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Abstract 

Bacteria form surface-attached communities, known as biofilms, which are central to 

bacterial biology and how they affect us. While surface attached bacteria often 

experience strong chemical gradients, it remains unclear whether single cells can 

effectively perform chemotaxis on surfaces.  Here we use microfluidic chemical 

gradients and massively-parallel automated tracking to study the behavior of the 

pathogen Pseudomonas aeruginosa during early biofilm development. We show that 

individual cells can efficiently move towards chemoattractants using pili-based 

“twitching” motility and the Chp chemosensory system. Moreover, we have 

discovered the behavioral mechanism underlying this surface chemotaxis: cells 

reverse direction more frequently when moving away from chemoattractant sources. 

These corrective maneuvers are triggered rapidly, typically before a wayward cell has 

ventured a fraction of a micron. Our work shows that single bacteria can direct their 

motion with submicron precision, and reveals the hidden potential for chemotaxis 

within bacterial biofilms. 
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Significance statement  

Bacterial biofilms affect many aspects of our lives from causing disease, to promoting 

health and shaping many key processes in the environment. Despite this, surface-

attached cells in biofilms are often portrayed as slow growing and sluggish, a stark 

contrast to the energetic swimming they exhibit in liquid. Here we use microfluidic 

devices and automated cell tracking to challenge this view: we find that individual 

cells will actively move towards nutrients within a developing biofilm. Our analyses 

reveal that cells not only each seek out favored positions on a surface, but they can 

regulate their movement with remarkable submicron precision. Our findings suggest 

we can systematically engineer biofilms by manipulating the movement of the cells 

from which they are founded. 
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Introduction 

Flagella-driven chemotaxis in bacteria has been thoroughly dissected (1-4), leading to 

its emergence as a paradigm of both signal transduction and cellular decision-making 

(4, 5). However, many key phenotypes of bacteria occur when cells are not 

swimming. In particular, planktonic cells commonly attach to surfaces and form 

communities, known as biofilms, which are central to health, disease, agriculture, 

industry and the environment (6, 7). Biofilms often contain steep chemical gradients 

that result from cell metabolism, hampered diffusion and the secretion of a wide 

variety of compounds (8). While attached bacteria can be highly motile (9-11), 

remarkably little is known about the potential for these cells to respond to their 

chemical environment. Surface-based movement has been studied in both 

Myxococcus xanthus (12, 13) and P. aeruginosa (14-16) by exposing agar-based 

colonies to gradients of phospholipids and unsaturated long-chain fatty acids. Over 

time these colonies develop a bulge towards the chemoattractant source. However, the 

dense packing of cells within these assays makes it difficult to resolve the cause: 

asymmetric colonies can form because motility is simply enhanced on the side of the 

colony where chemoattractants are plentiful (chemokinesis), or instead because cells 

are actively biasing their motility up the chemical gradient (chemotaxis) (14). 

Moreover, in sharp contrast to swimming bacteria, experiments with M. xanthus have 

suggested that solitary surface attached bacteria are incapable of biasing their motility 

along chemical gradients (13, 17). We, therefore, designed a new assay to test 

whether individual cells can perform chemotaxis on surfaces (SI Appendix, Materials 

and Methods). This reveals that not only are single cells capable of chemotaxis, they 

control their position with a remarkable level of precision. 
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Results and Discussion 

Individual bacteria can navigate chemical gradients on surfaces.  P. aeruginosa is 

an intensely studied opportunistic pathogen and a canonical model for the study of 

biofilms (18). After attaching to surfaces, P. aeruginosa cells are highly motile and 

move by pulling themselves along via the extension and retraction of their type IV 

pili, a process known as twitching motility (19). While this form of movement is 

common throughout biofilm formation (10, 11), here we follow the movement of 

solitary bacteria in the early stages of biofilm development so that we can readily 

calculate the chemical environment cells experience and resolve how it modifies their 

behavior.  Importantly, the microfluidic assays used here are analogous to those used 

in classical studies of biofilm development (9-11) and the cells whose movement we 

analyze subsequently form three dimensional biofilm structures (Fig. 1F,G; SI 

Appendix, Figure S1). To generate stable chemical gradients, we use two inlet 

microfluidic devices where flow balances the smoothing effect of molecular diffusion 

(Fig. 1A; SI Appendix, Fig. S2, Materials and Methods). Many bacterial 

chemoattractants strongly promote growth (20), which in our experiments leads to a 

crowded surface and a limited ability to analyze single cell behavior. We, therefore, 

began our experiments with dimethyl sulfoxide (DMSO), which is a known 

chemoeffector of bacteria (21-23) and, importantly, does not strongly affect growth in 

our experiments.  

 

We used automated cell tracking to follow surface-attached P. aeruginosa cells that 

are exposed to a stable spatial gradient of DMSO (Fig. 1A; SI Appendix, Fig. S2). 

Our method allows us to follow large numbers of attached cells and quantify their 

individual responses to the presence, or absence, of a chemical gradient (SI Appendix, 
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Fig. S3). In a DMSO gradient, we found that cell movement is strongly biased in the 

direction of increasing DMSO concentration (Fig. 1B, Movie S1), which contrasted 

with random motility in the absence of chemical gradients (Fig. 1C,D). After two 

hours of incubation the chemotactic bias peaks, with more than three times as many 

cells moving towards the chemoattractant source than moving away from it (ȕ=3.1), 

but biased motility is maintained even as the surface becomes more crowded with 

cells (Fig. 1D,E). These data show single cells direct their motility along chemical 

gradients and suggest that surface-attached cells are capable of chemotaxis (sensu 

Adler (1)).  

 

In our experiments both cell division and motility cause cells to preferentially 

accumulate on the side of the device with the chemoattractant (Fig. 1F, Movie S1). 

This raises the possibility that the biased motility we observe is an artifact of the 

variation in cell density, which has been shown coordinate surface motility in M. 

xanthus (24). In order to examine this possibility, we exposed cells to a 

chemoattractant gradient that switched direction every three hours. By minimizing 

crowding on one side of the channel, this assay also allows us to study the responses 

of individual cells to nutrients like succinate, which is a preferred carbon source of P. 

aeruginosa and a potent chemoattractant of cells in the planktonic state (25). When 

the chemoattractant gradient was inverted cells responded by changing the direction 

of their bias to track the gradient (Fig. 2A-G). The refinement with which individual 

cells dynamically track the gradient can be observed in Movie S2. Our data show then 

that cells are directly responding to the imposed gradient rather than to de novo 

gradients generated by the cells. Moreover, we observe these responses for gradients 

of both DMSO and succinate, the latter of which strongly stimulates both growth and 
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cell motility (SI Appendix, Fig. S4). Finally, the increased data available from this 

second assay reveals that the chemotactic bias, ȕ, increases with the magnitude of the 

chemoattractant gradient |G| (Fig. 2H), which is a defining feature of chemotaxis 

across different biological systems (26). Based on the responses seen in our two 

single-cell assays (Figs. 1 and 2), we conclude that individual surface-attached 

bacteria are indeed capable of chemotaxis. 

 

Attached P. aeruginosa use pili-based motility and the Chp chemosensory system 

to perform chemotaxis. What is the genetic basis of the chemotactic response we 

documented above? After attachment, P. aeruginosa is well known to use pili-based 

motility to move on surfaces (9-11, 18, 19). Accordingly, a mutant that cannot 

generate functional pili (∆pilB) is immobile in our experiments (Fig. 3A,C), whilst a 

mutant that lacks flagella (∆flgK) exhibits surface motility (SI Appendix, Fig. S5). We 

find flagella mutant cells stand upright and show increased motility relative to wild-

type, which is in agreement with a previous study (27), and suggests that flagella may 

function as a stabilizing anchor during twitching motility. In order to explore if the 

flagella could play a role in chemotaxis, therefore, we studied the behavior of mutant 

that has a flagellum but lacks the ability to perform flagella-based chemotaxis. 

Chemotaxis in swimming P. aeruginosa cells is under the regulation of a Che 

transduction system homologous to that of E. coli (16, 28), and mutants in CheY1, the 

key response regulator, can swim but cannot actively bias their movement along 

chemical gradients. In contrast to swimming, however, we find that the swimming 

chemotaxis cluster (Che cluster I) is not required for chemotaxis on surfaces because 

CheY1 mutants perform twitching chemotaxis (SI Appendix, Fig. S6).  
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Recent work has shown that twitching motility in P. aeruginosa is under the 

regulation of a separate signal-transduction pathway (Che cluster IV) known as the 

Chp system (16, 29) (Fig. 3B), but to date there is no direct evidence that this system 

plays an active role in any form of chemotaxis. To examine the effects of the Chp 

system, we first recapitulated the motility phenotypes recently described using 

classical agar-based assays (29). Specifically, in-frame deletion mutants ∆pilB, ∆chpA 

and ∆pilG do not form the characteristic twitching rings at the plastic-agar interface 

around colonies, while ∆pilH cells exhibit an intermediate phenotype by producing 

rings that are smaller than that of the wild-type (SI Appendix, Fig. S7). However, 

observing the movement of individual cells in our microfluidic system reveals a very 

different pattern. We find that ∆chpA and ∆pilG cells, which were previously 

diagnosed as incapable of twitching (29) are in fact both motile (Fig. 3A,C). 

Moreover, we find that ∆pilH cells, which show reduced twitching rings on agar 

plates (SI Appendix, Fig. S7), actually move approximately 30 times faster than the 

wild-type (Fig. 3A,C) and tend to orient themselves vertically on the surface (SI 

Appendix, Fig. S8). More formally, the root mean-square displacement (RMSD), a 

combined measure of both movement speed and the persistence in movement 

direction (30), of the wild-type and ∆pilG cells are nearly identical, but show strong 

differences with that from ∆chpA and ∆pilH (Fig. 3C).  

 

The Chp system then has strong effects on twitching motility in our assay but is it 

involved in chemotaxis? To answer this question, we focused upon the response 

regulator of the Chp system PilG, which controls pili extension (29). We focused on 

PilG because the motility of ∆pilG is similar to the wild-type in our microfluidic 

assay and we can study the effects on chemotaxis in the absence of strong effects on 
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motility (Fig. 3A,C; SI Appendix, Fig. S8; Movies S3, S4). We exposed ∆pilG cells 

to a stable DMSO gradient and used our analysis pipeline to track individual cells. 

The data reveal that, while ∆pilG cells indeed remain motile, they lack the ability to 

bias their motion up the gradient (Fig. 3D,E). This suggests that the Chp system is not 

just involved in the biosynthesis of type IV pili but also in the transduction of 

chemotactic stimuli into directed movement.  

 

P. aeruginosa employs a “pessimistic” chemotactic strategy on surfaces. We next 

sought to understand how P. aeruginosa cells bias their movement on surfaces. 

Chemotaxis in swimming E. coli cells is achieved by cells performing straight runs 

interspersed by sharp reorientations (tumbles), where tumbles are delayed when 

moving up a chemoattractant gradient (2, 3). Do twitching bacteria use similar 

movement strategies in our experiments? While twitching motility gets its name from 

the jerky motion that cells exhibit over the timescale of minutes (31), we find that in 

chemical gradients cells can maintain a consistent movement direction for periods 

longer than an hour (Fig. 4A). Moreover, these twitching ‘runs’ are interspersed by 

events where a cell reverses by stopping and then moving back in the opposite 

direction without turning. Twitching P. aeruginosa cells pull themselves along 

surfaces with pili that cluster at their poles (32, 33), which drives movement parallel 

to their long axis (SI Appendix, Fig. S9) and allows rapid changes in direction if a cell 

changes the pole that it is pulling from. To follow this process, we developed an 

automated algorithm that detects when the cell’s movement switches direction such 

that a cell’s leading pole becomes its trailing pole. Importantly, we distinguish these 

active ‘reversals’ from changes in direction that occur passively due to cell division 

(Fig. 4A,B; Movies S3, S4; SI Appendix, Materials and Methods).  
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Both ∆pilG and wild-type cells were found to actively reverse their direction in both 

the presence and absence of DMSO gradients. However, ∆pilG cells, which do not 

show chemotaxis, reversed at a much smaller rate than wild-type cells in both of these 

conditions suggesting that the reversals are indeed important for chemotaxis (Fig. 

4C). In order to examine the potential link between reversal rate and the ability to 

perform chemotaxis, we analyzed how the reversal rate changes as a function of the 

direction that cells are moving. This revealed that ∆pilG cells reverse at nearly the 

same rate whether they are moving towards or away from the chemoattractant (Fig. 

4C). In sharp contrast, wild-type cells almost double their reversal rate when moving 

away from the source of a chemoattractant but keep their basal reversal rate when 

moving towards the source (Fig. 4C). This observation is consistent with a 

“pessimistic” chemotactic strategy where cells respond to a reduction in the 

chemoattractant concentration (23), which contrasts with the “optimistic” strategy 

employed by swimming E. coli that chemotax by postponing tumbles when moving 

towards a chemoattractant source (2, 3). Put another way, swimming E. coli respond 

“if life gets better” (2) and our data show that twitching P. aeruginosa respond if life 

gets worse. We also find asymmetries in speed: wild-type cells move 25% faster 

when travelling towards the source as compared to away from it (SI Appendix, Fig. 

S10). In contrast, ∆pilG cells moving towards and away from the chemoattractant 

source travel at approximately the same rate (SI Appendix, Fig. S10). Taken together 

our data suggest that the response regulator PilG enables the movement of surface-

attached bacteria up chemical gradients by modulating both reversal rate and cell 

speed.  
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Surface attached bacteria can control their movements with submicron 

precision. Swimming P. aeruginosa cells navigate chemical gradients by selectively 

turning their flagella in the opposite direction, which sharply changes their direction 

of movement (5). In contrast, we show that surface-attached bacteria can climb 

chemical gradients by regulating when they switch directions by pulling themselves 

using pili attached to the previously trailing pole. Our observations also suggest that 

this system is an extremely effective system that allows attached cells to move 

towards areas with high concentrations of chemoattractants (Movie S2). But just how 

responsive are individual attached cells to changes in their chemical environment? In 

order to probe the limits of the cells’ abilities, we designed and built a new 

microfluidic device that allows us to continuously track cells as they respond to a 

DMSO gradient that changes direction every eight minutes (Fig. 4D-G; SI Appendix, 

Fig. S11). Direct observation suggests that twitching P. aeruginosa cells accurately 

reverse their movement in response to the alternating gradient (Movie S5), and we 

quantified their response by categorizing all reversal events as “correct” or 

“incorrect”. Correct reversals occurred in cells moving away from the chemoattractant 

source and incorrect reversals occurred in cells moving towards the source (Fig. 4D,E, 

Movie S6). We find that correct reversals are stimulated by the alternating gradient 

(rather than incorrect reversals being repressed), which is again consistent with a 

pessimistic chemotactic response (Fig. 4F). In addition, we find that wild-type cells 

actively increase their speed after performing correct reversals but not after 

performing incorrect reversals (SI Appendix, Fig. S12). In contrast, cells lacking PilG 

reversed very rarely in the alternating chemical gradient (SI Appendix, Fig. S13). 

Taken together, these observations show that attached P. aeruginosa chemotax by 

deploying reversals when their motility is directed away from the source of a 
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chemoattractant. Correct reversals occurred most frequently in the middle of the 

device, where cells are exposed to the strongest spatial gradients in DMSO (Fig. 

4D,F) and these reversals peak tE ≈ 1 min after the gradient changes direction (Fig. 

4G).  The rapid response means that the majority of cells sense the gradient has 

changed direction and respond before moving 1/5 the length of their bodies (SI 

Appendix, Fig. S14), a distance smaller than a micron (Fig. 4G, inset). This 

observation reveals that attached P. aeruginosa can regulate their movement in a 

chemical gradient with submicron precision. 

  

Swimming bacteria sense chemoattractant gradients by measuring changes in 

chemical concentrations over time, which is consistent with them moving rapidly and 

thus being able to detect large changes over short time periods (2, 34). However, the 

slow speed and highly unsteady, oscillatory movement of twitching cells (31) begs the 

question of whether they too use temporal sensing. If twitching cells do use temporal 

sensing, it would require the integration of information over much longer time-scales 

than swimming bacteria. Moreover, a twitching cell would have to extract the slow, 

weak changes in concentration due to their average movement from the large, high 

frequency changes in concentration that arise from a cell jerking back and forth 

relative to a chemical gradient. An intriguing alternative is that twitching cells detect 

gradients spatially by directly measuring changes in concentration across the length of 

their bodies. Indeed, in our experiments (Fig. 4D-G) the majority of responding cells 

experience a five-fold larger change in chemoattractant concentration across their 

length than they experience over time due to their movement relative to the gradient 

(SI Appendix, Fig. S14). While the fast movement of swimming cells allow them to 

measure changes in concentration over distances equivalent to tens of their body 



 13

lengths (2), the slow movement of twitching cells suggests that they could collect 

more reliable information by making spatial measurements, over length of their body. 

In either case, our data suggest that the molecular mechanism underlying twitching 

chemotaxis has very different properties than the canonical mechanisms so 

intensively studied in swimming cells.  

 

Conclusion  

Bacteria often live attached to surfaces where multiple strains and species meet and 

interact (35). These cells strongly alter their environment by secreting a wide range of 

compounds and metabolizing others to create a diverse and changing set of chemical 

gradients (8). The resulting chemical gradients can be very steep, stable, and 

important for the fitness of cells that lie in different positions within a community 

(36). Here we have shown that single attached bacteria can respond to chemical 

gradients. Rather like ants moving through a nest, we find that twitching cells are able 

to act as individuals that navigate their way through their chemical and biological 

environment. We also show that these surface-attached cells perform chemotaxis on 

spatial scales much finer than swimming cells, with corrective maneuvers occurring 

before a cell has moved a small fraction of their body length. The discovery that 

bacteria can track their environment with submicron precision has implications for 

both the biology of bacterial communities and how we manipulate them.   
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Materials and Methods 

Our experiments use wild-type P. aeruginosa PAO1 (Kolter collection, ZK2019) as 

working model for twitching chemotaxis (Figs. 1, 2; SI Appendix, Figs. S3, S9, S15). 

The YFP-labeled strain used in Figs. 1F,G and SI Appendix, Fig. S1, is a PAO1 wild-

type strain with ZK2019 background (37). ∆flgK (SI Appendix, Fig. S5), which has 

been published and described before (38), is a deletion strain lacking a hook filament 

junction protein FlgK. To study the functional role of the Chp chemosensory system 

we used in-frame deletion mutants of pilB, chpA, pilG, and pilH, along their 

respective wild-type, which have all been published and described elsewhere (29). 

These strains are used in Figs. 3 and 4, and in SI Appendix, Figs. S4, S7, S8, S10, 

S12, S13, S14 and S15. The ∆cheY1 mutant strain shown in SI Appendix, Fig. S6 was 

a gift from the group of Caroline Harwood. All strains were grown overnight in LB 

(37°C, 250 rpm) from frozen stocks and sub-cultured to obtain cells in exponential 

phase. These were then diluted to an optical density of 0.25 (at 600 nm) in tryptone 

broth (TB, 10 g Bacto tryptone per 1 L water), before they were injected into our 

microfluidic devices. 
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Figure Legends  

Figure 1: Surface-attached P. aeruginosa cells direct their movement up 
gradients of DMSO during biofilm formation. (A) A two-inlet microfluidic device 

generates a stable chemical gradient via molecular diffusion. Tryptone broth (TB) is 

continuously injected through one of the inlets, whilst DMSO at a concentration of 

CMAX = 350 mM and TB are continuously injected through the other inlet. Here C = 

C’/ CMAX where C’ is the local concentration of DMSO which was quantified using 

fluorescein in a separate experiment (SI Appendix, Fig. S2, Materials and Methods). 

(B) Cell trajectories over the first five hours of the experiment (t = 0 – 5 h) show that 

motility is biased towards increasing concentrations of DMSO. Trajectories with net 

movement toward larger C (i.e. in –y) are shown in red and those with net movement 

towards smaller C (i.e. in +y) are shown in blue. The background shows C computed 

by a mathematical model (SI Appendix, Fig. S2). Inset shows probability density 

functions of the angle from each trajectory’s origin to final position and red (blue) 

bins denote movement in the –y (+y) direction (SI Appendix, Materials and Methods). 

This inset also shows slight preferential movement in the +x direction, which likely 

results from interactions with flow (39). (C) Control shows there is no bias in the y 

direction without DMSO. (D,E) A time series of the chemotactic bias, ȕ, defined as 

the number of cells that move in –y divided by the number moving in +y, peaks at t ≈ 

2 h (D; black line, grey line shows control) and then declines as the surface becomes 

more crowded and cell speed is attenuated (E).  (F) A kymograph of the fluorescent 

intensity, F, of cells that constitutively produce yellow fluorescent protein (SI 

Appendix, Materials and Methods) show how biofilms develop over time in our 

experiments.  Here we average the fluorescent intensity in x, allowing us to 

continuously resolve both the chemotaxis of cells (light blue streaks moving towards 

–y) and formation of densely packed biofilms (red).  As biofilms produce a much 

brighter fluorescent signal than single cells we plot the logarithm of F so that that 

both can be visualized.  Fig. S1 (SI Appendix) shows the raw images from which this 

kymograph was constructed.  (G) A three-dimensional confocal micrograph of the 

biofilm shown in (F), imaged at t = 20 h, shows the biofilm is already many cells 

thick, extending ≈ 20 µm from the surface. Dashed lines indicate the positions of the 

vertical cross-sections.  
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Figure 2: Changing the direction of the chemoattractant gradient elicits a change 
in the direction of cell motility and reveals the chemotactic response increases 
with the strength of the gradient. (A,B,C) Cells (white spots) were exposed to 

gradient of succinate (visualized in yellow, Cmax = 2 mM) whose direction was 

inverted every three hours. (D,E,F) The resulting chemotactic response was measured 

by calculating the direction of cell movement, ș, over 16 min intervals and segments 

of trajectories that moved in the –y (+y) direction are shown in red (blue). (G) The 

mean movement direction, ߠҧ, was obtained by averaging ș for all cells (magenta line), 

revealing that cell motility is maintained in the direction of the instantaneous 

chemoattractant gradient (yellow regions). (H) Combining data from the entire 

experiment (t = 0 – 9 h) reveals that the chemotactic bias, ȕ, increases with the 

magnitude of the normalized gradient, |G| = 1/Cmax |∂C/∂y| (magenta line). Here ȕ is 

the number of trajectories moving in the direction of increasing concentration C, 

divided by the number moving in the direction of decreasing C. Greyscale colors in 

D,E,F show |G| and correspond to the bins used in the analysis presented in H. Green 

lines in G,H show results of an analogous experiment conducted with a DMSO 

gradient (Cmax = 350 mM). In both experiments, the position of chemoattractant was 

visualized using a dye that does not induce a chemotactic response (SI Appendix, Fig. 

S15) and |G| was estimated using a mathematical model of diffusion. 
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Figure 3: Twitching chemotaxis in P. aeruginosa is mediated by the Chp signal 
transduction pathway. (A) Trajectories of WT and different Chp mutants in the 

absence of a chemical gradient where color denotes instantaneous cell speed. (B) 

Simplified diagram of Chp chemosensory system. By homology to the Che system of 

E. coli, it is thought that ChpA drives phosphorylation of two CheY-like response 

regulator proteins, PilG and PilH, which interact with PilB and PilT to drive pilus 

extension and retraction, respectively, in a manner similar to how phosphorylated 

CheY controls flagellar rotation in swimming cells (29). Black circles denote 

phosphate groups. (C) Root mean squared displacement, RMSD, of different strains in 

the absence of a chemical gradient as a function of time lag, Ĳ. Analysis of a large 

number of cells (SI Appendix, Fig. S16A) reveals ǻpilG cells move similarly to the 

WT, ǻpilH cells move much faster (note separate color bar in A), ǻchpA cells move 

at an attenuated rate, and ǻpilB cells lack motility altogether (also see SI Appendix, 

Fig. S16B). (D) Trajectories of ǻpilG and its respective WT in a DMSO gradient, 

reveals that PilG plays an essential role in twitching chemotaxis. Here trajectories 

with net movement toward larger C are shown in red and those with net movement 

towards smaller C are shown in blue. (E) These findings are confirmed by 

measurements of the chemotactic bias, ȕ, which show quantitatively that ǻpilG cell 

lack the ability to perform chemotaxis. Data used to compose A,C for ǻpilH cells was 

collected in the first 15 minutes after inoculation as they move so quickly, whilst data 

from the remainder of strains in these panels was collected over first 10 hours. Panel 

D shows trajectories over the first 8 hours of experiment, when chemotaxis is most 

pronounced (E).  



 21

Figure 4: Twitching bacteria chemotax by reversing their motility when 
traveling away from the chemoattractant source. (A) Cells navigate up DMSO 

gradients by actively performing ‘reversals’ (magenta squares), though sharp changes 

in direction can also occur passively during cell division (green circles). Red dots in a 

show positions of cell centroids at one-minute intervals; the black lines show 

smoothed trajectories, and the average cell length is shown for reference. (B) 

Magnified view of a reversal shows a cell whose movement begins to veer towards 

decreasing C. The cell quickly performs a reversal sending it back up the DMSO 

gradient. Ellipses (not drawn to scale) show cell orientation and position in two-

minute intervals. Contours show modeled DMSO concentration in Cmax / 30 

increments where Cmax = 350 mM.  (C) In both the absence and presence of a DMSO 

gradient ǻpilG actively reverse at a much smaller rate than WT cells. For experiments 

with a DMSO gradient, we calculated the frequency that cells moving towards smaller 

C reverse direction (labeled ‘correct’, white bars) and the frequency that cells moving 

toward larger C reverse direction (labeled ‘incorrect’, black bars). While the rate of 

incorrect reversals in the WT is similar to that in the absence of a gradient (grey bar), 

correct reversals occur more frequently, suggesting that reversals are deployed as a 

corrective strategy. (D-G). Using a custom microfluidic device (SI Appendix, Fig. 

S11), we induced reversals by exposing cells to a DMSO gradient that changed 

direction every eight minutes. Owing to a large flow velocity, C and its gradient 

G=1/Cmax ∂C/∂y were nearly constant along our field of view, allowing us to average 

them along x and present their spatiotemporal variations using kymographs (D,E, see 

SI Appendix, Materials and Methods). Cell reversals were identified using an 

automated algorithm and classified as “correct” (white squares, D) or “incorrect” 

(black squares, D). Both types of reversals increased over time as cell division and 

attachment increased the number of cells on the surface (D). Counting the number of 

correct and incorrect reversals within equally spaced bins in y, reveals that correct 

reversals (white bars, F) peak along the middle of the device, while the number of 

incorrect reversals (black bars, F) occur more uniformly in y. The reaction time, tE, is 

the time elapsed from the most recent gradient change (red + symbols in E,F) to the 

time of a correct reversal. A histogram of tE for cells in middle 100 µm of the device 

(dashed grey lines, D,E) shows that correct reversals peak ≈1 min after the gradient 
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changes direction (G). Over this period most cells travel a distance along the gradient, 

yE, less than 1 µm (G, inset). 

  


