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Abstract 

Many human proteins contain intrinsically disordered regions, and disorder in these 

proteins can be fundamental to their function – for example, facilitating transient but 

specific binding, promoting allostery, or allowing efficient post-translational 

modification. SasG, a multi-domain protein implicated in host colonisation and 

biofilm formation in Staphylococcus aureus, provides another example of how 

disorder can play an important role. Approximately half of the domains in the 

extracellular repetitive region of SasG are intrinsically unfolded in isolation, but these 

E domains fold in the context of their neighbouring, folded G5 domains. We have 

previously shown that the intrinsic disorder of the E domains mediates long-range 

cooperativity between non-neighbouring G5 domains, allowing SasG to form a long, 

rod-like, mechanically strong structure. Here we show that the disorder of the E 

domains coupled with the remarkable stability of the inter-domain interface, results in 

cooperative folding kinetics across long distances. Formation of a small structural 

nucleus at one end of the molecule results in rapid structure formation over a distance 

of 10 nm, which is likely to be important for the maintenance of the structural 

integrity of SasG. Moreover, if this normal folding nucleus is disrupted by mutation, 

the inter-domain interface is sufficiently stable to drive the folding of adjacent E and 

G5 domains, along a parallel folding pathway, thus maintaining cooperative folding. 

 

Significance statement 

Understanding the role played by disorder in Biology is becoming increasingly 

important. Disordered proteins are central to signalling, development, initiation of 

transcription and other vital cellular processes. How and why disordered proteins are 

used is not entirely clear, but disorder can be important in allostery, facilitate 

regulatory post-translational modification and allow rapid, specific, yet promiscuous 

binding. Here, our investigations of the biofilm-promoting protein SasG illustrates 

that disorder can play another role. We demonstrate that the intrinsic disorder of half 

the domains is important for imparting long range cooperativity in folding of a large 

multidomain protein –allowing formation of a very small local element of structure to 

precipitate cooperative folding of adjacent disordered domains across a length scale of 

~10 nm. 
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\body 

Introduction 

It has been suggested that as much as 20% of the proteome may be intrinsically 

disordered (1), mainly manifested as intrinsically disordered regions (IDRs) within 

multidomain proteins, although a few proteins are apparently entirely disordered. 

Some proteins function as a consequence of disorder: for example, disordered PEVK 

regions of titin act as an entropic spring (2), while in the nuclear pore complex 

disordered nucleoporins provide a thick selective barrier controlling nuclear import 

(3). Disorder can also play other roles: it facilitates posttranslational modification, and 

may promote allostery (4, 5). SasG is a cell wall attached protein from 

Staphylococcus aureus that promotes intercellular adhesion during the accumulation 

phase of biofilm formation via its C-terminal repetitive region (6-8). We previously 

showed that this part of SasG contains alternating E and G5 domains (Fig. 1A) and 

that E folds when it is N-terminal of a G5 domain. The disorder of E domains in 

isolation is essential for formation of a long, stiff, mechanically strong, rod-like 

structure (9) capable of projecting the N-terminal A domain, which is involved in host 

colonisation (6).  

 Here we combine biophysical measurements, protein engineering and 

simulation to show that the disorder in the E domains of SasG also promotes 

cooperative folding and unfolding pathways. We find that SasG domains have a 

highly polarized transition state structure, where formation of a small portion of a 

three-stranded sheet in the far C-terminal region of a SasG G5 domain is sufficient to 

drive the folding of structure over a distance of 10 nm. Our studies reveal the 

importance of the E-G5 interface in driving this cooperativity. Furthermore, when the 

usual folding nucleus is disrupted by mutation in the multidomain protein, then this 

interface is sufficiently stable to drive folding of the two adjacent domains. Thus we 

propose that disorder can play a key role in ensuring cooperative folding over long 

distances in multidomain proteins. 

 

Results 

SasG domains fold cooperatively at equilibrium: SasG domains are highly 

homologous: the sequence identity between G5 domains (except for the first and last) 

and between E domains is >97%. Here we investigated the first E domain and the 

second G5 domain (G52), either alone, or in tandem (E-G52) (Fig. 1). We have 
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previously shown that the E domain is fully unfolded in isolation (10). Since SasG 

domains have no tryptophans, (un)folding was followed by monitoring intrinsic 

tyrosine fluorescence. We have demonstrated that urea-induced equilibrium 

denaturation curves of E-G52 monitored by fluorescence coincide with those recorded 

by ellipticity at 235 nm (7) and with domain-specific FRET probes (9), demonstrating 

that equilibrium unfolding of the two-domain construct is fully cooperative: two-state, 

with concerted disruption of both domains and of secondary and tertiary structure, 

with no accumulation of intermediates (Fig. 1C). The stability of E-G52 is around 3.5 

kcal mol-1 greater than that of an isolated G52 domain (6.3 vs. 2.8 kcal mol-1, 

respectively).  

Kinetic experiments reveal that SasG domains fold and unfold cooperatively. The 

refolding kinetics of G52 and E-G52 can both be described by a sum of two 

exponential phases with a fast folding phase (accounting for at least 30% of the 

amplitude) and a slower phase that represents proline cis-trans isomerization-limited 

folding events (E-G52 and G52 have 17 and 8 prolines, respectively). Only the faster 

phase is discussed here. The rate constant for folding of E-G52 is the same as that of 

G52 at all denaturant concentrations (Fig. 1D). Under unfolding conditions, at urea 

concentrations ≤ 6.5 M, only a single kinetic phase is detected for both G52 and E-G52, 

but E-G52 unfolds significantly more slowly, and the dependence of the logarithm of 

the rate constant for unfolding on denaturant concentration (mku) is significantly 

higher*. The unfolding limbs of the chevron plots are curved (Fig. 1D). To account for 

non-linearity in the observed unfolding rate constant, the chevron plot data were fitted 

to a sequential transition states model (12), in which denaturant induces a switch 

between two barriers separated by a high-energy intermediate.  

At denaturant concentrations below ~6.5 M urea all the evidence suggests that 

both G52 and the two-domain construct E-G52 fold via a two-state pathway where the 

two domains fold and unfold cooperatively: we observe, for both constructs, that the 

values of mD-N obtained by combining kinetic m-values are the same within error as 

the equilibrium values (Supplementary Table 1). Similarly, the values of free energy 

																																																								
* The dependence of folding/unfolding rate constants on [urea] (kinetic m-values, mkf and mku) is 
determined by the change in SASA between the denatured state, D, and the transition state, TS, (in 
folding) and TS and the native state, N (for unfolding) (11). Thus, since E-G52 and G52 have the same 
folding m-values we can assume that they fold via the same transition state. The unfolding m-value 
(mku) is higher for E-G52 than for G52 because the entire E domain, plus a significant proportion of the 
G52 domain unfold between N and TS. 
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of unfolding (!!
!!!

!!!) calculated from the kinetic data match the equilibrium !!
!!!

!!! 

values (Supplementary Table 1). Furthermore, double-jump stopped-flow experiments 

showed no evidence of additional phases that might reveal populated intermediates 

for either construct.  

Cooperative unfolding breaks down at high denaturant concentrations. The unfolding 

of E-G52 and G52 results in a decrease in tyrosine fluorescence. However, in the 

unfolding kinetics of E-G52 only, at urea concentrations >7.0 M, we observed a 

second, faster rate, associated with an increase in fluorescence that shows very weak 

denaturant dependence (Fig. 1D and Supplementary Fig. 1). A similar extra phase was 

also observed for the E-G52 construct labelled with E500W-E532CIAEDANS FRET pair 

(Fig. 1D), which reports specifically on the (un)folding of E. In contrast, the 

unfolding kinetics of E-G52 probed by I555W-E613CIAEDANS (resulting in FRET only 

when G52 is folded) is monophasic (Fig. 1D). We infer that the minor rate detected at 

high urea concentration is related to unfolding of the E domain, perhaps when the 

stabilizing interface fails at high denaturant concentrations. Note that two other 

mutations that strongly destabilized the E domain (G524A and G527A) also 

decoupled the unfolding of E and G52 (Supplementary Fig. 2). 

G5
2
 and E-G5

2
 fold via the same highly polarized transition state. Since G52 and E-

G52 fold at the same rate, and the dependence of the refolding rate constant on 

denaturant concentration is the same (Fig. 1D), we infer that they fold via the same 

rate-limiting transition state. To map out which regions are structured early in the 

folding of G52 and E-G52 a mutational, Φ-value analysis was carried out. SasG 

domains do not have a compact hydrophobic core and all side chains are exposed to 

solvent. Mutation of surface residues rarely results in sufficient loss of stability to 

undertake Φ-value analysis (13). Hence, a series of non-conservative mutations 

(mainly Pro-to-Ala and Gly-to-Ala) were introduced in both G52 and E-G52, and their 

influence on the thermodynamic stability and kinetics was investigated 

(Supplementary Tables 2-5). Φ-values were calculated (Supplementary Tables 4,5) 

for mutants where the destabilization energy (!!!
!!!

!!!) ≥ 0.7 kcal·mol-1 (14). In 

general, non-conservative mutations, such as those we are using here, have to be 

interpreted with care. But the resultant chevron plots show that here we can be 

unequivocal (Fig. 2A,B). Unusually, mutations either alter only the folding kinetics, 

meaning Φ is close to 1 and the region is fully structured in the TS, or alter only the 
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unfolding kinetics meaning Φ ~ 0, suggesting the region is as unstructured in the TS 

as in the denatured state. There are no intermediate Φ-values. When mapped onto the 

structures the Φ-value pattern is clear (Fig. 2C,D). It is only in the extreme C-terminal 

loop/β-sheet region that any structure is formed at all in the transition state (Φ ≥ 0.8) 

in both G52 and in E-G52. This reveals that the rate-limiting TS for folding is 

common for the two constructs and strongly polarized to the C-terminal region of the 

G52 domain. The rest of the protein folds only after formation of this initial 

embryonic structure, formation of which establishes the correct register for the β-

strands of the G52 domain. 

Simulations reveal more details about the folding pathway. After the main, rate-

limiting TS our kinetic experiments are relatively “blind” to the subsequent steps. 

With simulations it is possible to probe the entire pathway. Long equilibrium 

simulations for G52 and E-G52 were carried out using a coarse-grained native-centric 

model, which allowed us to follow a number of unfolding and folding reactions. In all 

these simulations, the first step in the folding of both G52 and E-G52 is formation of 

the C-terminal β-sheet/loop motif of G52 (Fig. 3). In the case of E-G52, the C-terminal 

region of E folds concurrently with the N-terminal part of G52, resulting in formation 

of the E-G5 interface. This is followed by folding of the N-terminal β-sheet of E 

which completes the E-G52 structure (Fig. 3B); thus folding of the interface is key to 

the folding of E (See also Supplementary Fig. 3). At the mid-point temperature, where 

the proteins are folded 50% of the time (approximately 320K for both G52 and E-G52), 

we observed only a few complete folding events, as the domains are rarely fully 

unfolded. Hence we performed a large number of shorter simulations starting from 

completely unfolded structures (from simulations at high temperature) setting the 

temperature well below the folding temperature. Folding occurs in most of these short 

simulations and in all cases the sequence of events is that described above. In a few 

cases, where the E domain folds first, its unfolding is required before the E-G52 folds.  

The stability of the interface is essential to ensure cooperative unfolding of E-G5
2
. 

We identified two mutations in the E-domain of E-G52 (G517A and G548A), at the 

interface between the two domains, that, although the interface was sufficiently stable 

to promote the folding of the E domain, resulted in unfolding kinetics that were 

completely uncoupled; two unfolding phases are observed in all unfolding traces 

(Figure 4A-C). As was seen in wild-type (WT) E-G52, the fast unfolding phase, 
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ascribed to the unfolding of the E domain (which has a low amplitude and is 

associated with an increase in fluorescence) has a weak dependence on denaturant 

concentration. Importantly, the slower unfolding phase, associated with the larger 

fluorescence change, now has the unfolding m-value of the G52 domain alone, further 

evidence that, for these mutations at the interface, the E and G52 domains now unfold 

independently.  

We investigated this further using the interface mutant P599A found in the G52 

domain, which has no effect on the thermodynamic stability and kinetics of G52 in 

isolation but perturbs E-G52 (Fig. 4D,E).  Pro599 is located in the N-terminal loop of 

G52. In the isolated domain Pro599 is exposed to solvent, whereas in the context of E-

G52 it contributes to the hydrophobic cluster at the E-G5 inter-domain interface, 

where it makes contacts with Phe510 and Tyr547 from the E domain (Fig. 4A). We 

introduced the E500W-E532CIAEDANS FRET pair (Fig. 4A) in E-G52-P599A, which 

results in FRET only when E is folded. The unfolding kinetics were monitored by the 

decrease in 1,5-IAEDANS fluorescence (Fig. 4E), and at high denaturant 

concentrations that promote unfolding, a single phase was detected, corresponding to 

the faster unfolding phase found for E-G52-P599A (similar rate constants and the 

same urea-dependence) clearly representing unfolding of E uncoupled from G52.  

Note that we still observe the same single refolding phase for this mutant (except 

around the midpoint, Fig 4E), when followed by FRET because the folding of G52 is 

the rate-limiting step for folding of the E domain. Thus, again, we found that the 

interface is key to cooperative folding. 

Mutations reveal an alternative folding pathway for E-G5
2
. We found five 

destabilizing mutations within the G52 domain that alter the folding pathway in E-G52. 

Three of these (G576A, Y625W and G626A) are located in the C-terminal β-

sheet/loop region of G52 (Fig. 5A) where, as shown above, folding is nucleated in 

both G52 and E-G52. These mutations destabilize the proteins by >1 kcal mol-1 

relative to WT G52 and E-G52 (Fig. 5B,C, Supplementary Tables 2,3). In G52 alone 

these three variants all have a Φ-value of ~1 that is, they unfold exactly as WT and all 

the change in stability is reflected in a change in the rate of folding (Fig. 2A, RH 

panel). Importantly, the dependence of the rate constant for folding on denaturant 

concentration (mkf) is exactly the same as for WT G52. In E-G52, however, although 

these mutants again unfold exactly as WT now the folding kinetics are clearly 
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different (Fig. 5D). All still fold more slowly than WT but now the mkf values are 

significantly increased compared to WT suggesting that these variants are folding via 

a different, significantly more compact TS, with a βT = 0.53 (compared to 0.33 for 

WT E-G52)†.  

Two other Gly-to-Ala mutations within the triple-helical region of G52 

(G584A and G587A; Fig. 5A) destabilized the domain so significantly that the 

mutants are largely disordered at 0 M urea (Fig. 5B and Supplementary Table 2). In 

E-G52, these mutations are also destabilizing, but now both E and G52 are folded (Fig. 

5C and Supplementary Table 3). Interestingly, the chevron plots of both E-G52-

G584A and E-G52-G587A demonstrate the same !!!
 value as the mutants that 

destabilize the extreme C-terminal region of E-G52 (Fig. 5D), suggesting that these 

variants also fold via a new, more compact, TS (with a βT of 0.53). Note that folding 

is still cooperative; in a control experiment the kinetics of E-G52-G584A recorded 

using the E500W-E532CIAEDANS FRET pair (reporting specifically on folding of E) 

were characterized by an identical !!!
 to the one measured by intrinsic tyrosine 

fluorescence (Fig. 5D).  

Thus, if we make mutations that significantly destabilize the folding nucleus at 

the extreme C-terminal end of the G52 domain, or mutations that are essential for 

formation of the triple helix connecting the nucleus to the rest of the protein, we 

apparently alter the folding pathway – but only when the E-domain is present.  

Formation of the interface is key to driving folding along the alternative pathway. 

Crucially, for some of these mutations in the G52 domain (e.g. Y625W and G576A) 

the folding pathway of isolated G52 does not change; the new pathway is only 

accessible when the E-domain is present and yet we know that E does not fold in 

isolation. Given the importance of the interface between the two domains in imparting 

stability and cooperativity, we hypothesized that the alternative TS (characterized by 

βT of 0.53) involves formation of a structured E-G52 interface as an early step in this 

alternative pathway.  

																																																								

† The Tanford β-value, βT =
mkf

mkf+mku

⎛

⎝
⎜

⎞

⎠
⎟ is a measure of the position of the transition state (in terms 

of SASA, or compactness) between D and N (11). An alternative explanation for a switch in mkf is that 
a mutation results in destabilisation of a TS that fall later on the same single pathway. Several lines of 
evidence suggest that this is a less reasonable explanation than parallel pathways. Only mutations that 
destabilise the WT pathway (with Φ ~ 1) are affected; the same mutations in G52 alone do not result in 
a change in mkf.; a residue with Φ~1 in WT has Φ~0 in Y625W (see below). 
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If this hypothesis is correct, then residues close to the E-G52 interface, in the E 

and G52 domains which all originally have a Φ-value ~0 should have increased Φ-

values in this new pathway and residues in the region with high Φ-values in WT 

would have low Φ-values in this alternative pathway. We would also predict that a 

mutation that destabilized the interface could switch the new pathway back to the 

original polarized TS in E-G52. Thus we performed a mutational analysis based on Φ-

values, in which E-G52-Y625W was treated as a pseudo-WT (Fig. 5A,E, 

Supplementary Table 6). (A crystal structure of the protein at 1.6 Å resolution reveals 

that this substitution does not disrupt the structure of G52 (See Supplementary Fig. 4 

and Supplementary Table 7.) In that background we introduced a number of Pro-to-

Ala mutations, most of which originally had Φ-values of 0 in the background of WT 

E-G52. P531A and P540A in E and P618 in G52 (all Φ~0) were designed to probe the 

folding of the individual domains, and P512A and P599A (also Φ~0) were designed 

to weaken the interface. P571A, which originally had Φ~1 is found in the C-terminal 

loop at the centre of the nucleation site for the WT pathway. Whilst half of the 

mutants (P512A, P531A and P618A) were insufficiently destabilizing to determine 

Φ-values in the background of E-G52-Y625W, three of the mutants gave us 

information.  

(i) The E domain is partly structured in the transition state of alternative pathway: 

The P540A mutation resulted in a fractional Φ (0.7) in the context of E-G52-Y625W 

(compared to Φ-values of 0 for Gly-to-Ala mutations in the same region of the WT E 

domain). Folding is more affected than unfolding, implying that the triple-helix of the 

E domain is now significantly structured in the TS (Fig. 5E).  

(ii) The C-terminal loop of G5
2
 is not formed in the transition state of the alternative 

pathway: the P571A mutation now has no effect on the folding rate. The Φ-value is 

low in the background of E-G52-Y625W (Fig. 5E) (Φ = 0.1, compared to Φ = 1 in 

WT).  

(iii) If the interface is destabilized then E-G5
2
 reverts to the original folding pathway: 

the chevron plot of E-G52-Y625W-P599A shows the same !!!
 as E-G52-P599A and 

WT E-G52, indicative of the WT-like folding pathway (Fig. 5E). We infer that the 

mutation P599A at the E-G52 interface destabilizes the new TS and causes folding to 

revert to the original, WT pathway. These results confirm that the new TS involves 
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formation of structure at the interface between the two domains in the alternative 

folding pathway.  

 

Discussion 

SasG is a protein that challenges some of our preconceptions of protein structure and 

folding. First, it has an unusual sequence composition typical of an intrinsically 

disordered protein (~60% of the residues are charged, Pro or Gly), yet it demonstrably 

folds cooperatively – albeit to an unusual single-sheet extended structure. Despite this 

unusual structure, the biophysical parameters for folding (m-value, stability) are quite 

unremarkable for a protein of this size (E-G5 and G5 have 132 and 82 residues, 

respectively). What is remarkable is that G5 domains fold far more rapidly than might 

be predicted from their relative contact order (15) (Supplementary Fig 5). The 

interface between the E and G52 domains provides most of the stability for the protein. 

This is exemplified when we consider the mutation of two highly conserved Gly 

residues in the triple helical region of the G52 domain (G584A and G587A) which 

both cause G52 to be unfolded; when we mutate these same residues in E-G52, the 

protein folds (Fig. 5B,C). Thus we can take an unfolded G52 domain, add an 

intrinsically unfolded E domain and produce a folded protein. We have estimated that 

the interface imparts at least 6 kcal mol-1 to the stability of E-G52 (compared with 

∆GD-N for WT G52 and E of 2.8 and ≤ -2.5 kcal mol-1, respectively) (9). This interface 

is also key to maintaining cooperative folding and for the long-range cooperativity 

that imparts stiffness to the SasG structure. Here we have demonstrated that the 

interface is essential to ensure that the entire E-G5 motif folds and unfolds in a single 

cooperative step – mutations at the interface disrupt cooperative folding. And yet, to 

our surprise, our data suggest that the interface between E and G52 is completely 

unformed at the transition state for folding (the E-domain and the N-terminal region 

of the G52 domain are both unstructured).  

Our data show that folding of SasG is initiated at the far C-terminal end of the 

G52 domain. At this point there is a turn between the two outer β-strands and the 

terminal, ‘docking’ strand is inserted between these, into the loop (Fig. 3). Assembly 

of this small structural element in one domain is sufficient to drive folding of the 

entire E-G5 molecule over a distance of more than 10 nm. However, folding at the 

interface is clearly an option, since destabilization of the C-terminal nucleation site 
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allows folding via a higher energy transition state where formation of the interface is 

key. E-G52 can thus fold via parallel pathways but the lowest energy pathway 

involves formation of the C-terminal nucleus. It is unclear why this WT pathway 

should be lower in energy than a pathway involving formation of the interface, the 

most stable region of the structure and essentially the only region where there is any 

significant burial of hydrophobic residues. It may be because the entropic cost of 

forming the interface is larger; it involves bringing together loops from the E and the 

G5 domain that are distant in sequence (~85 residues apart), although the interactions 

in the C-terminal nucleus are by no means short range (~ 50 residues between the C-

terminal residues of the final strand and the turn). Alternatively, the intrinsic disorder 

of the E domain may again be key. The formation of the interface involves the folding, 

at least in part, of the E domain, a process that is inherently costly in terms of free 

energy. Importantly, however, cooperative folding is a feature of both pathways, 

because the E domain cannot fold in the absence of G5. 

In wild-type protein (except under very destabilising conditions, as described) 

the protein folds and unfolds as a single unit; no intermediates are populated in 

folding or in unfolding, or at equilibrium. This is, by definition, cooperative folding. 

Such tight and robust cooperativity in folding behaviour has not been seen previously 

in multi-domain proteins. Even where there are significant interfaces between 

domains, kinetics reveal that the domains fold in a non-two state manner, with each 

domain behaving as an independent folding unit (16, 17). The obligate cooperativity 

of SasG arises because E can only fold in the presence of folded G5, but once folded 

the entire domain is very significantly more stable than the sum of the stability of the 

two domains individually.  

The kind of cooperativity we are observing in the SasG protein (‘obligate’ 

folding cooperativity) is reminiscent of the folding of repeat proteins. These comprise 

tandem arrays of small repeats (20-40 residues) that are unstable on their own, and 

which fold, apparently cooperatively, through formation of interfaces between the 

repeats (18-25). But tandem repeats are very different to SasG, where contacts within 

the domains themselves and between domains are very long-range, whereas contacts 

in repeat proteins are very local (Supplementary Fig. 5). While there is a dominant 

folding pathway in SasG, parallel pathways are a key feature of repeat proteins, in 

particular as the number of repeats increases. However, despite each subunit being 

intrinsically unstable alone, kinetic cooperativity is not generally maintained beyond 
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3-4 subunits in repeat proteins, but SasG is able to maintain cooperative folding 

across a distance of ~12 nm.  

Conclusion 

The importance of intrinsic disorder in Biology is becoming increasingly apparent, 

but why would Nature choose disordered domains to form a multi-domain protein? 

We had previously shown that disorder-mediated thermodynamic cooperativity 

allows SasG to adopt long, mechanically strong, rod-like structures (9). Now we have 

shown how this disorder, coupled with the remarkable stability of the inter-domain 

interface, can result in cooperative folding kinetics, with no populated intermediates, 

across long distances. The folding of classic multi-domain proteins is highly 

cooperative, but only within the relatively local confines of a single domain. In repeat 

proteins short-range cooperativity is apparent between 3-4 individually unstable 

repeats. SasG provides a paradigm for much longer-range cooperative folding – by 

the obligatory folding of alternate intrinsically disordered domains with their folded 

neighbors.  

 

Materials and Methods  

All experimental procedures are described in detail in the Supplementary Information.      

Analysis of kinetic data: For some mutants kinetic data were fitted to a model 

allowing for parallel pathways (see Supplementary Fig. 6 for details). 

Simulations: Simulations were performed using a coarse-grained model where only 

Cα atoms are represented and interactions depend on the native reference structure and 

on the residue type (26). Details are given in the Supplementary Information.  

Determination of the structure of E-G5
2
-Y625W: Details of the crystallization and 

structure determination of E-G52 Y625W can be found in the Supplementary 

Information. The coordinates and structure factors have been deposited in the protein 

data bank with accession code 5DBL.  
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Figure Legends 

 

Fig. 1. Structure and biophysical data for wild-type (WT) SasG G5
2
 and E-G5

2
. 

(A) Schematic representation of SasG from S. aureus NCTC 8325. The A domain 

promotes adhesion to host cells. The core region comprises tandemly arrayed G5 (red) 

and E (blue) domains (10). The E-G52 fragment of SasG is indicated with a bar. (B) 

Structure of E-G52 (PDB accession: 3TIP) illustrating the topology of E and G52 

domains: two single-layer triple-stranded β-sheets connected by a central collagen-

like triple-helical region. The tyrosines and positions of engineered FRET pairs are 

shown. FRET pair E500W-E532CIAEDANS (cyan) results in FRET only when E is 

folded; I555W-E613CIAEDANS (green) results in FRET when G52 is folded. (C) 

Equilibrium denaturation curves. Data for WT G52 and E-G52, and E-G52-E500W-

E532CIAEDANS taken from (9). (D) Urea dependence of the natural logarithm of the 

observed rate constants (in s-1) for proteins shown in C. Circles and squares represent 

major and minor unfolding rate constants, respectively.  

Fig. 2. Mapping the structure of transition states of WT folding pathway for G5
2
 

and E-G5
2
. (A) Chevron plots for G52: WT (black) and mutants. (B) Chevron plots 

for E-G52: WT (black) and mutants. (A,B) Left panels: mutants that unfold faster than 

WT while the folding rate is largely unaffected. Right panels: mutants that fold slower 

than WT while the unfolding rate is unaffected. (C,D) Φ−values of (C) G52, and (D) 

E-G52 mapped onto the crystal structures. Blue, high Φ-values (> 0.8); Red, low Φ-

values (< 0.2); Grey: where ∆∆G was not high enough to obtain reliable Φ-values. 

Fig. 3. Probing the folding pathways of SasG using simulations. Simulations of 

(A) G52 and (B) E-G52 by coarse-grained native-centric model simulations at 320 K. 

Top panel shows the root mean square deviation (RMSD) as a function of simulation 

time for a typical refolding event. For G52 (A), RMSD values were calculated for all 

atoms (black), the C-terminal β-sheet/loop region (cyan) and the N-terminal β-

sheet/loop region (red). For E-G52 (B), RMSD values were calculated for all atoms 

(black), the C-terminal β-sheet/loop region of G52 (cyan), the N-terminal β-sheet/loop 

region of G52 together with the C-terminal β-sheet/loop region of E (red) and the N-

terminal β-sheet/loop region of E (orange). The bottom panel illustrates corresponding 

sequential snapshots from the refolding trajectory and the related schematic topology 

representation. The G52 domain is shown in red, except for the C-terminal β-
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sheet/loop region (cyan) and its central C-terminal ‘docking’ strand (green). The E 

domain is shown in blue. Further details from the same trajectory are illustrated in 

Supplementary Fig. 3. 

Fig. 4. Mutations at the interface break the cooperative unfolding of E-G5
2
. (A) 

Structure of E-G52 showing the location of mutated residues within the E domain 

(light blue) and G52 domain (Pro599; orange). Phe510 and Tyr547 (grey) contact 

Pro599. (B,C) Mutations in the E domain: (B) Equilibrium denaturation curves and 

(C) urea dependence of the natural logarithm of the observed rate constants for WT 

and mutants. (D,E) Mutations in the G52 domain: (B) Equilibrium denaturation curves 

and (C) urea dependence of the natural logarithm of the observed rate constants for 

WT G52 and mutants. Circles and squares in C and E represent major and minor rate 

constants, respectively. Mutations at the interface result in the breakdown of the 

cooperative unfolding of the E and G52 domains, manifested in the presence of a 

second unfolding rate constant at all denaturant concentrations, and a decrease in the 

dependence of lnku on [urea]. 

Fig. 5. E-G5
2
 can fold by an alternative folding pathway. Mutations in the G5 

domain that destabilize the folding nucleus cause a switch in pathway in E-G52, 

manifested by a change in the dependence of lnkf on [urea]. (A) Structure of E-G52 

showing the location of residues mutated or used to engineer the FRET pair. (B, C) 

Equilibrium denaturation curves for G52 and E-G52 respectively (D) Chevron plots 

for WT E-G52 and mutants. Note the change in slope of the folding limb of the 

chevron plot for all of these mutants. (E) Mutations using Y625W as a pseudo-WT. 

Chevron plots for WT E-G52 (black), E-G52-Y625W (green) and Pro-to-Ala mutants 

of E-G52 in the background of Y625W. Note that the interface mutant (P599A) causes 

the slope to revert to WT. The other mutants have Φ-values that differ from those in 

the WT background (see text). 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Supplementary Information 

 

 

 

Supplementary Methods: 

 

Protein production and purification: SasG G5
2 
and E-G5

2
 (WT and mutants) expression and 

purification procedures were as previously described (1, 2).  

FRET labels: Tryptophan (E500W and I555W) and cysteine (E532C and E613C) residues were 

introduced into SasG G5
2
 and E-G5

2
 constructs by site-directed mutagenesis. Both, E-G5

2
-E500W-

E532C and G5
2
-I555W-E613C were labelled with 5-((((2-

iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (1,5-IAEDANS; Life Technologies) 

following the manufacturer’s instructions as described previously (1). 

Equilibrium studies Equilibrium unfolding of the proteins was studied by urea denaturation under 

standard conditions (phosphate-buffered saline, 25°C). Folding was followed by intrinsic tyrosine 

(WT, proline- and glycine-to-alanine mutants, excitation wavelength 276 nm; emission 305 nm) 

and tryptophan (Y265W; excitation 280 nm; emission 350 nm) fluorescence and FRET 

measurements (excitation 280 nm: emission 490 nm) on a fluorescence spectrometer (Perkin Elmer 

LS55). The data were analyzed as previously described (1). 

Kinetic studies: Kinetic experiments following the change in the fluorescence signal at different 

urea concentrations were carried out using a stopped-flow fluorimeter (Applied Photophysics 

SX.20) at 25°C constant temperature, as described previously (1). The data were fitted to equations 

describing single- or double-exponential phases (see text). To account for non-linearity in the 

observed unfolding rate constant, the chevron plot data were fitted to a sequential transition states 

model as described previously (3), in which denaturant induces a switch between two barriers 

separated by a high-energy intermediate. 

Φ-values were determined using the following equation: 

 

Where ∆∆GD-N was determined using equilibrium experiments, and . 

Native reference structures were the crystal structure of S. aureus SasG E-G5
2
 (PDB accession: 

3TIP) for both E-G5
2
 and the G5

2
 domain alone. 

Simulations: Simulations were performed using a coarse-grained model where only Cα atoms are 

represented and interactions depend on the native reference structure and on the residue type (4). 

Φ =
∆∆GD-‡

∆∆GD-N

∆∆GD-‡ = RT ln
kwt
H2O

kmut
H2O

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
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Equilibrium simulations were performed at a broad range of temperatures between 270 and 330 K 

lasting at least 30 µs. Temperature was controlled using Langevin dynamics, and the timestep for 

integration of the equations of motion was 15 fs. For both systems the mid-point temperature was 

approximately 320K. At this temperature E-G52 completely unfolds only a few times, hence we 

performed 62 simulations starting from random conformations sampled at 350K and setting the 

thermostat to temperatures between 270 and 315K at which E-G52 is expected to be folded.  For all 

simulations in which full folding occurs, the pathway is identical to those observed during the 

equilibrium simulation reported in Fig. 3.  

Crystallisation of E-G5
2
-Y625W: E-G52 Y625W was purified as described previously (5) and 

concentrated to 47.6 mg.ml-1 in 20 mM Tris, 150 mM NaCl, pH 8. Crystallisation screening with 

JCSG+ (Molecular Dimensions; (6)) resulted in growth of large single crystals in conditions 

comprising 100 mM citrate pH 5 and 20% PEG 6000. Crystals were flash cooled in liquid N2 prior 

to data collection on Diamond beamline I02. Data were indexed, integrated and scaled using XDS 

(7) and merged using Aimless (8). Phases were determined by molecular replacement with 

PhaserMR (9) using WT E-G52 (PDB accession: 3TIP (5)). E-G52-Y625W crystallised in 

spacegroup C2 with one molecule in the asymmetric unit. The model was improved using Coot (10) 

and refined to 1.6 Å (Supplementary Table 7) with nine translation/libration/screw (TLS) groups by 

Phenix (11). The coordinates and structure factors have been deposited in the protein data bank with 

accession code 5DBL. The structure was aligned by secondary structure matching with WT E-G52 

using Superpose (12) and cartoons were rendered with CCP4mg (13). 
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Supplementary Figures: 

 

 

 

 

Fig. S1. At high denaturant concentrations two unfolding phases are observed in E-G5
2
, as 

unfolding of the domains becomes uncoupled. Kinetics of unfolding into 9.5 M urea for E-G5
2
-

WT (A), E-G5
2
-E500W-E532C

IAEDANS
 (B) and E-G5

2
-I555W-E613C

IAEDANS
 (C). Traces were 

collected by monitoring the change in intrinsic tyrosine or 1,5-IAEDANS fluorescence. Unfolding 

traces of E-G5
2
-WT (A) and E-G5

2
-E500W-E532C

IAEDANS
 (B) were fitted to the sum of two 

exponentials, which describes the data better than the single exponential. Residuals for the fit to the 

single exponential and the sum of two exponentials are shown below the data in black and red, 

respectively.  Unfolding traces of E-G5
2
-I555W-E613C

IAEDANS
 (C) (that monitors the unfolding of 

the G5 domain only) were fitted to a single exponential, which describes the data well. The 

residuals are shown below the data.	

  

A B C E-G52-WT E-G52-E500W-E532CIAEDANS E-G52-I555W-E613CIAEDANS 
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Fig. S2. Highly destabilizing mutations in the E-domain break the cooperative unfolding of E-

G5
2
. (A) Structure of E-G5

2
 showing the location of mutated residues within the E domain (Gly524, 

Gly527 light blue spheres) (B) Equilibrium denaturation curves and (C) urea dependence of the 

natural logarithm of the observed rate constants for wild type and mutant proteins. Circles and 

squares represent major and minor rate constants, respectively.  Note that the unfolding m-value of 

these two mutants reverts to that of wild-type G5
2
 showing that the E and G5

2
 domains are now 

unfolding independently.  
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Fig. S3. Simulations of E-G5
2
 at 320 K. Trajectories of the total contacts normalized by the 

number of native contacts for E-G5
2
 (A), E (B), G5

2
 (C) and the E-G5

2
 interface (D), for the same 

folding event as presented in Fig. 3. Panel E shows the free energy change as a function of the ratio 

of total contacts to native contacts. Domain E is characterized by a broad basin that encompasses 

both folded and unfolded states whereas the G5
2
 domain shows a barrier between the unfolded and 

folded state (at 320 K the native state is much more populated that the unfolded state).  
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Fig. S4. The structure of E-G5
2
-Y625W is highly similar to the wild type protein fold. An X-

ray crystal structure of E-G52-Y625W was determined at 1.6 Å resolution (PDB: 5DBL). (A) Stereo 

image of the 2mFo-DFc electron density map (grey) contoured at 1 electron/Å3 at the C-terminus of 

G52; the Y625W side-chain is shown in green. (B) The X-ray crystal structure of E-G52 Y625W (E, 

white and G52, grey) is highly similar to the wild type (PDB accession: 3TIP E, blue and G52, red). 

Alignment by secondary structure matching revealed a Cα root mean square deviation of 1 Å (C), 

confirming the Y625W mutation does not affect the overall structure of E-G52.  
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Fig. S5. Plot of rate of folding vs contact order.  G5
2
 folds significantly more rapidly than would 

be predicted from its relative contact order. (Data from Plaxco et al (14) shown by the straight line). 

Although it has some properties of a repeat protein SasG clearly lacks the short-range interactions 

that characterize all true tandem repeat proteins (TRs; examples include leucine-rich repeats, 

ankyrin repeats, and tetratricopeptide repeats, orange).  
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Fig. S6.  Fitting the data to parallel pathways models. Chevron and flux plots for representative 

E-G5
2
 mutants that fold via an alternative pathway: E-G5

2
-G584A (A), E-G5

2
-Y625W (B) and E-

G5
2
-Y625W-P618A (C). The chevron plots were fitted globally to a model assuming two parallel 

pathways, shown in red, in which the observed rate constant is equal to the sum of the rate constants 

for each pathway (for details see Table S6). The hypothetical chevron corresponding to the 

alternative pathway (pathway 1) is shown as a dashed blue line. The other (wild-type) pathway 

(pathway 2) was assumed to follow the sequential transition states model (3) as the wild-type 

pathway. The hypothetical chevrons corresponding to the wild-type pathway transition state 1 (TS
1
) 

and transition state 2 (TS
2
) are shown as dashed orange and purple lines, respectively. The bottom 

plots illustrate the fractional fluxes through the alternative pathway (pathway 1, blue) and wild-type 

pathway (pathway 2, grey).   
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Supplementary Tables: 

 

 

 

Table S1. Thermodynamic and kinetic parameters for G5
2
 and E-G5

2
. 

 

	 Equilibrium* Kinetic
†
 

Protein 
!!!!*	

(kcal·mol-1·M-1)	
!!

!!!

!!!*	

(kcal·mol-1)	
!!!!

†
	

(kcal·mol-1·M-1)	

!!
!!!

!!!†
	

(kcal·mol-1)	

!
!

!!!†
	

(s-1)	

!
!

!!!†
	

(s-1)	

G5
2
-WT 1.0 ± 0.1 2.8 ± 0.2 1.1 ± 0.1 2.8 ± 0.2 12.2 ± 0.3 0.112 ± 0.025 

E-G5
2
-WT 1.4 ± 0.1 6.3 ± 0.2 1.4 ± 0.1 7.0 ± 0.3 13.0 ± 0.3 (9.4 ± 3.2)×10

-5
 

E-G5
2
-Y547 1.4 ± 0.1 5.5 ± 0.1 - - - - 

E-G5
2
-Y625 1.4 ± 0.1 5.6 ± 0.1 1.4 ± 0.1 6.5 ± 0.4 10.6 ± 0.5 (19.5 ± 6.9)×10

-5
 

EG5
2
-T501C

A488 

-E613C
A594

 
1.4 ± 0.1 6.1 ± 0.3 1.4 ± 0.1 6.7 ± 0.4 10.7 ± 0.5 (14.0 ± 5.0)×10

-5
 

EG5
2
-E500W-E532C

IAEDANS
 1.4 ± 0.1 6.1 ± 0.4 1.4 ± 0.1 6.7 ± 0.4 10.3 ± 0.5 (11.8 ± 4.2)×10

-5
 

EG5
2
-E555I-E613C

IAEDANS
 1.4 ± 0.1 4.5 ± 0.3 1.4 ± 0.1 5.4 ± 0.3 14.0 ± 0.7 (1.5 ± 0.5)×10

-3
 

 

* Equilibrium parameters were obtained by fitting the data to a two-state equation. 

† Kinetic parameters were calculated from fitting the data globally to a sequential transition states model. 
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Table S2. Apparent equilibrium parameters obtained for wild-type G5
2
 and its mutants at 25°C. 

 

Protein !!!!	(kcal·mol-1·M-1)	 ! !"%	(M-1)	 !!
!!!

!!! 	(kcal·mol-1) !!!
!!!

!!! 	(kcal·mol-1) 

G5
2
-WT 1.00 ± 0.05 2.80 ± 0.07 2.80 ± 0.16 - 

G5
2
-P549A 0.91 ± 0.02 2.42 ± 0.03 2.20 ± 0.05 0.60 ± 0.16 

G5
2
-P562A 1.02 ± 0.02 2.22 ± 0.01 2.26 ± 0.05 0.54 ± 0.17 

G5
2
-P571A 0.98 ± 0.02 1.86 ± 0.05 1.83 ± 0.06 0.97 ± 0.17 

G5
2
-P575A 1.03 ± 0.02 1.94 ± 0.01 1.99 ± 0.04 0.81 ± 0.16 

G5
2
-P594A 0.99 ± 0.02 2.40 ± 0.01 2.37 ± 0.04 0.43 ± 0.16 

G5
2
-P599A 0.99 ± 0.02 2.70 ± 0.01 2.68 ± 0.04 0.12 ± 0.16 

G5
2
-P618A 1.03 ± 0.02 2.18 ± 0.01 2.24 ± 0.05 0.56 ± 0.16 

G5
2
-P627A 0.96 ± 0.03 1.67 ± 0.02 1.62 ± 0.05 1.18 ± 0.16 

G5
2
-G548A 0.92 ± 0.04 2.94 ± 0.06 2.71 ± 0.14 0.09 ± 0.21 

G5
2
-G552A 1.05 ± 0.05 2.90 ± 0.05 3.03 ± 0.16 -0.23 ± 0.22 

G5
2
-G576A 1.01 ± 0.04 0.85 ± 0.19 0.85 ± 0.19 1.95 ± 0.25 

G5
2
-G584A 1.00 -1.60 ± 0.61 -1.6 ± 0.61 4.40 ± 0.63 

G5
2
-G587A - - - - 

G5
2
-G602A 1.06 ± 0.04 1.28 ± 0.03 1.35 ± 0.07 1.45 ± 0.17 

G5
2
-G608A 1.02 ± 0.03 1.58 ± 0.02 1.61 ± 0.05 1.19 ± 0.17 

G5
2
-G626A 0.98 ± 0.07 1.11 ± 0.25 1.08 ± 0.25 1.72 ± 0.30 

G5
2
-Y625W 0.92 ± 0.02 1.53 ± 0.01 1.41 ± 0.03 1.39 ± 0.16 

 

The parameters were calculated by fitting the equilibrium denaturation curves to a two-state model. 

The errors quoted for !!!! and ! !"% of G5
2
-WT represent the experimental errors (based on four 

independent experiments). The errors quoted for the G5
2
 mutants are the errors of the fits of the 

data. In the case of G5
2
-G584A, the data were fit to a two-state equation with the !!!!	value fixed 

at 1 kcal·mol
-1
·M

-1
. G5

2
-G587A is inherently unstable in water. 
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Table S3. Apparent equilibrium parameters obtained for wild-type E-G5
2
 and its mutants at 25°C. 

 

Protein !!!!	(kcal·mol-1·M-1)	 ! !"%	(M-1)	 !!
!!!

!!! 	(kcal·mol-1) !!!
!!!

!!! 	(kcal·mol-1) 

E-G5
2
-WT 1.42 ± 0.04 4.40 ± 0.02 6.27 ± 0.18 - 

E-G5
2
-Y547 1.40 ± 0.02  3.92 ± 0.03 5.49 ± 0.09 0.78 ± 0.20 

E-G5
2
-Y625 1.37 ± 0.03 4.07 ± 0.01 5.58 ± 0.10 0.69 ± 0.21 

EG5
2
-

T501C
A488

-

E613C
A594

 

1.40 ± 0.06 4.35 ± 0.02 6.09 ± 0.28 0.18 ± 0.33 

EG5
2
-E500W-

E532C
IAEDANS

 
1.39 ± 0.06 4.38 ± 0.02 6.10 ± 0.27 0.17 ± 0.33 

EG5
2
-E555I-

E613C
IAEDANS

 
1.44 ± 0.06 3.13 ± 0.02 4.50 ± 0.18 1.77 ± 0.26 

E-G5
2
-P499A 1.38 ± 0.06 4.41 ± 0.02 6.10 ± 0.26 0.17 ± 0.31 

E-G5
2
-P504A 1.34 ± 0.04 3.99 ± 0.01 5.36 ± 0.14 0.91 ± 0.23 

E-G5
2
-P512A 1.28 ± 0.03 4.08 ± 0.01 5.22 ± 0.12 1.05 ± 0.22 

E-G5
2
-P515A 1.40 ± 0.04 4.26 ± 0.01 5.97 ± 0.16 0.29 ± 0.24 

E-G5
2
-P523A 1.32 ± 0.03 4.10 ± 0.01 5.40 ± 0.14 0.86 ± 0.23 

E-G5
2
-P526A 1.30 ± 0.04 4.13 ± 0.02 5.37 ± 0.18 0.90 ± 0.26 

E-G5
2
-P531A 1.35 ± 0.04 4.16 ± 0.02 5.63 ± 0.17 0.64 ± 0.25 

E-G5
2
-P539A 1.37 ± 0.06 4.38 ± 0.03 6.02 ± 0.28 0.25 ± 0.33 

E-G5
2
-P540A 1.40 ± 0.10 4.55 ± 0.04 6.37 ± 0.45 -0.10 ± 0.48 

E-G5
2
-P549A 1.32 ± 0.04 3.68 ± 0.02 4.85 ± 0.15 1.42 ± 0.24 

E-G5
2
-P562A 1.44 ± 0.04 3.90 ± 0.01 5.61 ± 0.14 0.65 ± 0.23 

E-G5
2
-P571A 1.33 ± 0.04 3.92 ± 0.02 5.19 ± 0.15 1.07 ± 0.24 

E-G5
2
-P575A 1.41 ± 0.04 3.99 ± 0.02 5.63 ± 0.18 0.63 ± 0.26 

E-G5
2
-P594A 1.28 ± 0.04 4.19 ± 0.02 5.39 ± 0.17 0.88 ± 0.25 

E-G5
2
-P599A 1.17 ± 0.03 2.94 ± 0.02 3.44 ± 0.10 2.83 ± 0.21 

E-G5
2
-P599A- 

E500W-

E532C
IAEDANS

 

0.93 ± 0.02 2.03 ± 0.01 1.88 ± 0.04 4.39 ± 0.19 

E-G5
2
-P618A 1.32 ± 0.06 3.84 ± 0.02 5.07 ± 0.21 1.20 ± 0.28 

E-G5
2
-P627A 1.28 ± 0.04 3.77 ± 0.02 4.83 ± 0.14 1.44 ± 0.23 

E-G5
2
-G505A 1.34 ± 0.07 4.07 ± 0.03 5.45 ± 0.30 0.82 ± 0.36 

E-G5
2
-G517A 1.35 ± 0.05 3.38 ± 0.02 4.58 ± 0.19 1.69 ± 0.26 

E-G5
2
-G524A 1.23 ± 0.06 3.58 ± 0.03 4.40 ± 0.22 1.87 ± 0.28 

E-G5
2
-G527A 1.23 ± 0.04 3.37 ± 0.02 4.16 ± 0.15 2.10 ± 0.24 
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E-G5
2
-G534A 1.23 ± 0.03 3.34 ± 0.01 4.11 ± 0.09 2.16 ± 0.21 

E-G5
2
-G548A 1.20 ± 0.06 3.30 ± 0.03 3.97 ± 0.19 2.30 ± 0.26 

E-G5
2
-G552A 1.30 ± 0.04 3.66 ± 0.02 4.75 ± 0.15 1.52 ± 0.24 

E-G5
2
-G576A 1.48 ± 0.05 3.18 ± 0.02 4.72 ± 0.16 1.55 ± 0.24 

E-G5
2
-G584A 1.45 ± 0.05 3.20 ± 0.02 4.62 ± 0.15 1.64 ± 0.23 

E-G5
2
-G587A 1.51 ± 0.05 1.25 ± 0.02 1.88 ± 0.07 4.39 ± 0.19 

E-G5
2
-G602A 1.41 ± 0.03 3.04 ± 0.01 4.29 ± 0.09 1.97 ± 0.21 

E-G5
2
-G608A 1.41 ± 0.04 3.47 ± 0.02 4.90 ± 0.14 1.37 ± 0.23 

E-G5
2
-G626A 1.40 ± 0.05 3.01 ± 0.02 4.23 ± 0.14 2.04 ± 0.23 

E-G5
2
-Y625W 1.53 ± 0.02 3.37 ± 0.01 5.14 ± 0.08 1.13 ± 0.20 

E-G5
2
-Y625W-

P512A 
1.48 ± 0.03 3.16 ± 0.01 4.67 ± 0.11 1.60 ± 0.21 

E-G5
2
-Y625W-

P531A 
1.51 ± 0.02 3.41 ± 0.01 5.13 ± 0.05 1.14 ± 0.19 

E-G5
2
-Y625W-

P540A 
1.63 ± 0.04 3.54 ± 0.01 5.78 ± 0.14 0.49 ± 0.23 

E-G5
2
-Y625W-

P571A 
1.51 ± 0.04 3.10 ± 0.02 4.67 ± 0.14 1.60 ± 0.23 

E-G5
2
-Y625W-

P599A 
1.42 ± 0.02 1.96 ± 0.01 2.79 ± 0.04 3.48 ± 0.19 

E-G5
2
-Y625W-

P618A 
1.57 ± 0.02 3.03 ± 0.01 4.75 ± 0.07 1.52 ± 0.19 

E-G5
2
-G584A- 

E500W-

E532C
IAEDANS

 

1.58 ± 0.09 2.01 ± 0.04 3.17 ± 0.18 3.10 ± 0.26 

 

The parameters were calculated by fitting the equilibrium denaturation curves to a two-state model. 

The errors quoted for the G5
2
 mutants are the errors of the fits of the data.  
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Table S4. Kinetic parameters obtained for the G5
2
 pathway based on the single mutants at 25°C. 

   

Protein 

Equilibrium 

!!!
!!!

!!! 	

(kcal·mol-1) 

Kinetic 

!!!
!!!

!!! 	

(kcal·mol-

1)	

!
!

!!!	

(s-1) 
!!
!!!	

(s-1) 
! 

G5
2
-WT - - 12.2 ± 0.3 0.11 ± 0.02 - 

G5
2
-P549A 0.6 ± 0.2 -0.2 ± 0.3 13.9 ± 0.5 0.09 ± 0.02 - 

G5
2
-P562A 0.5 ± 0.2 0.6 ± 0.3 13.0 ± 0.5 0.30 ± 0.07 -0.07 

G5
2
-P571A 1.0 ± 0.2 0.6 ± 0.3 5.1 ± 0.2 0.13 ± 0.03 0.91 

G5
2
-P575A 0.8 ± 0.2 0.6 ± 0.3 5.0 ± 0.2 0.13 ± 0.03 0.90 

G5
2
-P594A 0.4 ± 0.2 0.2 ± 0.3 13.9 ± 0.5 0.18 ± 0.04 - 

G5
2
-P599A 0.1 ± 0.2 0.0 ± 0.3 12.4 ± 0.5 0.11 ± 0.03 - 

G5
2
-P618A 0.6 ± 0.2 0.7 ± 0.3 13.5 ± 0.6 0.42 ± 0.09 -0.11 

G5
2
-P627A 1.2 ± 0.2 0.9 ± 0.3 2.5 ± 0.1 0.11 ± 0.02 1.02 

G5
2
-G548A 0.1 ± 0.2 -0.4 ± 0.3 13.8 ± 0.5 0.07 ± 0.02 - 

G5
2
-G552A -0.2 ± 0.2 -0.3 ± 0.3 14.1 ± 0.5 0.08 ± 0.02 - 

G5
2
-G576A 2.0 ± 0.2 1.3 ± 0.3 0.9 ± 0.1 0.07 ± 0.02 0.80 

G5
2
-G602A 1.5 ± 0.2 1.6 ± 0.3 8.5 ± 0.4 1.16 ± 0.30 0.05 

G5
2
-G608A 1.2 ± 0.2 1.1 ± 0.3 13.3 ± 0.6 0.82 ± 0.18 0.01 

G5
2
-G626A 1.7 ± 0.3 2.0 ± 0.3 0.6 ± 0.1 0.15 ± 0.03 1.06 

G5
2
-Y625W 1.4 ± 0.2 1.5 ± 0.3 1.3 ± 0.1 0.14 ± 0.03 0.95 

 

The chevron plots were fitted globally to the sequential transition states model, with the values of !!!!! 

and !!
!
!! fixed at 1×10

4
 s

-1
 and 0 M

-1
, respectively, and the values of !!!!

!, !!
!
!! and !!!!

! shared 

between the data sets (0.88 ± 0.02 M
-1

, 0.64 ± 0.02 M
-1

 and 0.29 ± 0.02 M
-1

, respectively; kinetic !!!! 

was 1.07 ± 0.03 kcal·mol
-1
·M

-1
). All other microscopic rate constants were allowed to vary freely. Φ 

values were calculated using equilibrium rather than kinetic !!!
!!!

!!! , due to lower associated errors. The 

rate constants and Φ values presented in the table are for TS
1
. The errors on the Φ values are 5-10%.  
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Table S5. Kinetic parameters obtained for the main (wild-type) E-G5
2
 pathway at 25°C. 

   

Protein 
Equilibrium !!!

!!!

!!! 	

(kcal·mol-1) 

Kinetic !!!
!!!

!!! 	

(kcal·mol-1) 
!
!

!!!	(s-1) !!
!!!	(s-1) ! 

E-G5
2
-WT - - 13.0 ± 0.3 (9.4 ± 3.2)×10

-5
 - 

E-G5
2
-Y625 0.7 ± 0.2 0.6 ± 0.5 10.6 ± 0.5 (2.0 ± 0.7)×10

-4
 - 

EG5
2
-T501C

A488
-

E613C
A594

 
0.2 ± 0.3 0.4 ± 0.5 10.7 ± 0.5 (1.4 ± 0.5)×10

-4
 - 

EG5
2
-E500W-

E532C
IAEDANS

 
0.2 ± 0.3 0.3 ± 0.5 10.3 ± 0.5 (1.2 ± 0.4)×10

-4
 - 

EG5
2
-E555I-

E613C
IAEDANS

 
1.8 ± 0.3 1.6 ± 0.5 14.0 ± 0.7 (1.5 ± 0.5)×10

-3
 - 

E-G5
2
-P499A 0.2 ± 0.3 0.3 ± 0.5 11.1 ± 0.5 (1.3 ± 0.5)×10

-4
 - 

E-G5
2
-P504A 0.9 ± 0.2 1.1 ± 0.5 10.1 ± 0.5 (4.3 ± 1.5)×10

-4
 0.17 

E-G5
2
-P512A 1.0 ± 0.2 0.7 ± 0.5 12.6 ± 0.5 (2.8 ± 1.0)×10

-4
 0.02 

E-G5
2
-P515A 0.3 ± 0.2 0.4 ± 0.5 11.6 ± 0.5 (1.7 ± 0.6)×10

-4
 - 

E-G5
2
-P523A 0.9 ± 0.2 0.8 ± 0.5 11.2 ± 0.5 (2.9 ± 1.0)×10

-4
 0.10 

E-G5
2
-P526A 0.9 ± 0.3 0.5 ± 0.5 11.1 ± 0.5 (1.8 ± 0.6)×10

-4
 0.10 

E-G5
2
-P531A 0.6 ± 0.3 0.5 ± 0.5 11.9 ± 0.5 (1.9 ± 0.7)×10

-4
 - 

E-G5
2
-P539A 0.3 ± 0.3 0.0 ± 0.5 12.2 ± 0.5 (0.9 ± 0.4)×10

-4
 - 

E-G5
2
-P540A -0.1 ± 0.5 0.0 ± 0.5 11.5 ± 0.5 (0.9 ± 0.3)×10

-4
 - 

E-G5
2
-P549A 1.4 ± 0.2 1.1 ± 0.5 12.1 ± 0.6 (5.1 ± 1.8)×10

-4
 0.03 

E-G5
2
-P562A 0.7 ± 0.2 0.5 ± 0.5 12.8 ± 0.6 (5.1 ± 1.8)×10

-4
 0.02 

E-G5
2
-P571A 1.1 ± 0.2 0.4 ± 0.5 5.8 ± 0.3 (9.0 ± 3.2)×10

-5
 1.03 

E-G5
2
-P575A 0.6 ± 0.3 0.6 ± 0.5 5.1 ± 0.2 (9.7 ± 3.4)×10

-5
 0.97 

E-G5
2
-P594A 0.9 ± 0.3 0.5 ± 0.5 13.3 ± 0.6 (2.1 ± 0.7)×10

-4
 -0.01 

E-G5
2
-P618A 1.2 ± 0.3 0.5 ± 0.5 13.0 ± 0.6 (2.2 ± 0.8)×10

-4
 0.00 

E-G5
2
-P627A 1.4 ± 0.2 0.8 ± 0.5 3.3 ± 0.1 (9.8 ± 3.3)×10

-5
 0.98 

E-G5
2
-G505A 0.8 ± 0.4 0.6 ± 0.5 13.1 ± 0.6 (2.4 ± 0.8)×10

-4
 0.00 

E-G5
2
-G534A 2.2 ± 0.2 0.5 ± 0.5 13.0 ± 0.6 (2.4 ± 0.8)×10

-4
 0.00 

E-G5
2
-G602A 2.0 ± 0.2 1.9 ± 0.5 9.9 ± 0.5 (1.7 ± 0.6)×10

-3
 0.08 

E-G5
2
-G608A 1.4 ± 0.2 1.2 ± 0.5 12.1 ± 0.6 (6.9 ± 2.4)×10

-4
 0.03 

E-G5
2
-Y625W-

P599A 
3.5 ± 0.2 3.9 ± 0.5 1.2 ± 0.1 (6.6 ± 1.9)×10

-3
 - 

 

The chevron plots were fitted globally to the sequential transition states model, with the values of !!!!! and 

!!
!
!! fixed at 1×10

4
 s

-1
 and 0 M

-1
, respectively, and the values of !!!!

!, !!
!
!! and !!!!

! shared between 

the data sets (0.80 ± 0.01 M
-1

, 1.30 ± 0.04 M
-1

 and 0.32 ± 0.03 M
-1

, respectively; kinetic !!!! was 1.43 ± 

0.05 kcal·mol
-1
·M

-1
). All other microscopic rate constants were allowed to vary freely. Φ values were 

calculated using equilibrium rather than kinetic !!!
!!!

!!! , due to lower associated errors. The rate constants 

and Φ values presented in the table are for TS
1
. The errors on the Φ values are 5-10%. Due to little 

confidence in the Φ values calculated for TS
2
 (errors of 5-40%, owing to large errors in the rate constants 

associated with TS
2
), they are not listed.  
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Table S6. Kinetic parameters for the alternative folding pathway of E-G5
2
 at 25°C obtained from the parallel pathways model fitting. 

 

Protein 

Pathway 1 Pathway 2 

!
!

!!!	(s-1) !!
!!!	(s-1) 

TS
1
 TS

2
 

!
!

!!!	(s-1) !!
!!!	(s-1) !

!

!!!	(s-1) !!
!!!	(s-1) 

E-G5
2
-G576A 8.4 ± 1.3 (1.4 ± 1.7)×10

-3
 0.03 ± 0.27 (9.8 ± 3.4)×10

-5
 (0.1 ± 1.0)×10

3
 0.38 ± 0.07 

E-G5
2
-G584A 7.5 ± 1.2 (0.5 ± 1.4)×10

-3
 0.47 ± 0.25 (9.6 ± 2.8)×10

-5
 (1.9 ± 1.1)×10

3
 0.39 ± 0.05 

E-G5
2
-Y625W 7.9 ± 0.6 (1.4 ± 0.4)×10

-3
 0.066 ± 0.088 (1.9 ± 0.2)×10

-4
 (1.8 ± 2.5)×10

2
 0.54 ± 0.03 

E-G5
2
-Y625W 

P512A 
6.0 ± 0.7 (0.8 ± 2.3)×10

-3
 0.14 ± 0.20 (3.5 ± 0.7)×10

-4
 (2.1 ± 2.9)×10

2
 0.51 ± 0.07 

E-G5
2
-Y625W 

P531A 
7.5 ± 0.6 (6.7 ± 8.7)×10

-4
 0.87 ± 0.16 (1.2 ± 0.2)×10

-4
 (2.8 ± 0.6)×10

3
 0.39 ± 0.03 

E-G5
2
-Y625W 

P540A 
15.3 ± 2.1 (6.7 ± 8.7)×10

-4
 0.27 ± 0.36 (1.1 ± 0.3)×10

-4
 (0.1 ± 1.3)×10

3
 0.38 ± 0.06 

E-G5
2
-Y625W 

-P618A 
7.4 ± 0.7 (1.8 ± 1.8)×10

-3
 0.07 ± 0.17 (4.4 ± 0.6)×10

-4
 (1.0 ± 2.4)×10

2
 0.64 ± 0.06 

 

The chevron plots were fitted globally to a model assuming two parallel pathways, in which the observed rate constant is equal to the sum of the rate constants 

for each pathway (see Fig. S5 for representative examples). For the alternative folding pathway (pathway 1) we assumed the simplest two-state model, with the 

values of !!!
 and !!!

 fixed at 1.66 M
-1 

and 0.75 M
-1

, respectively. To account for the curvature in the unfolding arm of the chevron plots, the other pathway 

(pathway 2) was assumed to follow the sequential transition states model, as in the described above wild-type pathway, with the values of !!!!!, !!!!
!, !!

!
!!, 

!!
!
!! and !!!!

! fixed at 1×10
4
 s

-1
, 0.80 M

-1
, 0 M

-1
, 1.30 ± 0.04 M

-1
 and 0.32 ± 0.03 M

-1
, respectively. All other microscopic rate constants were allowed to 

vary freely. Data for E-G5
2
-G587A, E-G5

2
-G584A-E500W-E532C

IAEDANS
, E-G5

2
-G626A and E-G5

2
-Y625W-P571A were included in the global fitting, but 

did not converge.  
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Table S7. Data collection and refinement statistics. 

 

 E-G5
2
-Y625W   

Data collection * 
 

  

 PDB deposition code 5DBL   

 Space group C2   

 Cell dimensions 
 

  

  a, b, c; Å  69.1, 35.0, 69.2   

  β; ° 104.9   

 Resolution, Å  33.4—1.6 (1.63—1.60)    

Rpim, %  4.9 (60.0)   

 CC1/2
§, %  99.9 (77.1)   

 I/σI  11.1 (1.6)   

 Completeness, %  99.0 (98.5)   

 Redundancy  3.2 (3.2)   

Refinement  
  

 Resolution, Å 33.4—1.6   

 No. of reflections 
         Working set 
         Test set 

 

20011 

1,074 

  

 Rwork/Rfree 17.4/20.7   

 No. of atoms 
 

  

  Protein 1060   

  Water 298   

 B-factors 
 

  

  Protein 22   

  Water 34   

 rmsd from ideality 
 

  

  Bond lengths, Å 0.006   

  Bond angles, ° 0.992   

 Ramachandran angles 
 

  

  Favored regions, % 100   

  Outliers, % 0   

* 
Values in parentheses are for the highest resolution shell. 

§
 CC1/2 is the half-data-set correlation coefficient. 

 

We acknowledge Johan Turkenburg and Sam Hart for assistance with crystal testing and data collection. 

The authors would also like to thank Diamond Light Source for beamtime (proposal mx7864), and the staff 

of beamline I02 for assistance with crystal testing and data collection. 
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