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Abstract

Tokamak plasmas are confined by a magnetic field that limits the particle and heat transport perpendicular to the
field. Parallel to the field the ionised particles can move freely, so to obtain confinement the field lines are “closed” (ie.
form closed surfaces of constant poloidal flux) in the core of a tokamak. Towards, the edge, however, the field lines
intersect physical surfaces, leading to interaction between neutral and ionised particles, and the potential melting of
the material surface. Simulation of this interaction is important for predicting the performance and lifetime of future
tokamak devices such as ITER. Field-aligned coordinates are commonly used in the simulation of tokamak plasmas
due to the geometry and magnetic topology of the system. However, these coordinates are limited in the geometry
they allow in the poloidal plane due to orthogonality requirements. A novel 3D coordinate system is proposed herein
that relaxes this constraint so that any arbitrary, smoothly varying geometry can be matched in the poloidal plane
while maintaining a field-aligned coordinate. This system is implemented in BOUT++ and tested for accuracy using
the method of manufactured solutions. A MAST edge cross-section is simulated using a fluid plasma model and the
results show expected behaviour for density, temperature, and velocity. Finally, simulations of an isolated divertor
leg are conducted with and without neutrals to demonstrate the ion-neutral interaction near the divertor plate and
the corresponding beneficial decrease in plasma temperature.
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1. Introduction

The plasma in the core of a tokamak is confined
by magnetic fields that do not intersect any physical
surfaces, but instead twist endlessly to form closed
surfaces of poloidal flux. The separatrix marks the
dividing line between these “closed” field lines and
ones that are “open” (ie. ones that intersect the walls
of the tokamak). These open field lines are designed
to intersect the divertor, which is made to withstand
the particle and heat flux that escapes the core of
today’s machines. In future devices such as ITER,
however, the power flux could potentially be too high
(> 10MW/m?) for any known material to withstand
for prolonged periods of time [1]. By injecting neu-
tral gas into the divertor region the plasma can be
driven into a detached regime where the majority of
the plasma power is radiated away before the plasma
reaches the divertor, significantly lowering the plasma
power deposited on it. It is essential to accurately sim-
ulate such detached plasmas to predict the heat loads
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that will remain for these larger future devices [2]. For
this, it is important to match the simulation grid to
the geometry of the divertor, which many codes cur-
rently do in the 2D poloidal plane, but the 3D extent
remains unoptimised to the tokamak geometry due to
the field-aligned nature of the plasma perturbations.

In tokamak plasmas, waves and instabilities are
elongated along the magnetic field, while the per-
pendicular structures are small (on the order of the
Larmor radius). Therefore, when simulating an edge
plasma it is desirable to also have a coordinate sys-
tem and grid that are aligned along the field. One can
derive a set of coordinates related to standard orthog-
onal tokamak coordinates (¢, 8, ¢ as shown in figure
1) where one coordinate is aligned to the field. Such
a coordinate system allows for resolution along the
field line to be sparser as is appropriate for the large
structures, while maintaining fine resolution perpen-
dicular to the magnetic field. The typical method for
doing this is to keep the radial flux coordinate 1, but
to replace the toroidal angle ¢ and the poloidal an-
gle 6 with a shifted toroidal angle z and field-aligned
coordinate y, respectively [3,4]. The mathematical
derivation of this is detailed in the next section, but
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qualitatively this implies that if ¢ and z are held
constant while ¥ is increased, one will progress along
the field line on a helical path around the torus. The
toroidal angle changes as one moves in y, implying
that these coordinates are no longer orthogonal.

Though this system solves the problem of resolu-
tion, it leaves other problems un-addressed. Namely,
the grid is restricted in shape in the poloidal plane
because the ¥ coordinate is orthogonal to the poloidal
projection of y. If this constraint is lifted by deriving
a new set of coordinates that are both field-aligned
but also non-orthogonal in 1 and y, there is freedom
to define a grid that matches the geometry of a spe-
cific tokamak in the divertor region. This is especially
useful for the simulation of neutrals because they do
not follow the field, so a wall-conforming grid is nec-
essary. In this paper, a novel coordinate system that
allows such freedom is presented, tested, and utilised
for divertor plasma simulations.

An important distinction needs to be made be-
tween this new system and current coordinate sys-
tems in use in plasma edge codes such as SOLPS [5]
and EDGE-2D [6]. These codes are 2D, so though
they do allow non-orthogonality in the poloidal grid,
they do not have a field-aligned coordinate. The
coordinate system derived in this paper allows for
3D plasma edge simulation grids to be defined with
non-orthogonalities in the poloidal plane while also
maintaining a field-aligned coordinate.

1.1. Standard field-aligned coordinates

In the derivation of these coordinates, standard
symbols for tokamak geometry are utilised for the
toroidal, poloidal, and radial flux coordinates - ¢, 6,
and 1 respectively [7]. These coordinates form a right-
handed, orthogonal coordinate system as shown in fig-
ure 1. The standard field-aligned coordinate system is
defined as

xTr =

y=0 (1)
0

z=0¢— v db
0o

where the local field line pitch is given by

06 B-V¢  Bghy

Y0 =56 = B Ve BeR @
with toroidal field By, poloidal field By, major radius
R, and poloidal arc-length hg. Figure 1 shows the ge-
ometry described by the coordinate system in equa-
tions 1. It is important to notice that the shift added
to the z-coordinate causes the y-coordinate to be field-
aligned. The z-coordinate remains perpendicular to
the poloidal projection of the y-coordinate, limiting
choice of poloidal geometry.

The contravariant basis vectors are then found by

taking the gradient of each coordinate, using V =
Vw% + VH% + V(/b% to calculate

Figure 1. The geometry described by the coordinate system
posed in equations 1.

V=V
Vy = V6 (3)
Vz=V¢—-—vVO—-IVy
with ;
ov
I = — df. 4
. 0 (4)

The magnetic field can be written in Clebsh form [§],
1
B:Vxsz:jey (5)

so the coordinate system is field aligned. The con-
travariant and covariant metric tensors are defined as

g9 = Vu' - Vu? (6)
Gij = €i - €;
where e; = J(Vu? x Vu*) and v’ indicates a partic-
ular coordinate. Using the following identities

Vi = R|By| V0 = |ho| ™" Vo=R" (1)

the contravariant metric tensor can be rewritten as

(RBg)?2 0 —I(RBy)?

gi=1 - ny? vhy? (8)

- I’(RBy)* +v?hy* + R™2

To calculate the covariant metric tensor, one must first
find the Jacobian of the system, which is given by

J1=Vz. (Vyx Vz) (9)
thus 5
_ o
1= (10)

The covariant metric tensor, defined as g;; in equation
6, is then calculated as
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These co- and contravariant metric tensors can be
used within simulations to perform operations, such as
the parallel gradient, V| = b-V = ﬁa%» in the cor-
rect geometry [4]. It is important to note that there is
a singularity in this coordinate system wherever By =
0 (J — oo in equation 9), such as at the X-point. The
new and improved coordinate system described in the
next section still contains this same limitation.

2. Flexible field-aligned coordinates

Near the divertor, this standard field-aligned sys-
tem suffers from the inability to match the physical
geometry of the divertor surface due to the orthog-
onality constraint in the poloidal direction. Figure 2
shows a line of constant 8, which represents a grid in
the standard field-aligned coordinates. It is desirable
to shift this line so that it lies on the divertor plate,
which requires a shift in the 6 coordinate. Though
such a coordinate system is already utilised in many
plasma codes for 2D simulations, a new set of coordi-
nates is needed to allow a 3D simulation mesh to be
aligned the divertor (or any smoothly varying) geom-
etry in the poloidal plane while also maintaining field-
alignment. To derive these coordinates, the following
system is defined by analogue to equation 1:

T =1

Y = 0 — Yshift
Z = ¢ — Zshift

(12)

such that the shift in y (ysnire) allows for the z-
coordinate to be aligned with any arbitrary geometry
in the poloidal plane. Likewise the shift in z (zgnist)
enables the y-coordinate to follow an arbitrary ge-
ometry toroidally. As is standard in field-aligned
coordinates the zgnisx will be defined to ensure that
the y-coordinate follows the magnetic field line, as
demonstrated in the previous section.
For a coordinate system to uniquely define all
points in space it must obey
19) 0 0 0 0 0
oo _Ov_0y Oy _0:_0:_,
dy 0z Ox 0z Ox Oy
In this way one can derive the ysnire by recognising
that % =0so
oy 9 v 06
== = — (0 — Ysh — it = — d.
or 31,[} ( yShlft) Yshift o (91/} w
(14)

A non-orthogonality parameter (analogous to the
field line pitch, but in the poloidal plane) is defined

as n = g—‘g. Similar to v, the field line pitch, n is a

function of ¥ and 6. This yields the final expression
for the y-coordinate:

P
y:9f/ 0 dy. (15)

Figure 2 demonstrates the physical functionality
of the y-shift term in matching the divertor geometry.
The result of this shift, represented by the green arrow,
is the alignment of the x-coordinate with the divertor
plate.

f# — const

y = const

Figure 2. A physical picture of why the y-shift term (indicated
by the green arrow) is needed and how lines of constant 6
compare to lines of constant y. The red line indicates the
divertor plate.

The same method can be used to solve for zgpie by
this time recognising that g—z =0,
0z 0 Y 00

oy "oy (¢ — 2shitt) = Zshift = L By dy
(16)

however this needs further manipulation using equa-

tion 15 to obtain a final system dependent on estab-
lished parameters.

Zh'ftz/y%dy
Yo 8y

[0, 17
o 00 Dy (17)

Y ¢ b P
= — [ 14+ — / ndy | dy
/y0 00 < Y Sy,
As defined previously, the field line pitch v = 57,
yielding the final expression for the z-coordinate:

y b P
— 6 = d | d 18
z=¢ yOV<1+8y/%n w) Yy (18)

With new coordinate definitions derived above and
given in equations 12, 15, and 18, the new more general
covariant and contravariant metric tensors are then
derived. The contravariant basis vectors are found, as
before, by taking the gradient of each coordinate.

0

V=V

Vy =GV — Vi (19)
V:—Vé— HVO— IV

where
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These expressions cannot be simplified via the
Leibniz integral rule, as was done previously, because
y is not independent of 6 or . Since the magnetic
field can still be written in Clebsh form [8], as in
equation 5, the system is still field aligned. How-
ever, these changes now allow the system to match
any smoothly varying geometry in the poloidal plane
through choice of 7.

The metric tensors now have adjusted terms as well
as an additional non-zero term (g®¥) reflecting the
non-orthogonality of the z and y coordinates.

gII — (RB@)Q

9% = G?hy? +n*(RBy)?

97" = I’(RBy)* + H?hy* + R™*

g = —n(RBy)*

g = ~I(RBy)’

g¥* = In(RBy)? — GHh,?

(21)

The Jacobian of the system can still be calculated as

before in 9, giving
ho
J == 22
GB, (22)

Finally, the covariant metric tensor is calculated as

2 2
9oz = (RBg) ™ + (hen> + (RH?7 +IR>

G G
h2  R2H?
I = Ga t TG
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Importantly, in the limit where x and the poloidal
projections of all field lines are orthogonal (ie. the
standard field-aligned system) y = 6, so

6
ov (24)
1= —db
/00 o

thus, the standard field-aligned metrics in equations
8 and 11 are recovered.

H=v

3. Testing the Coordinate System and Metrics

Ensuring that this substantial change to the sim-
ulation geometry has been implemented correctly re-

quires the numerical accuracy of the system to be
benchmarked. The implementation and testing of this
new coordinate system is done in BOUT++, an edge
plasma simulation library developed by Ben Dudson,
et al [3]. The numerical accuracy of the system is veri-
fied via the method of manufactured solutions (MMS)
[9], which is a common method for testing the numer-
ical validity of fluid simulations. BOUT++- itself has
been previously benchmarked using MMS to affirm
that its numerical methods are accurate to the correct
order [10]. Any shortfalls in accuracy in this new test
must then be due to the new coordinate system.

3.1. Numerical accuracy

To validate with MMS, a field f(¢, 6, ¢,t) is de-
fined and evolved using a simple advection model
af A
- = S 25
5 = @f + (25)
where the operator Q = % + % + a% and S(1, 0, ¢,1)
is a source term for the MMS. An analytic function is
chosen for f = F, and the source term is defined as

)
§= —QF (26)

By doing this, we ensure that the numerical time
derivative will be equal to the analytic time deriva-
tive in the case where the numerical Q is equivalent
to the analytic Q, since the source S can be calcu-
lated analytically to machine precision. In this way
the numerical accuracy of the derivative operators is
tested, as any error in them will propagate in time.
This has previously been done for BOUT++ showing
that all second order methods are indeed accurate
to second order [10]. Verification of the new metric
is then done by evaluating this equation on various
non-orthogonal grids and observing the order of con-
vergence as the grid spacing is changed.

An analytic solution is defined
F(,0,¢,t) =cos® (p+0+¢—1)  (27)

which in turn provides the definition for the source
term

S(1),0,0,t) =8sin(¢p + 0+ ¢ —t) cos(v + 0 + ¢ — t).
(28)

This manufactured solution is chosen to satisfy
the criteria laid out in [9]. Using a test grid and work-
ing from lowest to highest complexity in meshing, the
new metric has been fully validated.

The combinations of non-orthogonalities tested
demonstrate at least 2™ order convergence with
Dirichlet boundary conditions. Table 1 shows the
slope of the error norm, defined as the root mean
squared error between f and F over the entire grid,
as a function of grid spacing. This indicates the order
of convergence for the numerical methods in use in
the simulation are second order as expected. Similar
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Figure 3. The grids used for both the wave test case and the
MMS verification. (a) A fully orthogonal grid. (b) A grid with
constant non-orthogonality in the poloidal plane. (c¢) A grid
with sinusoidally varying grid spacing in the y-direction.

Table 1

Numerical scheme ordering as converged from 8x8x8 to
64x64x64 using the MMS. Columns indicate non-orthogonality
in the z-y plane and rows describe non-orthogonality in the
y-z plane.

Poloidal Poloidal
Orthogonal pitch shear
m=0) (n=02) (n=Ff(,0)

No pitch 2.00 2.14 2.00

(v =0)
Const. pitch

(v =0.1) 2.02 2.04 2.02
Shear

(1/ _ 0-137) 2.14 2.14 2.13

convergence of at least 2" order is also seen for the
newly implemented Neumann boundary conditions.
The x — y grids used for these MMS verification
tests are shown in figure 3. Though the z-direction
is not pictured, the 3-D location of the grid points is
calculated through the pitch v and non-orthogonality
factor n according to equations 12, 15, and 18. The
field line pitches used for the test cases are v = 0 for
the orthogonal case, v = 0.1 for the constant field
line pitch case, and v = 0.1z for the magnetic shear
case, with « € [0, 1]. The y-grid spacing for the third
grid (figure 3c) is defined by y = 6 + (0.5 — z) sin 6,

)
_
-

NN

Figure 4. (a) Orthogonal in the poloidal plane, this mesh can-
not extend all the way to the divertor plate. (b) This grid does
extend to the divertor plate, but requires the new metric de-
rived above. (c) The Cartesian nature of the X-point grid can
be seen when the picture is zoomed for the new coordinate sys-
tem case. The slow change from orthogonal to non-orthogonal
in the divertor leg as the plate is approached can also be seen.

where 6 is equally spaced in [0, 27], and b determines
the amount of non-orthogonality (b = 0.1 for this
case). With this expression for y, there is no analytic
form for n so it was calculated numerically. With
the implementation proven numerically accurate, the
following sections detail fluid simulations of plasma
edge and divertors using the new coordinate system.

4. Application to divertor physics

The X-point and divertor regions are the focus for
simulations testing the effect of the new coordinate
system for realistic geometries. This is appropriate be-
cause these are regions where the flexible field-aligned
coordinates are most pronounced (ie. where 7 is the
largest). The first simulations involve a full tokamak
poloidal cross-section and the second focus on an iso-
lated divertor leg.

In order to study physics problems in a realis-
tic tokamak geometry, a grid generator called Hyp-
notoad [3] is used to create BOUT++ meshes from
EFIT equilibria [11]. This generator was modified in
order to create poloidally non-orthogonal meshes, and
the calculations for the metrics are included in post-
processing of the grids.



4.1. Grid generation and processing

Before the derivation of the new coordinate sys-
tem, BOUT++ used the standard field-aligned co-
ordinate system (equation 1) requiring simulation
meshes like that seen in figure 4a. However, the mesh
can now be constructed to match the geometry of
the divertor as shown in figure 4b, allowing for more
accurate simulations of the physics in this region.

Nonorthogonality n

15F
0.845

‘ } 0.676
1.0f 1
‘ 0.508

gl 0.340

0.172

0.0

Z(m)

0.004

-0.164
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—0.501

' —0.669

-1.0f

=15}

04 06 08 10 12 14
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Figure 5. The non-orthogonality factor, n, is contoured onto
the MAST mesh to highlight the differences between this mesh
and the old one around the divertors and X-points.

There are significant differences in these two grids
at the divertor leg and also at the X-points. The
changes to the X-points are a benefit of this new
coordinate system because it allows a more regular
distribution of grid spacing in y in this region, which
increases the stability of simulations taking them
further from the Courant-Freidrichs-Lewy condition
limit [12] and increasing the speed of the simulations.
It also allows grid points to be placed closer to the
X-point, though there is still a coordinate system sin-
gularity on the X-point itself as is common among all
field-aligned systems. The non-orthogonality of the
new mesh is captured in the value n, which can be seen
contoured in figure 5. It was not as straight-forward to
calculate 7 for these realistic meshes as it was for the
meshes in figure 3 created for the MMS verification.
In the generation of those grids, 6 was defined and
y was derived from the by setting the value of ygnist
analytically and utilising equation 15. This process,
however, is not possible for the realistic tokamak ge-
ometries, so 7 needs to be calculated from the layout

of the grid as produced by the grid generator. This
is done by realising that the non-orthogonality factor
1 = sin 8 where 7/2 — (3 is the local angle between y
and x. In this way, Hypnotoad was modified to in-
clude the calculation of 8 and n for each grid point,
allowing for the calculation of the full metric tensors.

4.2. Simulations in BOUT++

Herein the standard field-aligned coordinates
(equation 1) are referred to as ‘orthogonal’ and the
flexible field-aligned coordinates (equations 12, 15,
and 18) are called ‘non-orthogonal’ due to their pro-
jected behaviours in the poloidal plane.

4.2.1. Plasma 2-D transport model

There are many 3-dimensional turbulence models
that have been derived for simulation of tokamak
plasmas [13]. Since the flexible field-aligned coordi-
nate system is suitable for simulating the edge and
divertor, which is very collisional due to the low tem-
peratures and densities, one might consider a drift-
reduced model which has been shown to be valid for
the edge [14]. A model developed by Simakov and
Catto [15], cast into divergence-free form, and sim-
plified to the fluid limit (ie. no current) is utilised for
2-D divertor and edge simulations in the new coordi-
nate system using BOUT++-.

The Simakov-Catto model can be simplified to
include only perpendicular and parallel transport via
diffusion, conduction, and convection. In this form,
the equations here are the same as those modelled by
other edge transport codes such as SOLPS [16] and
UEDGE [17]. This is a useful tool for initialising a full
turbulence run and also to check the basic behaviour
of a system. The reduced equations are

0
8—7; ==V (nv,;u) +V,- (Dnvn) + Sy,
w =-V) (nvizu) = Vipe (29)
3 Ope 5
3 ;; = —§VH (pevin) + viVipe + V- (kV) T¢)

3
+§VL : (Dnvpe) + Sp

This system is simulated in two-dimensions (x-y)
to evolve the flows within the system, but turbulence
and electric effects (such as E x B drifts) are absent.
Sheath conditions are used for the boundary in contact
with the divertor plate according to the constraints
given by Loizu [18]. The ion velocity at the plate is
assumed to be the sound speed, as is the Bohm crite-
rion, and this is then related to the electron velocity.

V; = Cg = \/i (30)

The electron temperature is assumed to have zero gra-
dient at the divertor:

VT, =0 (31)
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Figure 6. The density, temperature, and Mach number profiles
at the divertor plate are shown for both the orthogonal (red)
and non-orthogonal (blue) grids.

allowing heat to flow to the plates via the heat flux
equation [19]:

q = Ysnelecs (32)
where the sheath heat transmission coefficient is taken
to be 75 = 6.5. The density and velocity gradients
are set by assuming the ion flux has a zero parallel
gradient.

Vin = —cﬁvuvi (33)

Finally, the pressure gradient is set by assuming zero
temperature gradient and p, = nT,.

Vipe =T.Vin (34)

4.2.2. Tokamak simulation
A full MAST lower double-null equilibrium was
constructed, as in section 4.1, to examine the be-
haviour of the plasma in the divertor region and
around the X-point. An L-mode plasma is simulated
with the pedestal temperature at the inner boundary
set to 295eV and the edge to 10eV, the core density
to 10'”m~2 and edge density to 10'®¥m~3. Using the
grids shown in figure 4 and the fluid model described
in section 4.2.1, a steady state is reached after 1.25ms.
The Bohm boundary conditions set the Mach
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Figure 7. The particle (left) and power (right) fluxes are shown
for both the orthogonal (red) and non-orthogonal (blue) grids.

number to 1 on the cell boundary, which is halfway
between the last grid cells and the first boundary
cells in the y-direction. For the non-orthogonal case
this corresponds to the divertor plate, but for the
orthogonal grid, this lies in an arbitrary distance
from the plate, so values must be extrapolated and
scaled based on the flux expansion, Bs/By, to obtain
the quantitative results at the divertor plate. Figure
6 shows the density, and Mach number at the strike
point for both the orthogonal and the non-orthogonal
grids. The densities and temperatures are very sim-
ilar for both cases, while the Mach number shows
a background linear profile for the orthogonal grid
which is due the boundary conditions being set at the
last grid cells, but the grid itself being at an angle to
the plate. This means that the boundary conditions
are at a location inside the plasma instead of at the
true boundary of the machine, a problem solved by
the flexible field-aligned coordinate system.

The density drops at the plate to a value around
2 x 10®m=3 and the temperature to leV. If neu-
tral interactions were part of this simulation of the
divertor region, plasmas of this temperature would
be dominated by charge exchange reactions and de-
tachment would occur. Since there are no neutrals,
however, the low temperature and density lead to
small ion and power fluxes, shown in figure 7. Both
the particle and power flux are similar for the orthog-
onal and non-orthogonal case, as expected since the
input fluxes are the same. This affirms the validity
of the implementation of the new coordinate system
in BOUT++ and allows for more detailed and inter-
esting simulations to be run, such as those including
neutrals in the next section.



1012

107 b
|
(S S S
10—14
|
- 1
T 107 lonisation
E — Recombination (n = 10"*m~*)
A 10t — Recombination (n = 10*m*)
v — Recombination (n = 10?m™?)
5 10" Charge exchange
10-18
10"
10%°

0 5 10 15 20 25 30
Electron temperature [eV]

Figure 8. The cross-section rates for ionisation, recombination,
and charge exchange are pre-calculated for hydrogen species
as a function of the plasma temperature [21,22] (extended to
low temperature by H. Willett).

4.2.3. Fluid neutral model

The heat load from the plasma onto the diver-
tor plates is a limiting factor in divertor design and
tokamak operation. In current devices, the heat load
is acceptable, but for future fusion power plants, the
predicted heat load would cause the divertor plate to
melt [1]. One method to solve this problem is to op-
erate the tokamak in a detached regime, where neu-
tral density rises at the plate allowing the plasma to
radiate much of its energy in all angles instead of de-
positing it in a small area on the divertor plate. The
ease of entering this detached regime is dependent on
the geometry of the divertor [20], making this an ideal
test case for the flexible field-aligned coordinates.

To simulate detachment, a model for the neutral
behaviour as well as the neutral-plasma interaction is
required. The four atomic processes included to de-
scribe this interaction are ionisation, recombination,
charge exchange, and radiation. Ionisation, recombi-
nation, and charge exchange provide sources and sinks
for density, energy, and momentum, each of which can
be described by the following density rate coefficients
(m~351)

R = nn, (ov),, (Tonisation)
(Recombination) (35)

(Charge exchange)

Kre =1’ (oV)c
Kew = 1y, (OV),,

where n is the plasma density, n,, is the neutral den-
sity, and (ow) is the cross-section (m3s~1) for the rel-
evant process which is a function of the plasma tem-
perature. These cross-sections (shown in figure 8) are
pre-calculated and interpolated from a look-up table
within the code. Ionisation increases the plasma den-
sity while recombination decreases it, so the resulting
density source is described as the difference:

Sn = e%iz - %rc (36)

Recombination and charge exchange both remove mo-
mentum from the ions transferring it to the neutrals.
Therefore the sink of momentum is given by

F = —m; [vi%rc + (01 — Uni) RBew — vniZiz)  (37)

Figure 9. The coloured contours show the neutral density and
the vectors indicate the flow direction and speed. Neutrals flow
away from the point of generation (ie. where the high plasma
flux hits the plate) and cycle around the divertor leg. The grid
used for this simulation is described in section 4.2.4 and figure
10.

where v is the parallel ion velocity and F' can be de-
scribed as a friction-like term. Energy is transferred
between the ions due to all three plasma-neutral inter-
active processes. Ionisation provides an energy source
to the plasma, while recombination removes energy
from the plasma. Charge exchange can technically act
as a source or a sink for plasma energy depending
on the relative temperature difference between the
plasma and neutrals; however, it is unlikely for the
neutrals to be hotter than the plasma, so in most cases
charge exchange acts as a sink for plasma energy

3 3 3

where T, is the plasma temperature and 7, is the
neutral temperature. The plasma energy is also af-
fected by radiation, which causes a loss of energy
through photon emission and 3-body recombination,
which heats the plasma at temperatures less than
5.25eV [19]. These two processes are calculated with

R = (13.6eV — 1.09T,) %rc — E;. %;. (39)

where F;, = 30eV is the ionisation energy given by
Togo [23].

In order to calculate the interactions described
above, the neutral density and temperature must be
known. There are various approximations that can be
made for the behaviour of neutrals; however, for these
simulations the neutrals have been included rigorously
by co-evolving neutral density, pressure, and velocity
with a standard system of fluid equations.
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Figure 10. A simulation grid for an isolated outer, lower diver-
tor leg allows for concentrated computational power on this
region of interest. The dotted black lines show the locations of
the flux surfaces formed from the upper and lower X-point.
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where p, ¢, and k are constants describing the dynamic
viscosity, bulk viscosity, and thermal conduction re-
spectively (values chosen to be 3.4x107° kg/m/s,
6x107% kg/m/s, and 3.2 W/m/K, respectively). For
numerical stability, the neutral velocity is shifted to
cylindrical coordinates, calculated, and then shifted
back into the field-aligned coordinates. This proves
more stable and accurate since the neutrals are unaf-
fected by the field lines and it removes derivatives of
the metric tensor terms in the advection of vectors. In
other codes that use fluid neutrals, such as UEDGE
and SOLPS, a slightly different model is used where
the neutrals are treated as a fluid parallel to the field
lines, but are treated as diffusive perpendicular to
the field [24,25]. This relaxes the numerical stability
constraints in the perpendicular plane. Though this
model for neutral fluids has also been implemented in
BOUT++, we have chosen to use the full fluid model
for a more rigorous test of the coordinate system.

Figure 9 shows neutrals that are generated at the
divertor plate due to the plasma flux. These neutrals
then stream away from the plasma along the plate
and then up the divertor leg. The flow is shown to be
cyclic as the neutrals make their way up the leg, back
into the plasma where they are accelerated back to
the plate. The boundary conditions at the plate and
sides of the legs are reflecting for neutrals, but the
top of the leg allows outflow.
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Figure 11. Density and temperature are shown to decrease
towards the divertor plate when no neutrals are present. Once
neutrals are introduced, the plasma density goes up near the
plate due to a recycling source, while the temperature drops
due to the energy lost through radiation.

4.2.4. Isolated divertor leg

In order to isolate the divertor leg, where the non-
orthogonality is most pronounced, a grid is produced
by amputating the leg from a full diverted plasma grid.
For this section the grid is a MAST lower, outer leg as
shown in figure 10. For this to be sufficient an approx-
imation for the core density and power fluxes must be
made at the top of the leg. This is accomplished by
holding the density and temperature constant at the
upper boundary in the outer SOL, while allowing the
density and temperature to float with zero gradient
boundary conditions in the private flux region.

Experimentally, detachment is seen to occur when
the upstream density is high enough for the recycling
at the divertor plate to cool the plasma below about
5eV [26]. At this point, the plasma rapidly cools and
recombines, forming a cloud of neutrals which radiates
the heat away before the plasma reaches the divertor
plate. To see this in simulation, first a plasma fluid
model (with no currents or neutrals) was run until
equilibrium was reached. The behaviour of the density



and temperature should be similar to the two-point
model [19], which is a simplified view of the plasma
behaviour that assumes parallel pressure conservation
in a flux tube geometry with no flux expansion, yet
not identical since the simulation has perpendicular
diffusion and flux expansion.

Once steady state is reached in the fluid model,
neutrals are added to the simulation and evolved us-
ing the fluid equations given in equation 40. The re-
cycling fraction is set to 95%, and the expectation is
that the T} /T, should move to lower values at higher
upstream densities, indicating a detached regime as
the neutrals remove energy and momentum from the
plasma. Figure 11 shows the parallel profiles of density
and temperature before and after neutrals are added,
and a clear drop in temperature is seen as well as a
rise in plasma density near the plate due to ionisation.

Figure 12 shows how the introduction of neutrals
affects the T; /T, curve - clearly, the neutrals are cool-
ing and slowing the plasma through collisions and
atomic processes. Simulations with upstream density
over 10'm~2 were unable to complete due to numeri-
cal instability. The mean-free path of the neutrals de-
creases as a function of density, so with higher density,
the resolution requirement is significant near the plate
where the neutrals are initially formed. This problem
is not due to the coordinate system, but due to the
physics itself as it is seen to exist for simulations even
in the orthogonal coordinate system. By generating
new grids with increased resolution in this region, the
simulations were pushed to later time steps. Further
work will be undertaken to stabilise the simulations
by modifying the neutral model to include extra dif-
fusion in the poloidal plane.
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Figure 12. The temperature decrease along the field line due to
upstream density is seen to be more significant when neutrals
are present. The analytic solution to the two-point model is
shown for comparison.

4.2.5. 3-D blob evolution
The coordinate system discussed herein is suitable
for three-dimensional simulation of plasma dynam-
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Figure 13. The plasma density is shown for two different time
slices. The white dotted line indicates the location of the sep-
aratrix. The top plot shows the initialisation (¢ = 0s) of the
blob in the R — ¢ plane. The bottom plot shows the plasma
density after the blob has been advected radially outward (at
t & 100us).

ics. A simple blob model [27] is used to demonstrate
the functionality of such a coordinate system imple-
mented within the BOUT++ framework. In this sys-
tem the density, vorticity, and parallel velocity are
evolved.

d J

o _ 2¢spi€ - Vn+Vi— —noVjuy

dt e

dw J

pino g = 2espi€ - Vn+ V- (41)

duu 62
Sy

dt ) i

where £ = V x % is the curvature, p; is the ion larmor
radius, ¢, is the sound speed, % = %+uE-V+uH -V
is the convective derivative, ug is the ExB velocity,
and wuy is the parallel velocity. The vorticity is re-
lated to the potential with @ = V2 ¢, and the par-
allel current is defined via adiabatic response as J =
”E”T? (Vin —nogV¢) where o is the parallel conduc-
tivity and T, is the (constant) electron temperature.

A blob is initialised in the isolated divertor leg
geometry (as in section 4.2.4) to be elongated along
the field line near the separatrix with a gaussian den-
sity profile. A dipole potential develops advecting the
blob radially outward. Figure 13 shows the blob ini-
tialisation and later in time after the radial advection
has begun. The boundary conditions on the plasma



are the same sheath conditions shown in section 4.2.1,
but with the inclusion of current density condition

ji = ene [v”i . \/CZTTexp(—(b/Te)}. The blob motion

is qualitatively consistent with the behaviour seen in
blob simulations in slab geometry [28,29].

5. Conclusion

The simulation of plasma behaviour in the diver-
tor region is increasingly important as the power of
tokamaks increases. Melting needs to be avoided at all
costs, so understanding and predicting the heat load
is necessary. A new coordinate system has been intro-
duced that allows divertor geometry to be matched in
simulation, while maintaining the benefits of a field-
aligned coordinate system. This coordinate system
has been implemented in BOUT++ and tested for nu-
merical accuracy as well as reproduction of reasonable
physical behaviour. These coordinates, in conjunction
with a plasma and neutral turbulence model, will be
used in future work to predict the heat load, radiated
power, and evolution of detachment for devices such
as ITER.

Though this work has focused on applications for
tokamak physics, the definition of these coordinates
is general in nature and depends only on choice of v
and 7 to provide shifts to an orthogonal system. It
is conceivable to use the coordinates defined here to
model any arbitrary 3D geometry where aligning co-
ordinates to particular features of the physical system
is desirable.
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