually. The linear and 

y 
x 
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nonlinear losses of the LRSPP mode are modeled by the following equation:27 2
xP P P    , 

where ȕ is the nonlinear two-photon absorption coefficient,27,33 P is the instantaneous power, and 

x is the propagation coordinate. The solution to this equation can be expressed in terms of the 

normalized average power right after the waveguide for a Gaussian pulse as follows:27 

/2
out in eff in 0 rep/ ( ) 1/ [1 / ( )]CP aP L P e f   , where 

eff [1 exp( )] /L L     is the effective 

propagation length,28 L is the physical length of the waveguide, Ĳ0 is the 1/e intensity half-width, 

and exp( )a L C    is the experimental coefficient that contains linear propagation loss Į and 

coupling loss C. The nonlinear dependences of transmitted power Pout on input power Pin for the 

waveguides with the length L = 2 mm and the gold layer thickness tAu = 22, 27, and 35 nm are 

shown in Figure 1b. The deviation from the horizontal line Pout = aPin is an indication of the two-

photon absorption effect27,33 represented by the nonlinear absorption coefficient ȕ. The curves 

are fitted using ȕ as the only free parameter and starting from unity at Pin = 0 for consistency of 

the linear and nonlinear regimes.   

 

Figure 2. (Symbols) Experimental values of the imaginary part of the third-order susceptibility 

versus gold layer thickness for (a) 200 fs pulses at a wavelength of 1030 nm and (b) 3 ps pulses 

at a wavelength of 1064 nm.26 (Red curves) Thickness dependences obtained using a single 

fitting parameter D and the nonlinear susceptibility of bulk gold (black lines).  
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The nonlinear absorption coefficient ȕ is directly connected to the imaginary part of the third-

order susceptibility of gold as follows:27    (3) 2 2
Au Au 0 0 eff3 Im[ ] 2 c n A    , where 2 /c    is the 

light angular frequency, c is the vacuum speed of light, 0  is the vacuum permittivity, n0 is the 

effective linear refractive index of the LRSPP mode,27 
Au

Au

1/2
2 2

Au z z

/2

t

t

E dz E dz


 

  
     

     is the 

field localization parameter of the gold layer,27 
2 1

2 4

eff z zA E dydz E dydz

   

   

   
    
   
     is the 

effective area of the LRSPP mode,27   z( , )E y z  is the electric field  in the transverse section of the 

waveguide, y is the in-plane coordinate , and z is the vertical coordinate (Figure 1a). In the 

formula for the field localization parameter Au , the initial two-dimensional integrals over the 

plasmonic mode area were reduced to one-dimensional integrals over the z-coordinate due to the 

waveguide symmetry.27 The only contribution to the effective nonlinear loss parameter ȕ of the 

LRSPP waveguide mode comes from gold because the photon energy at 1030 nm is less than 

half the bandgap energies for the adhesion and cladding materials of the waveguide.   

Gold layer thickness tAu affects the effective nonlinear absorption coefficient ȕ of the LRSPP 

mode via the field localization parameter Au  (which increases with tAu) and mode effective area 

Aeff (which decreases with tAu).27 However, even when these dependences are taken into account, 

the observed intrinsic nonlinearity Ȥ(3) of gold additionally increases with the reduction of the 

film thickness (Figure 2). Using the experimental values on the imaginary part of the third-order 

susceptibility of gold, (3)
AuIm[ ] , for 200 fs pulses, the thickness dependence  (Figure 2a, red 

curve) was obtained as follows:26,27 (3) (3)
Au 200 fs, bulk AuIm[ ] Im[ ] /D t   , where D = (8.3 ± 0.3) × 

10-27 m3/V2 was the only free parameter in the fit. It represents a confinement factor of the 
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electrons that effectively enhances the nonlinear response for thinner gold layers. In the fitting 

equation we fixed (3)
200 fs, bulkIm[ ] = 12 × 10-20 m2/V2 as the asymptotic value, which corresponds 

to the imaginary part of the third-order susceptibility of bulk gold for 200 fs pulses, obtained 

from the theory presented below. The obtained values of (3)
AuIm[ ]  for 200 fs pulses are 

approximately an order of magnitude smaller than those measured previously for 3 ps pulses 

(Figure 2b). The same as for femtosecond pulses, the fitting curve for the thickness dependence 

(Figure 2b, red curve) was obtained using the asymptotic limit value for bulk gold for 3 ps pulses 

(3)
3 ps, bulkIm[ ] =(297 × 10-20 m2/V2 and D = (153 ± 11) × 10-27 m3/V2. The origin of the thickness 

dependence of the third-order susceptibility of thin gold layers is explained in terms of the free 

electrons motion in gold taking into account a confinement factor. As the layers thickness tAu 

approaches nanoscale values, free electrons start to feel the layer boundaries, and the collision 

frequency of electrons in the metal layer increases comparing to bulk metal. This leads to the 

dependence of the dielectric permittivity of the metal on the layer thickness.26,27 In turn, the latter 

results in effective enhancement of the third-order susceptibility of the gold layer comparing to 

bulk gold.26,27 

The third-order susceptibility of bulk gold for different pulse durations was calculated using the 

two-temperature model (TTM) of the free electron temporal dynamics18,19 (see Supporting 

Information for details). Incident light pulses first generate, upon partial absorption, 

nonthermalized (out of equilibrium) hot electrons, which cannot be described by the electron 

temperature. These nonthermalized electrons then release their energy to the thermalized hot 

electrons (described by the elevated electronic temperature). For laser pulses with duration 

longer than the electron-electron scattering rate (on the order of 10 fs),36 the third-order 

susceptibility of gold originates from the interaction of the absorbed light with thermalized gas of 
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hot electrons. The Gaussian-shape laser pulse 2 2
0 0( exp) ( / )P P     is absorbed by the metal 

almost instantaneously so that the mean absorbed power density follows the shape of the incident 

pulse A( ) ( )P P   (Figure 3). The absorbed power builds up the energy density stored in the 

nonthermalized part of the electronic distribution th A th A( ) [ ]( ) ' ( ') ( ')N h P d h P     


   , as 

shown in the Supporting Information, via the convolution of the mean absorbed power and the 

electron “thermalization” response function of gold /1 th
th th(( ))h e     , where ( )  is the 

Heaviside step function. The rise of the nonthermalized electron energy density is slightly 

delayed as the hot electrons release their energy to the lattice and thermalized electrons with a 

characteristic decay time th  (approximately 300 fs in gold18,19). The electron temperature 

variation from the ground state is T Ae( ) ]([ )hT P    as derived in the Supporting Information. 

The electron temperature variation is the convolution of the mean absorbed power and the 

electron-temperature temporal response function of gold / /1 th r
T th r(( ) ) ( )( )h e e          , 

where r  is the relaxation time of the free electrons (approximately 1 ps in gold18,19). In the short-

pulse limit, e T( ) ( )T h   , and the rise of the electron temperature on the leading edge of the 

pulse is governed by the characteristic decay time of the nonthermalized electrons,19 while on the 

trailing edge it is governed by the characteristic decay time r  of the thermalized electrons. Then 

increased electron temperature e( )T   dissipates on a multiple-picosecond scale until the ground 

state thermal equilibrium is reached. Instead, in the long-pulse limit e A( ) ( ) ( )T P P     , and 

the characteristic time scales of the electron dynamics become too fast for a long pulse to 

experience any effects of the delayed responses, therefore, it experiences a quasi-instantaneous 

nonlinear response from the hot thermalized electrons.18  
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Figure 3. Electron temporal dynamics in bulk gold for 200 fs (solid lines) and 3 ps Gaussian pulses 

(dashed lines). When pump power P is absorbed in gold, giving the absorbed power density PA, the latter 

then creates the nonthermalized electron density N by the electron “thermalization” response function 

hth (inset). The nonthermalized electrons then convert to the thermalized hot electrons represented by the 

electron temperature deviation Te from the lattice temperature. P and Te are ultimately directly 

connected by the electron-temperature temporal response function hT (inset).    

Taking into account that the IR wavelengths used in the experiments, namely 1030 and 1064 nm, 

are far from the strongly dispersive interband transitions,19 the nonlinear dynamics of the LRSPP 

mode in the strip plasmonic waveguides can be described with the following nonlinear 

Schrödinger equation (NLSE) as shown in the Supporting Information:  

 cw c
2

w( ) ( [ | | 0) ] ,
2 Ti D i A i h AA 
                                                                          (1) 

where ( , )A    is the pulse complex amplitude,   and   are the propagation and time 

coordinates in the moving frame of the input pulse, (3)
cw cw eff)Re( / A   and (3)

cw cw eff)Im( / A   

are the effective nonlinear parameters of the LRSPP mode related to self-phase modulation and 

two-photon absorption, respectively, in the long-pulse (cw) limit, and D accounts for chromatic 

dispersion. We see that the electron temperature response function ݄୘ is acting like a 
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noninstantaneous “delayed” nonlinear response. Using the standard expression

1/2( , ) ( , )exp[i ( , )]A P       , where ( , )P    is the pulse power amplitude, and ( , )    is the pulse 

nonlinear phase, the imaginary part of Eq. (1) becomes: cw( ) [ ] 0TD P P h P         . In the 

cw limit, power P factors out of the convolution, and the equation reduces to the standard 

nonlinear power equation: 2
cwP P P     .27,33 

The situation will be different for ultrashort pulses, for which the continuous wave 

approximation does not hold. Neglecting the chromatic dispersion for the waveguide lengths and 

pulse durations considered, we can approximate the convolution as 2
T 0[ ]( ) )( ( )P h P P    . 

This approximation assumes a temporal overlap between the left side and right side of this 

expression, which was numerically verified to be satisfied (see Supporting Information). Thus, 

the nonlinear power equations become: 

 

2
0

0 0 cw

2
0 0 T

) ,

) ) ,

) max ( [ ](

'(

'( (

( )),t

P P

P h P

P

P

   
    

  








   



                                                                                      (2) 

where P0 is the pulse peak power. This is equivalent to the standard nonlinear power equation27,33 

with an effective nonlinear absorption coefficient 0'( )  . Correction factor 0( )   describes the 

deviation from the long pulse limit of the nonlinear absorption coefficient due to the 

noninstantaneous thermal response of free-electrons in metal. It depends on input pulse duration 

Ĳ0 and pulse shape, and 0)( 1    in the cw limit (see Supporting Information). Note that since 

T e[ ]( ) ( ( ))P h PP T    , the correction factor is mainly affected by a temporal overlap between 

the pulse envelope and the electron temperature variation. The introduction of the correction 
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factor allows to describe the imaginary part of the third-order susceptibility of gold for arbitrary 

pulse duration Ĳ0  as follows:  

(3)(3)
0 0 Au 0 0 cw Aucw,bulk, )] )(ImIm[ ( , ( ([ )] / ),t tD                                            (3) 

where tAu is the gold layer thickness and0  is the light angular frequency. (3)
0cw,bulk( )   and Dcw 

are the third-order susceptibility of bulk gold and the correction factor due to the electron 

confinement, respectively, in the cw limit; these can be calculated18,19 or determined 

experimentally. The first term in the brackets is the intrinsic nonlinear susceptibility of bulk gold 

while the second term is expected to depend on the electron confinement (i.e., whether 1D or 2D 

nanostructures are considered). In the following, we use the theoretical value 

(3) 20 2 2
cw,bulk 1030 nIm[ ( 10m)] 430  m / V   .19   

We can now directly compare the values of the third-order susceptibility of thin gold layers 

measured in the present work with 200 fs pulses at a wavelength of 1030 nm, and those 

measured for the same waveguides in Ref. 26 with 3 ps pulses at 1064 nm. This is justified by 

the fact that both wavelengths, 1030 nm and 1064 nm, are far from the interband transitions in 

gold19,20 and close to each other. We calculated the correction factors for Gaussian-shaped input 

pulses in the range from 10 fs to 10 ps, and as a first verification of eq 3, we show that the 

relation 0 cw)(D D   indeed holds (see Supporting Information Figure S3). We used the cw 

fitting coefficient as a free parameter, and the obtained experimental values of D were used to 

determine Dcw = 220 × 10-27 m3/V2 (accurate within 10%). Then eq 3 was used to plot the third-

order gold susceptibility for different pulse durations for the gold layer thickness tAu = 22, 27, 

and 35 nm (Figure 4a). We see that in all three cases, eq 3 represents quantitatively the measured 
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data, thus justifying the introduction of the correction factor, and also validating the theoretical 

value of the third-order susceptibility of bulk gold in the cw limit. Note that the correction factor 

0( )   is only needed to connect experimentally measured values of the nonlinearity with the 

nonlinear refraction and nonlinear absorption coefficients in the cw limit. Once these values are 

determined, they are used in the NLSE in eq 1 and the need for the correction factor vanishes. A 

similar relation as eq 3 can be derived in the model for the real part of the third-order 

susceptibility of gold (Figure 4b), which governs self-phase modulation effects. The plot in 

Figure 4b uses the theoretical value of Re[(3)
0cw,bulk( )  ] for bulk gold as the saturation value in the 

long-pulse limit  and the thickness dependence in the cw limit is calculated using the 

experimental data for 3 ps pulses. This approach is, therefore, based on the behavior observed for 

the imaginary part of the third-order susceptibility (Figure 4a) for which these parameter choices 

and the use of the correction factor were experimentally confirmed. The theoretical curves for 

the real part of the third-order susceptibility indeed match the experimental data for 3 ps pulses, 

but further experiments are needed to exactly verify the predicted behavior. Nevertheless, a 

general trend of the decreased nonlinearity for shorter pulses is in line with the literature data.20  

The predicted variation of the third-order susceptibility of gold monotonically spans over about 4 

orders of magnitude as the pulse duration changes from 10 fs to 10 ps (Figure 4). The obtained 

pulse duration dependences are in good agreement with previous studies,20 where the 

experimental values of the third-order nonlinear susceptibility for bulk gold were summarized 

from different experiments. Such a variation of the third-order nonlinearity of gold with respect 

to the signal pulse duration can be one of the principal advantages of free electron nonlinearities 

in plasmonic waveguides compared to conventional dielectric nonlinearities for the realization of 

ultrafast nanophotonic components.2,3 
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Figure 4. Theoretical pulse duration dependences of (a) imaginary part and (b) real part of the 

third-order susceptibility of gold layers with tAu = 22, 27, and 35 nm and bulk gold. (Symbols) 

The experimental data measured with 200 fs pulses at a wavelength of 1030 nm (present work) 

and 3 ps pulses at 1064 nm.
26

 It should be noted that the theoretical curves in (b) use the cw limit 

value of the third-order susceptibility taken from the theory, and, therefore, the shown pulse-

duration trend is only indicative; further experiments are needed to exactly verify the predicted 

behavior. 

In summary, we have shown that nonlinear dynamics of the long-range surface plasmon 

polariton mode in the gold strip waveguides significantly depends on both the gold layer 

thickness and the laser pulse duration. In particular, the origin of the pulse duration dependence 

has been explained in detail by studying the electron temporal dynamics using the two-

temperature model, which infers that a picosecond pulse interacts with metal stronger than a 

femtosecond pulse because of greater temporal overlaps of the laser pulse with the excited 

electron gas. Consequently, this leads to higher values of the third-order nonlinearity for longer 

pulses, as expressed by the correction factor in Eq. 2. Importantly, the experimental data on 

nonlinear absorption validate the connection between the characteristic response function of gold 

derived in the TTM and its role as a “delayed” nonlinearity for an ultrafast LRSPP mode in the 
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framework of a nonlinear Schrödinger equation. The response function of gold is purely based 

on characteristic time scales of the electron-gas relaxation, and a correction factor, Eq. 2, is 

introduced to gauge the magnitude of the delayed temperature nonlinear response for pulse 

durations shorter than or comparable to the electron relaxation times and, thus, connect the 

experimental measurements with theoretical results. The thickness dependence is explained in 

terms of the free electrons motion in gold taking into account confinement factor of the electrons, 

which we determine experimentally. The collision frequency of electrons in thin gold layers 

increases comparing to bulk gold, and it leads to enhancement of the effective third-order 

nonlinear susceptibility.26,27 The developed theoretical approach can be used to determine the 

third-order nonlinear susceptibility of free-electron gas in metals for any wavelength, pulse 

duration and metal layer thickness, once the nonlinear susceptibility of bulk metal for cw 

excitation are known and the electron-confinement enhancement factor is determined 

experimentally for a particular type of nanostructure.  

In future it will be important to investigate the linear and nonlinear optical properties of the 

waveguides with even thinner gold layers (up to ~10 nm). The standard Drude model breaks 

down at the metal layer thicknesses below 10 nm due to possible nonlocal37,38 and quantum 

effects.39,40 Also there is a clustering process for thin metal layers,41 and their fabrication 

especially with thicknesses below 10 nm is challenging.42 Thus, a complete hydrodynamic 

description, including nonlocal effects is required, which is especially important in the nonlinear 

regime.43,44  

The presented results on nonlinear optical properties of long-range surface plasmon polaritons in 

the gold strip waveguides can be exploited for the development and applications of active 
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plasmonic and nanophotonic components, and for accurate a priori modeling of ultrafast 

nanoplasmonic devices. 

 

Supporting Information.  

The details of the experimental setup, the two-temperature model of electron temporal dynamics 

in gold, and the obtained experimental and theoretical values of the third-order susceptibility of 

gold are presented. This material is available free of charge via the Internet at http://pubs.acs.org. 
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