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Abstract We propose Turing Learning, a novel system identification method for inferring

the behavior of natural or artificial systems. Turing Learning simultaneously optimizes two

populations of computer programs, one representing models of the behavior of the system

under investigation, and the other representing classifiers. By observing the behavior of

the system as well as the behaviors produced by the models, two sets of data samples are

obtained. The classifiers are rewarded for discriminating between these two sets, that is, for

correctly categorizing data samples as either genuine or counterfeit. Conversely, the models

are rewarded for ‘tricking’ the classifiers into categorizing their data samples as genuine.

Unlike other methods for system identification, Turing Learning does not require predefined

metrics to quantify the difference between the system and its models. We present two case

studies with swarms of simulated robots and prove that the underlying behaviors cannot be

inferred by a metric-based system identification method. By contrast, Turing Learning infers

the behaviors with high accuracy. It also produces a useful by-product—the classifiers—

that can be used to detect abnormal behavior in the swarm. Moreover, we show that Turing

Learning also successfully infers the behavior of physical robot swarms. The results show
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that collective behaviors can be directly inferred from motion trajectories of individuals in the

swarm, which may have significant implications for the study of animal collectives. Further-

more, Turing Learning could prove useful whenever a behavior is not easily characterizable

using metrics, making it suitable for a wide range of applications.

Keywords System identification · Turing test · Collective behavior · Swarm robotics ·

Coevolution · Machine learning

1 Introduction

System identification is the process of modeling natural or artificial systems through observed

data. It has drawn a large interest among researchers for decades (Ljung 2010; Billings 2013).

A limitation of current system identification methods is that they rely on predefined metrics,

such as the sum of square errors, to measure the difference between the output of the models

and that of the system under investigation. Model optimization then proceeds by minimizing

the measured differences. However, for complex systems, defining a metric can be non-

trivial and case-dependent. It may require prior information about the systems. Moreover,

an unsuitable metric may not distinguish well between good and bad models, or even bias

the identification process. This paper overcomes these problems by introducing a system

identification method that does not rely on predefined metrics.

A promising application of such a metric-free method is the identification of collective

behaviors, which are emergent behaviors that arise from the interactions of numerous simple

individuals (Camazine et al. 2003). Inferring collective behaviors is particularly challenging,

as the individuals not only interact with the environment but also with each other. Typically,

their motion appears stochastic and is hard to predict (Helbing and Johansson 2011). For

instance, given a swarm of simulated fish, one would have to evaluate how close its behavior

is to that of a real fish swarm, or how close the individual behavior of a simulated fish is to

that of a real fish. Characterizing the behavior at the level of the swarm is difficult (Harvey

et al. 2015). Such a metric may require domain-specific knowledge; moreover, it may not

be able to discriminate among distinct individual behaviors that lead to similar collective

dynamics (Weitz et al. 2012). Characterizing the behavior at the level of individuals is also

difficult, as even the same individual fish in the swarm is likely to exhibit a different trajectory

every time it is being looked at.

In this paper, we propose Turing Learning, a novel system identification method that

allows a machine to autonomously infer the behavior of a natural or artificial system. Turing

Learning simultaneously optimizes two populations of computer programs, one representing

models of the behavior, and the other representing classifiers. The purpose of the models is

to imitate the behavior of the system under investigation. The purpose of the classifiers is to

discriminate between the behaviors produced by the system and any of the models. In Turing

Learning, all behaviors are observed for a period of time. This generates two sets of data

samples. The first set consists of genuine data samples, which originate from the system.

The second set consists of counterfeit data samples, which originate from the models. The

classifiers are rewarded for discriminating between samples of these two sets: Ideally, they

should recognize any data sample from the system as genuine, and any data sample from

the models as counterfeit. Conversely, the models are rewarded for their ability to ‘trick’ the

classifiers into categorizing their data samples as genuine.

Turing Learning does not rely on predefined metrics for measuring how close the models

reproduce the behavior of the system under investigation; rather, the metrics (classifiers)
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are produced as a by-product of the identification process. The method is inspired by the

Turing test (Turing 1950; Saygin et al. 2000; Harnad 2000), which machines can pass if

behaving indistinguishably from humans. Similarly, the models could pass the tests by the

classifiers if behaving indistinguishably from the system under investigation. We hence call

our method Turing Learning.

In the following, we examine the ability of Turing Learning to infer the behavioral rules of

a swarm of mobile agents. The agents are either simulated or physical robots. They execute

known behavioral rules. This allows us to compare the inferred models to the ground truth.

To obtain the data samples, we record the motion trajectories of all the agents. In addition, we

record the motion trajectories of an agent replica, which is mixed into the group of agents.

The replica executes the rules defined by the models—one at a time. As will be shown,

by observing the motion trajectories of agents and of the agent replica, Turing Learning

automatically infers the behavioral rules of the agents. The behavioral rules examined here

relate to two canonical problems in swarm robotics: self-organized aggregation (Gauci et al.

2014c) and object clustering (Gauci et al. 2014b). They are reactive; in other words, each

agent maps its inputs (sensor readings) directly onto the outputs (actions). The problem of

inferring the mapping is challenging, as the inputs are not known. Instead, Turing Learning

has to infer the mapping indirectly, from the observed motion trajectories of the agents and

of the replica.

We originally presented the basic idea of Turing Learning, along with preliminary simu-

lations, in Li et al. (2013, 2014). This paper extends our prior work as follows:

• It presents an algorithmic description of Turing Learning;

• It shows that Turing Learning outperforms a metric-based system identification method

in terms of model accuracy;

• It proves that the metric-based method is fundamentally flawed, as the globally optimal

solution differs from the solution that should be inferred;

• It demonstrates, to the best of our knowledge for the first time, that system identification

can infer the behavior of swarms of physical robots;

• It examines in detail the usefulness of the classifiers;

• It examines through simulation how Turing Learning can simultaneously infer the agent’s

brain (controller) and an aspect of its morphology that determines the agent’s field of

view;

• It demonstrates through simulation that Turing Learning can infer the behavior even if

the agent’s control system structure is unknown.

This paper is organized as follows. Section 2 discusses related work. Section 3 describes

Turing Learning and the general methodology of the two case studies. Section 4 investigates

the ability of Turing Learning to infer two behaviors of swarms of simulated robots. It also

presents a mathematical analysis, proving that these behaviors cannot be inferred by a metric-

based system identification method. Section 5 presents a real-world validation of Turing

Learning with a swarm of physical robots. Section 6 concludes the paper.

2 Related work

This section is organized as follows. First, we outline our previous work on Turing Learning

and review a similar line of research, which has appeared since its publication. As the Turing

Learning implementation uses coevolutionary algorithms, we then overview work using

123



214 Swarm Intell (2016) 10:211–243

coevolutionary algorithms (but with predefined metrics), as well as work on the evolution of

physical systems. Finally, works using replicas in ethological studies are presented.

Turing Learning is a system identification method that simultaneously optimizes a pop-

ulation of models and a population of classifiers. The objective for the models is to be

indistinguishable from the system under investigation. The objective for the classifiers is

to distinguish between the models and the system. The idea of Turing Learning was first

proposed in Li et al. (2013); this work presented a coevolutionary approach for inferring the

behavioral rules of a single agent. The agent moved in a simulated, one-dimensional envi-

ronment. Classifiers were rewarded for distinguishing between the models and the agent. In

addition, they were able to control the stimulus that influenced the behavior of the agent. This

allowed the classifiers to interact with the agent during the learning process. Turing Learning

was subsequently investigated with swarms of simulated robots (Li et al. 2014).

Goodfellow et al. (2014) proposed generative adversarial nets (GANs). GANs, while

independently invented, are essentially based on the same idea as Turing Learning. The

authors used GANs to train models for generating counterfeit images that resemble real

images, for example, from the Toronto Face Database [for further examples, see (Radford

et al. 2016)]. They simultaneously optimized a generative model (producing counterfeit

images) and a discriminative model that estimates the probability of an image to be real. The

optimization was done using a stochastic gradient descent method.

In a work reported in Herbert-Read et al. (2015), humans were asked to discriminate

between the collective motion of real and simulated fish. The authors reported that the humans

could do so even though the data from the model were consistent with the real data according

to predefined metrics. Their results “highlight a limitation of fitting detailed models to real-

world data.” The authors argued that “observational tests […] could be used to cross-validate

models” [see also Harel (2005)]. This is in line with Turing Learning. Our method, however,

automatically generates both the models and the classifiers, and thus does not require human

observers.

While Turing Learning can in principle be used with any optimization algorithm, our

implementation relies on coevolutionary algorithms. Metric-based coevolutionary algorithms

have already proven effective for system identification (Bongard and Lipson 2004a, b, 2005,

2007; Koos et al. 2009; Mirmomeni and Punch 2011; Le Ly and Lipson 2014). A range

of work has been performed on simulated agents. Bongard and Lipson (2004a) proposed

the estimation–exploration algorithm, a nonlinear system identification method to coevolve

inputs and models in a way that minimizes the number of inputs to be tested on the system. In

each generation, the input (test) that led, in simulation, to the highest disagreement between

the models’ predicted outputs was carried out on the real system. The models’ predictions

were then compared with the actual output of the system. The method was applied to evolve

morphological parameters of a simulated quadrupedal robot after it had undergone physical

damage. In a later work (Bongard and Lipson 2004b), the authors reported that “in many

cases the simulated robot would exhibit wildly different behaviors even when it very closely

approximated the damaged ‘physical’ robot. This result is not surprising due to the fact

that the robot is a highly coupled, non-linear system: Thus similar initial conditions [...] are

expected to rapidly diverge in behavior over time.” The authors addressed this problem by

using a more refined comparison metric reported in Bongard and Lipson (2004b). In Koos

et al. (2009), an algorithm which also coevolves models and inputs (tests) was presented to

model a simulated quadrotor and improve the control quality. The tests were selected based

on multiple criteria: to provide disagreement between models as in Bongard and Lipson

(2004a), and to evaluate the control quality in a given task. Models were then refined by

comparing the predicted trajectories with those of the real system. In these works, predefined
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metrics were critical for evaluating the performance of models. Moreover, the algorithms are

not applicable to the scenarios we consider here, as the system’s inputs are assumed to be

unknown (the same would typically also be the case for biological systems).

Some studies also investigated the implementation of evolution directly in physical envi-

ronments, on either a single robot (Floreano and Mondada 1996; Zykov et al. 2004; Bongard

et al. 2006; Koos et al. 2013; Cully et al. 2015) or multiple robots (Watson et al. 2002;

O’Dowd et al. 2014; Heinerman et al. 2015). In Bongard et al. (2006), a four-legged robot

was built to study how it can infer its own morphology through a process of continuous

self-modeling. The robot ran a coevolutionary algorithm on its onboard processor. One pop-

ulation evolved models for the robot’s morphology, while the other evolved actions (inputs)

to be conducted on the robot for gauging the quality of these models. Note that this approach

required knowledge of the robot’s inputs (sensor data). O’Dowd et al. (2014) presented a dis-

tributed approach to coevolve onboard simulators and controllers for a swarm of ten robots.

Each robot used its simulators to evolve controllers for performing foraging behavior. The

best performing controller was then used to control the physical robot. The foraging per-

formances of the robot and of its neighbors were then compared to inform the evolution

of simulators. This physical/embodied evolution helped reduce the reality gap between the

simulated and physical environments (Jakobi et al. 1995). In all these approaches, the model

optimization was based on predefined metrics (explicit or implicit).

The use of replicas can be found in ethological studies in which researchers use robots

that interact with animals (Vaughan et al. 2000; Halloy et al. 2007; Faria et al. 2010; Halloy

et al. 2013; Schmickl et al. 2013). Robots can be created and systematically controlled in

such a way that they are accepted as conspecifics or heterospecifics by the animals in the

group (Krause et al. 2011). For example, in Faria et al. (2010), a replica fish, which resembled

sticklebacks in appearance, was created to investigate two types of interaction: recruitment

and leadership. In Halloy et al. (2007), autonomous robots, which executed a model, were

mixed into a group of cockroaches to modulate their decision making of selecting a shelter.

The robots behaved in a similar way to the cockroaches. Although the robots’ appearance

was different from that of the cockroaches, the robots released a specific odor such that the

cockroaches would perceive them as conspecifics. In these works, the models were manually

derived and the robots were only used for model validation. We believe that this robot–animal

interaction framework could be enhanced through Turing Learning, which autonomously

infers the collective behavior.

3 Methodology

In this section, we present the Turing Learning method and show how it can be applied to

two case studies in swarm robotics.

3.1 Turing learning

Turing Learning is a system identification method for inferring the behavior of natural or

artificial systems. Turing Learning needs data samples of the behavior—we refer to these data

samples as genuine. For example, if the behavior of interest were to shoal like fish, genuine

data samples could be trajectory data from fish. If the behavior were to produce paintings

in a particular style (e.g., Cubism), genuine data samples could be existing paintings in this

style.
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Algorithm 1 Turing Learning

1: procedure Turing learning

2: initialize population of M models and population of N classifiers

3: while termination criterion not met do

4: for all classifiers i ∈ {1, 2, . . . , N } do

5: obtain genuine data samples (system, classifier i)

6: for each sample, obtain and store output of classifier i

7: for all models j ∈ {1, 2, . . . , M} do

8: obtain counterfeit data samples (model j , classifier i)

9: for each sample, obtain and store output of classifier i

10: end for

11: end for

12: reward models (rm ) for misleading classifiers (classifier outputs)

13: reward classifiers (rc) for making correct judgements (classifier outputs)

14: improve model and classifier populations based on rm and rc

15: end while

16: end procedure

Turing Learning simultaneously optimizes two populations of computer programs, one

representing models of the behavior, and the other representing classifiers. The purpose of

the models is to imitate the behavior of the system under investigation. The models are

used to produce data samples—we refer to these data samples as counterfeit. There are

thus two sets of data samples: one containing genuine data samples, and the other contain-

ing counterfeit ones. The purpose of the classifiers is to discriminate between these two

sets. Given a data sample, the classifiers need to judge where it comes from. Is it gen-

uine, and thus originating from the system under investigation? Or is it counterfeit, and

thus originating from a model? This setup is akin of a Turing test; hence the name Turing

Learning.

The models and classifiers are competing. The models are rewarded for ‘tricking’ the clas-

sifiers into categorizing their data samples as genuine, whereas the classifiers are rewarded

for correctly categorizing data samples as either genuine or counterfeit. Turing Learning thus

optimizes models for producing behaviors that are seemingly genuine, in other words, indis-

tinguishable from the behavior of interest. This is in contrast to other system identification

methods, which optimize models for producing behavior that is as similar as possible to the

behavior of interest. The Turing test inspired setup allows for model generation irrespective

of whether suitable similarity metrics are known.

The model can be any computer program that can be used to produce data samples.

It must however be expressive enough to produce data samples that—from an observer’s

perspective—are indistinguishable from those of the system.

The classifier can be any computer program that takes a sequence of data as input and

produces a binary output. The classifier must be fed with sufficient information about the

behavior of the system. If it has access to only a subset of the behavioral information, any

system characteristic not influencing this subset cannot be learned. In principle, classifiers

with non-binary outputs (e.g., probabilities or confidence levels) could also be considered.

Algorithm 1 provides a description of Turing Learning. We assume a population of M > 1

models and a population of N > 1 classifiers. After an initialization stage, Turing Learning

proceeds in an iterative manner until a termination criterion is met.

In each iteration cycle, data samples are obtained from observations of both the system and

the models. In the case studies considered here, the classifiers do not influence the sampling

process. Therefore, the same set of data samples is provided to all classifiers of an iteration
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cycle.1 For simplicity, we assume that each of the N classifiers is provided with K ≥ 1 data

samples for the system and with one data sample for every model.

A model’s quality is determined by its ability of misleading classifiers to judge its data

samples as genuine. Let mi j = 1 if classifier i wrongly classified the data sample of model

j , and mi j = 0 otherwise. The quality of model j is then given by:

rm( j) =
1

N

N
∑

i=1

mi j . (1)

A classifier’s quality is determined by how well it judges data samples from both the

system and its models. The quality of classifier i is given by:

rc(i) =
1

2
(specificityi + sensitivityi ). (2)

The specificity of a classifier (in statistics, also called the true-negative rate) denotes the

percentage of genuine data samples that it correctly identified as such. Formally,

specificityi =
1

K

K
∑

k=1

aik, (3)

where aik = 1 if classifier i correctly classified the kth data sample of the system, and aik = 0

otherwise.

The sensitivity of a classifier (in statistics, also called the true-positive rate) denotes the

percentage of counterfeit data samples that it correctly identified as such. Formally,

sensitivityi =
1

M

M
∑

j=1

(1 − mi j ). (4)

Using the solution qualities, rm and rc, the model and classifier populations are improved.

In principle, any population-based optimization method can be used.

3.2 Case studies

In the following, we examine the ability of Turing Learning to infer the behavioral rules of

swarming agents. The swarm is assumed to be homogeneous; it comprises a set of identical

agents of known capabilities. The identification task thus reduces to inferring the behavior

of a single agent. The agents are robots, either simulated or physical. The agents have inputs

(corresponding to sensor reading values) and outputs (corresponding to motor commands).

The input and output values are not known. However, the agents are observed and their

motion trajectories are recorded. The trajectories are provided to Turing Learning using a

reactive control architecture (Brooks 1991). Evidence indicates that reactive behavioral rules

are sufficient to produce a range of complex collective behaviors in both groups of natural and

artificial agents (Braitenberg 1984; Arkin 1998; Camazine et al. 2003). Note that although

reactive architectures are conceptually simple, learning their parameters is not trivial if the

agent’s inputs are not available, as is the case in our problem setup. In fact, as shown in

Sect. 4.5, a conventional (metric-based) system identification method fails in this respect.

1 In general, the classifiers may influence the sampling process. In this case, independent data samples should

be generated for each classifier. In particular, the classifiers could change the stimuli that influence the behavior

of the system under investigation. This would enable a classifier to interact with the system by choosing the

conditions under which the behavior is observed (Li et al. 2013). The classifier could then extract hidden

information about the system, which may not be revealed through passive observation alone (Li 2016).
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Fig. 1 An e-puck robot fitted

with a black ‘skirt’ and a top

marker for motion tracking

3.2.1 Agents

The agents move in a two-dimensional, continuous space. They are differential-wheeled

robots. The speed of each wheel can be independently set to [−1, 1], where −1 and 1

correspond to the wheel rotating backwards and forwards, respectively, with maximum speed.

Figure 1 shows the agent platform, the e-puck (Mondada et al. 2009), which is used in the

experiments.

Each agent is equipped with a line-of-sight sensor that detects the type of item in front

of it. We assume that there are n types [e.g., background, other agent, object (Gauci et al.

2014c, b)]. The state of the sensor is denoted by I ∈ {0, 1, . . . , n − 1}.

Each agent implements a reactive behavior by mapping the input (I ) onto the outputs, that

is, a pair of predefined speeds for the left and right wheels, (vℓI , vr I ), vℓI , vr I ∈ [−1, 1].

Given n sensor states, the mapping can be represented using 2n system parameters, which

we denote as:

p = (vℓ0, vr0, vℓ1, vr1, · · · , vℓ(n−1), vr(n−1)). (5)

Using p, any reactive behavior for the above agent can be expressed. In the following, we

consider two example behaviors in detail.

Aggregation: In this behavior, the sensor is binary, that is, n = 2. It gives a reading of I = 1

if there is an agent in the line of sight, and I = 0 otherwise. The environment is free of

obstacles. The objective of the agents is to aggregate into a single compact cluster as fast as

possible. Further details, including a validation with 40 physical e-puck robots, are reported

in Gauci et al. (2014c).

The aggregation controller was found by performing a grid search over the space of

possible controllers (Gauci et al. 2014c). The controller exhibiting the highest performance

was:

p = (−0.7,−1.0, 1.0,−1.0) . (6)

When I = 0, an agent moves backwards along a clockwise circular trajectory (vℓ0 = −0.7

and vr0 = −1.0). When I = 1, an agent rotates clockwise on the spot with maximum angular

speed (vℓ1 = 1.0 and vr1 = −1.0). Note that, rather counterintuitively, an agent never moves

forward, regardless of I . With this controller, an agent provably aggregates with another

agent or with a quasi-static cluster of agents (Gauci et al. 2014c). Figure 2 shows snapshots

from a simulation trial with 50 agents.

123



Swarm Intell (2016) 10:211–243 219

initial configuration after 60 s after 180 s after 300 s

Fig. 2 Snapshots of the aggregation behavior of 50 agents in simulation

initial configuration after 20 s after 40 s after 60 s

Fig. 3 Snapshots of the object clustering behavior in simulation. There are 5 agents (dark blue) and 10 objects

(green) (Color figure online)

Object Clustering: In this behavior, the sensor is ternary, that is, n = 3. It gives a reading

of I = 2 if there is an agent in the line of sight, I = 1 if there is an object in the line of

sight, and I = 0 otherwise. The objective of the agents is to arrange the objects into a single

compact cluster as fast as possible. Details of this behavior, including a validation using 5

physical e-puck robots and 20 cylindrical objects, are presented in Gauci et al. (2014b).

The controller’s parameters, found using an evolutionary algorithm (Gauci et al. 2014b),

are:

p = (0.5, 1.0, 1.0, 0.5, 0.1, 0.5) . (7)

When I = 0 and I = 2, the agent moves forward along a counterclockwise circular

trajectory, but with different linear and angular speeds. When I = 1, it moves forward along

a clockwise circular trajectory. Figure 3 shows snapshots from a simulation trial with 5 agents

and 10 objects.

3.2.2 Models and replicas

We assume the availability of replicas, which must have the potential to produce data samples

that—to an external observer (classifier)—are indistinguishable from those of the agent. In

our case, the replicas have the same morphology as the agent, including identical line-of-sight

sensors and differential drive mechanisms.2

The replicas execute behavioral rules defined by the model. We adopt two model repre-

sentations: gray box and black box. In both cases, note that the classifiers, which determine

the quality of the models, have no knowledge about the agent/model representation or the

agent/model inputs.

2 In Sect. 4.6.1, we show that this assumption can be relaxed by also inferring some aspect of the agent’s

morphology.
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– In a gray box representation, the agent’s control system structure is assumed to be known.

In other words, the model and the agent share the same control system structure, as defined

in Eq. (5). This representation reduces the complexity of the identification process, in the

sense that only the parameters of Eq. (5) need to be inferred. Additionally, this allows

for an objective evaluation of how well the identification process performs, because one

can compare the inferred parameters directly with the ground truth.

– In a black box representation, the agent’s control system structure is assumed to be

unknown, and the model has to be represented in a general way. In particular, we use

a control system structure with memory, in the form of a neural network with recurrent

connections (see Sect. 4.6.2).

The replicas can be mixed into a group of agents or separated from them. By default, we

consider the situation that one or multiple replicas are mixed into a group of agents. The case

of studying groups of agents and groups of replicas in isolation is investigated in Sect. 4.6.3.

3.2.3 Classifiers

The classifiers need to discriminate between data samples originating from the agents and

ones originating from the replicas. We use the term individual to refer to either the agent or

a replica executing a model.

A data sample comes from the motion trajectory of an individual observed for the duration

of a trial. We assume that it is possible to track both the individual’s position and orienta-

tion. The sample comprises the linear speed (s) and angular speed (ω).3 Full details (e.g.,

trial duration) are provided in Sects. 4.2 and 5.3 for the cases of simulation and physical

experiments, respectively.

The classifier is represented as an Elman neural network (Elman 1990). The network has

i = 2 inputs (s and ω), h = 5 hidden neurons and one output neuron. Each neuron of the

hidden and output layers has a bias. The network thus has a total of (i+1)h+h2+(h+1) = 46

parameters, which all assume values in R. The activation function used in the hidden and the

output neurons is the logistic sigmoid function, which has the range (0, 1) and is defined as:

sig (x) =
1

1 + e−x
, ∀x ∈ R. (8)

The data sample consists of a time series, which is fed sequentially into the classifier neural

network. The final value of the output neuron is used to make the judgment: model, if its

value is less than 0.5, and agent otherwise. The network’s memory (hidden neurons) is reset

after each judgment.

3.2.4 Optimization algorithm

The optimization of models and classifiers is realized using an evolutionary algorithm. We

use a (μ + λ) evolution strategy with self-adaptive mutation strengths (Eiben and Smith

2003) to optimize either population. As a consequence, the optimization consists of two

processes, one for the model population, and another for the classifier population. The two

processes synchronize whenever the solution qualities described in Sect. 3.1 are computed.

The implementation of the evolutionary algorithm is detailed in Li et al. (2013).

3 We define the linear speed to be positive when the angle between the individual’s orientation and its direction

of motion is smaller than π/2 rad, and negative otherwise.
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For the remainder of this paper, we adopt terminology used in evolutionary computing

and refer to the quality of solutions as their fitness and to iteration cycles as generations. Note

that in coevolutionary algorithms, each population’s fitness depends on the performance of

the other populations and is hence referred to as the subjective fitness. By contrast, the fitness

measure as used in conventional evolutionary algorithms is referred to as the objective fitness.

3.2.5 Termination criterion

The algorithm stops after running for a fixed number of iterations.

4 Simulation experiments

In this section, we present the simulation experiments for the two case studies. Sections 4.1

and 4.2, respectively, describe the simulation platform and setups. Sections 4.3 and 4.4,

respectively, analyze the inferred models and classifiers. Section 4.5 compares Turing Learn-

ing with a metric-based identification method and mathematically analyzes this latter method.

Section 4.6 presents further results of testing the generality of Turing Learning through

exploring different scenarios, which include: (i) simultaneously inferring the control of the

agent and an aspect of its morphology; (ii) using artificial neural networks as a model repre-

sentation, thereby removing the assumption of a known agent control system structure; (iii)

separating the replicas and the agents, thereby allowing for a potentially simpler experimental

setup; and (iv) inferring arbitrary reactive behaviors.

4.1 Simulation platform

We use the open-source Enki library (Magnenat et al. 2011), which models the kinematics

and dynamics of rigid objects, and handles collisions. Enki has a built-in 2D model of the

e-puck. The robot is represented as a disk of diameter 7.0 cm and mass 150 g. The inter-

wheel distance is 5.1 cm. The speed of each wheel can be set independently. Enki induces

noise on each wheel speed by multiplying the set value by a number in the range (0.95, 1.05)

chosen randomly with uniform distribution. The maximum speed of the e-puck is 12.8 cm/s,

forwards or backwards. The line-of-sight sensor is simulated by casting a ray from the e-

puck’s front and checking the first item with which it intersects (if any). The range of this

sensor is unlimited in simulation.

In the object clustering case study, we model objects as disks of diameter 10 cm with mass

35 g and a coefficient of static friction with the ground of 0.58, which makes it movable by

a single e-puck.

The robot’s control cycle is updated every 0.1 s, and the physics is updated every 0.01 s.

4.2 Simulation setups

In all simulations, we use an unbounded environment. For the aggregation case study, we use

groups of 11 individuals—10 agents and 1 replica that executes a model. The initial positions

of individuals are generated randomly in a square region of sides 331.66 cm, following

a uniform distribution (average area per individual = 10000 cm2). For the object clustering

case study, we use groups of 5 individuals—4 agents and 1 replica that executes a model—and

10 cylindrical objects. The initial positions of individuals and objects are generated randomly

in a square region of sides 100 cm, following a uniform distribution (average area per object
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Fig. 4 Model parameters Turing Learning inferred from swarms of simulated agents performing (a) aggre-

gation and (b) object clustering. Each box corresponds to the models with the highest subjective fitness in

the 1000th generation of 30 runs. The dashed black lines correspond to the values of the parameters that the

system is expected to learn (i.e., those of the agent) (Color figure online)

= 1000 cm2). In both case studies, individual starting orientations are chosen randomly in

[−π, π) with uniform distribution.

We performed 30 runs of Turing Learning for each case study. Each run lasted 1000

generations. The model and classifier populations each consisted of 100 solutions (μ = 50,

λ = 50). In each trial, classifiers observed individuals for 10 s at 0.1 s intervals (100 data

points). In both setups, the total number of samples for the agents in each generation was

equal to nt × na , where nt is the number of trials performed (one per model) and na is the

number of agents in each trial.

4.3 Analysis of inferred models

In order to objectively measure the quality of the models obtained through Turing Learning,

we define two metrics. Given a candidate model (candidate controller) x and the agent

(original controller) p, where x ∈ R
2n and p ∈ [−1, 1]2n , we define the absolute error

(AE) in a particular parameter i ∈ {1, 2, . . . , 2n} as:

AEi = |xi − pi | . (9)

We define the mean absolute error (MAE) over all parameters as:

MAE =
1

2n

2n
∑

i=1

AEi . (10)

Figure 4 shows a box plot4 of the parameters of the inferred models with the highest

subjective fitness value in the final generation. It can be seen that Turing Learning identifies

the parameters for both behaviors with good accuracy (dashed black lines represent the ground

truth, that is, the parameters of the observed swarming agents). In the case of aggregation, the

means (standard deviations) of the AEs in the parameters are (from left to right in Fig. 4a):

4 The box plots presented here are all as follows. The line inside the box represents the median of the data.

The edges of the box represent the lower and the upper quartiles of the data, whereas the whiskers represent the

lowest and the highest data points that are within 1.5 times the range from the lower and the upper quartiles,

respectively. Circles represent outliers.
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Fig. 5 Evolutionary dynamics of model parameters for the (a) aggregation and (b) object clustering case

studies. Curves represent median parameter values of the models with the highest subjective fitness across 30

runs of Turing Learning. Dashed black lines indicate the ground truth (Color figure online)

0.01 (0.01), 0.01 (0.01), 0.07 (0.07), and 0.06 (0.04). In the case of object clustering, these

values are as follows: 0.03 (0.03), 0.04 (0.03), 0.02 (0.02), 0.03 (0.03), 0.08 (0.13), and

0.08 (0.09).

We also investigate the evolutionary dynamics. Figure 5 shows how the model parameters

converge over generations. In the aggregation case study (see Fig. 5a), the parameters cor-

responding to I = 0 are learned first. After around 50 generations, both vℓ0 and vr0 closely

approximate their true values (−0.7 and −1.0). For I = 1, it takes about 200 generations for

both vℓ1 and vr1 to converge. A likely reason for this effect is that an agent spends a larger

proportion of its time seeing nothing (I = 0) than seeing other agents (I = 1)—simulations

revealed these percentages to be 91.2 and 8.8 % respectively (mean values over 100 trials).

In the object clustering case study (see Fig. 5b), the parameters corresponding to I = 0

and I = 1 are learned faster than the parameters corresponding to I = 2. After about 200

generations, vℓ0, vr0, vℓ1, and vr1 start to converge; however, it takes about 400 generations for

vℓ2 and vr2 to approximate their true values. Note that an agent spends the highest proportion

of its time seeing nothing (I = 0), followed by seeing objects (I = 1) and seeing other agents

(I = 2)—simulations revealed these proportions to be 53.2, 34.2, and 12.6 %, respectively

(mean values over 100 trials).

Although the inferred models approximate the agents well in terms of parameters, it is not

uncommon in swarm systems that small changes in individual behavior lead to vastly different

emergent behaviors, especially when using large numbers of agents (Levi and Kernbach

2010). For this reason, we evaluate the quality of the emergent behaviors that the models

give rise to. In the case of aggregation, we measure dispersion of the swarm after some

elapsed time as defined in Gauci et al. (2014c).5 For each of the 30 models with the highest

subjective fitness in the final generation, we performed 30 trials with 50 replicas executing

the model. For comparison, we also performed 30 trials using the agent [see Eq. (6)]. The

set of initial configurations was the same for the replicas and the agents. Figure 6a shows the

dispersion of agents and replicas after 400 s. All models led to aggregation. We performed a

statistical test6 on the final dispersion of the individuals between the agents and replicas for

5 The measure of dispersion is based on the robots’/objects’ distances from their centroid. For a formal

definition, see Eq. (5) of Gauci et al. (2014c), Eq. (2) of Gauci et al. (2014b) and Graham and Sloane (1990).

6 Throughout this paper, the statistical test used is a two-sided Mann–Whitney test with a 5% significance

level.
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Fig. 6 a Dispersion of 50 simulated agents (red box) or replicas (blue boxes), executing one of the 30 inferred

models in the aggregation case study. b Dispersion of 50 objects when using a swarm of 25 simulated agents

(red box) or replicas (blue boxes), executing one of the 30 inferred models in the object clustering case study.

In both (a) and (b), boxes show the distributions obtained after 400 s over 30 trials. The models are from the

1000th generation. The dashed black lines indicate the minimum dispersion that 50 individuals/objects can

possibly achieve (Graham and Sloane 1990). See Sect. 4.3 for details (Color figure online)

each model. There is no statistically significant difference in 30 out of 30 cases (tests with

Bonferroni correction).

In the case of object clustering, we use the dispersion of the objects after 400 s as a measure

of the emergent behavior. We performed 30 trials with 25 individuals and 50 objects for the

agent and each model. The results are shown in Fig. 6b. In the final dispersion of objects by

the agent or any of the models (replicas), there is no statistically significant difference in 26

out of 30 cases (tests with Bonferroni correction).

4.4 Analysis of generated classifiers

The primary outcome of the Turing Learning method (and of any system identification

method) is the model, which has been discussed in the previous section. However, the gener-

ated classifiers can also be considered as a useful by-product. For instance they could be used

to detect abnormal agents in a swarm. We now analyze the performance of the classifiers.

For the remainder of this paper, we consider only the aggregation case study.

To assess the performance of the classifiers, we measure the percentage of correct judg-

ments over agents and a wide range of models. The models are uniformly distributed over

the four-dimensional parameter space of the agents [see Eqs. (5) and (6)]; each element

takes a value in [−1, 1]. To keep the analysis of classifiers within a reasonable computation

time, we discretize this space using 11 settings per parameter; thus, each parameter is cho-

sen from the set {−1.0,−0.8, . . . , 0.8, 1.0}. This discretized space is a grid consisting of

|X | = 114 = 14641 points (i.e., models). The model is executed by a replica mixed into a

group of 10 agents (as in the Turing Learning runs). The motion data are fed to each classifier,

which makes 10 judgments per individual. If the classifier consistently judges the individual

as a model (i.e., not an agent) in 10 out of 10 trials, it outputs a “model” decision. Otherwise,

it outputs “agent”. This conservative approach is used to minimize the risk of false-positive

detection of abnormal behavior. The classifier’s performance (i.e., decision accuracy) is com-

puted by combining the percentage of correct judgments about models (50 % weight) with

the percentage of correct judgments about agents (50 % weight), analogous to the solution

quality definition in Eq. (2).
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Fig. 7 Average decision accuracy of the best classifiers over 1000 generations (nonlinear scale) in 30 runs of

Turing Learning. The error bars show standard deviations. See text for details

We performed 10 trials using a set of initial configurations common to all classifiers.

Figure 7 shows the average decision accuracy of the classifier with the highest subjective

fitness during the evolution (best classifier (subjective)) in 30 runs of Turing Learning. The

accuracy of the classifier increases in the first 5 generations, then drops, and fluctuates within

range 62–80 %. For a comparison, we also plot the highest decision accuracy that a single

classifier achieved during the post-evaluation for each generation. This classifier is referred

to best classifier (objective). Interestingly, the accuracy of the best classifier (objective)

increases almost monotonically, reaching a level above 95 %. To select the best classifier

(objective), all the classifiers were post-evaluated using the aforementioned 14641 models.

At first sight, it seems counterintuitive that the best classifier (subjective) has a low deci-

sion accuracy. This phenomenon, however, can be explained when considering the model

population. We have shown in the previous section (see Fig. 5a) that the models converge

rapidly at the beginning of the coevolutions. As a result, when classifiers are evaluated in later

generations, the trials are likely to include models very similar to each other. Classifiers that

become overspecialized to this small set of models (the ones dominating the later generations)

have a higher chance of being selected during the evolutionary process. These classifiers may

however have a low performance when evaluated across the entire model space.

Note that our analysis does not exclude the potential existence of models for which the

performance of the classifiers degenerates substantially. As reported by Nguyen et al. (2015),

well-trained classifiers, which in their case are represented by deep neural networks, can be

easily fooled. For instance, the classifiers may label a random-looking image as a guitar

with high confidence. However, in this degenerate case, the image was obtained through

evolutionary learning, while the classifiers remained static. By contrast, in Turing Learning,

the classifiers are coevolving with the models, and hence have the opportunity to adapt to

such a situation.

4.5 A metric-based system identification method: mathematical analysis and

comparison with Turing Learning

In order to compare Turing Learning against a metric-based method, we employ the com-

monly used least-square approach. The objective is to minimize the differences between the
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observed outputs of the agents and of the models, respectively. Two outputs are considered—

an individual’s linear and angular speed. Both outputs are considered over the whole duration

of a trial. Formally,

em =

na
∑

i=1

T
∑

t=1

{

(

s(t)
m − s

(t)
i

)2
+

(

ω(t)
m − ω

(t)
i

)2
}

, (11)

where s
(t)
m and s

(t)
i are the linear speed of the model and of agent i , respectively, at time step

t ; ω
(t)
m and ω

(t)
i are the angular speed of the model and of the agent i , respectively, at time

step t ; na is the number of agents in the group; T is the total number of time steps in a trial.

4.5.1 Mathematical analysis

We begin our analysis by first analyzing an abstract version of the problem.

Theorem 1 Consider two binary random variables X and Y . Variable X takes value x1 with

probability p, and value x2, otherwise. Variable Y takes value y1 with the same probability

p, and value y2, otherwise. Variables X and Y are assumed to be independent of each other.

Assuming y1 and y2 are given, then the metric D = E{(X − Y )2} has a global minimum at

X∗ with x∗
1 = x∗

2 = E{Y }. If p ∈ (0, 1), the solution is unique.

Proof The probability of (i) both x1 and y1 being observed is p2; (ii) both x1 and y2 being

observed is p(1 − p); (iii) both x2 and y1 being observed is (1 − p)p; (iv) both x2 and y2

being observed is (1 − p)2. The expected error value, D, is then given as

D = p2 (x1 − y1)
2+p(1−p) (x1 − y2)

2+(1−p)p (x2 − y1)
2+(1−p)2 (x2 − y2)

2 . (12)

To find the minimum expected error value, we set the partial derivatives w.r.t. x1 and x2

to 0. For x1, we have:

∂ D

∂x1
= 2p2 (x1 − y1) + 2p(1 − p) (x1 − y2) = 0, (13)

from which we obtain x∗
1 = py1 + (1 − p)y2 = E{Y }. Similarly, setting ∂ D

∂x2
= 0, we obtain

x∗
2 = py1 + (1 − p)y2 = E{Y }. Note that at these values of x1 and x2, the second-order

partial derivatives are both positive [assuming p ∈ (0, 1)]. Therefore, the (global) minimum

of D is at this stationary point. ⊓⊔

Corollary 1 If p ∈ (0, 1) and y1 �= y2, then X∗ �= Y .

Proof As p ∈ (0, 1), the only global minimum exists at X∗. As x∗
1 = x∗

2 and y1 �= y2, it

follows that X∗ �= Y . ⊓⊔

Corollary 2 Consider two discrete random variables X and Y with values x1, x2, . . . , xn ,

and y1, y2, . . . , yn , respectively, n > 1. Variable X takes value xi with probability pi and

variable Y takes value yi with the same probability pi , i = 1, 2, . . . , n, where
n
∑

i=1

pi = 1

and ∃i, j : yi �= y j . Variables X and Y are assumed to be independent of each other. Metric

D has a global minimum at X∗ �= Y with x∗
1 = x∗

2 = . . . = x∗
n = E{Y }. If all pi ∈ (0, 1),

then X∗ is unique.

123



Swarm Intell (2016) 10:211–243 227

Proof This proof, which is omitted here, can be obtained by examining the first and second

derivatives of a generalized version of Eq. (12). Rather than four (22) cases, there are n2

cases to be considered. ⊓⊔

Corollary 3 Consider a sequence of pairs of binary random variables (X t , Yt ), t = 1, . . . , T .

Variable X t takes value x1 with probability pt , and value x2, otherwise. Variable Yt takes

value y1 with the same probability pt , and value y2 �= y1, otherwise. For all t , variables

X t and Yt are assumed to be independent of each other. If all pt ∈ (0, 1), then the metric

D = E

{

∑T
t=1(X t − Yt )

2
}

has one global minimum at X∗ �= Y .

Proof The case T = 1 has already been considered (Theorem 1 and Corollary 1). For the

case T = 2, we extend Eq. (13) to take into account p1 and p2, and obtain

x1

(

p2
1 + p1 − p2

1 + p2
2 + p2 − p2

2

)

= y1

(

p2
1 + p2

2

)

+ y2

(

p1 − p2
1 + p2 − p2

2

)

. (14)

This can be rewritten as:

x1 =
p2

1 + p2
2

p1 + p2
y1 +

p1(1 − p1) + p2(1 − p2)

p1 + p2
y2. (15)

As y2 �= y1, x1 can only be equal to y1 if p2
1 + p2

2 = p1 + p2, which is equivalent to

p1(1 − p1) + p2(1 − p2) = 0. This is however not possible for any p1, p2 ∈ (0, 1).

Therefore, X∗ �= Y .7

For the general case, T ≥ 1, the following equation can be obtained (proof omitted).

x1 =

∑T
t=1 p2

t
∑T

t=1 pt

y1 +

∑T
t=1 pt (1 − pt )
∑T

t=1 pt

y2. (16)

The same argument applies—x∗
1 cannot be equal to y1. Therefore, X∗ �= Y . ⊓⊔

Implications for our scenario: The metric-based approach considered in this paper is

unable to infer the correct behavior of the agent. In particular, the model that is globally

optimal w.r.t. the expected value for the error function defined by Eq. (11) is different from

the agent. This observation follows from Corollary 1 for the aggregation case study (two

sensor states), and from Corollary 2 for the object clustering case study (three sensor states).

It exploits the fact that the error function is of the same structure as the metric in Corollary 3—

a sum of square error terms. The summation over time is not of concern—as was shown in

Corollary 3, the distributions of sensor reading values (inputs) of the agent and of the model

do not need to be stationary. However, we need to assume that for any control cycle, the actual

inputs of agents and models are not correlated with each other. Note that the sum in Eq. (11)

comprises two square error terms: one for the linear speed of the agent, and the other for

the angular speed. As our simulated agents employ a differential drive with unconstrained

motor speeds, the linear and angular speeds are decoupled. In other words, the linear and

angular speeds can be chosen independently of each other, and optimized separately. This

means that Eq. (11) can be thought of as two separate error functions: one pertaining to the

linear speeds, and the other to the angular speeds.

7 Note that in the case of p1 = p2, Eq. (15) simplifies to x∗
1 = py1 + (1 − p)y2, which is consistent with

Theorem 1. For p1 �= p2, it can be shown that x∗
1 and x∗

2 are not necessarily equal to E{Y }.
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Fig. 8 Model parameters a metric-based evolutionary method inferred from swarms of simulated agents

performing (a) aggregation and (b) object clustering. Each box corresponds to the models with the highest

fitness in the 1000th generation of 30 runs. The dashed black lines correspond to the values of the parameters

that the system is expected to learn (i.e., those of the agent) (Color figure online)

4.5.2 Comparison with Turing Learning

To verify whether the theoretical result (and its assumptions) holds in practice, we used an

evolutionary algorithm with a single population of models. The algorithm was identical to

the model optimization sub-algorithm in Turing Learning except for the fitness calculation,

where the metric of Eq. (11) was employed. We performed 30 evolutionary runs for each

case study. Each evolutionary run lasted 1000 generations. The simulation setup and number

of fitness evaluations for the models were kept the same as in Turing Learning.

Figure 8a shows the parameter distribution of the evolved models with highest fitness in the

last generation over 30 runs. The distributions of the evolved parameters corresponding to I =

0 and I = 1 are similar. This phenomenon can be explained as follows. In the identification

problem that we consider, the method has no knowledge of the input, that is, whether the

agent perceives another agent (I = 1) or not (I = 0). This is consistent with Turing Learning

as the classifiers that are used to optimize the models also do not have any knowledge of

the inputs. The metric-based algorithm seems to construct controllers that do not respond

differently to either input, but work as good as it gets on average, that is, for the particular

distribution of inputs, 0 and 1. For the left wheel speed, both parameters are approximately

−0.54. This is almost identical to the weighted mean (−0.7∗0.912+1.0∗0.088 = −0.5504),

which takes into account that parameter vℓ0 = −0.7 is observed around 91.2 % of the time,

whereas parameter vℓ1 = 1 is observed around 8.8 % of the time (see also Sect. 4.3). The

parameters related to I = 1 evolved well as the agent’s parameters are identical regardless of

the input (vr0 = vr1 = −1.0). For both I = 0 and I = 1, the evolved parameters show good

agreement with Theorem 1. As the model and the agents are only observed for 10 s in the

simulation trials, the probabilities of seeing a 0 or a 1 are nearly constant throughout the trial.

Hence, this scenario approximates very well the conditions of Theorem 1, and the effects of

non-stationary probabilities on the optimal point (Corollary 3) are minimal. Similar results

were found when inferring the object clustering behavior (see Fig. 8b).

By comparing Figs. 4 and 8, one can see that Turing Learning outperforms the metric-

based evolutionary algorithm in terms of model accuracy in both case studies. As argued

before, due to the unpredictable interactions in swarms, the traditional metric-based method

is not suited for inferring the behaviors.
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4.6 Generality of Turing Learning

In the following, we present four orthogonal studies testing the generality of Turing Learning.

The experimental setup in each section is identical to that described previously (see Sect. 4.2),

except for the modifications discussed within each section.

4.6.1 Simultaneously inferring control and morphology

In the previous sections, we assumed that we fully knew the agents’ morphology, and only

their behavior (controller) was to be identified. We now present a variation where one aspect

of the morphology is also unknown. The replica, in addition to the four controller parameters,

takes a parameter θ ∈ [0, 2π ] rad, which determines the horizontal field of view of its sensor,

as shown in Fig. 9 (the sensor is still binary). Note that the agents’ line-of-sight sensors of

the previous sections can be considered as sensors with a field of view of 0 rad.

The models now have five parameters. As before, we let Turing Learning run in an

unbounded search space (i.e., now, R
5). However, as θ is necessarily bounded, before a

model is executed on a replica, the parameter corresponding to θ is mapped to the range

(0, 2π) using an appropriately scaled logistic sigmoid function. The controller parameters

are directly passed to the replica. In this setup, the classifiers observe the individuals for 100 s

in each trial (preliminary results indicated that this setup required a longer observation time).

Figure 10a shows the parameters of the subjectively best models in the last (1000th)

generations of 30 runs. The means (standard deviations) of the AEs in each model parameter

(a) (b)

Fig. 9 A diagram showing the angle of view of the agent’s sensor investigated in Sect. 4.6.1
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(b)

Fig. 10 Turing Learning simultaneously inferring control and morphological parameters (field of view). The

agents’ field of view is (a) 0 rad and (b) π/3 rad. Boxes show distributions for the models with the highest

subjective fitness in the 1000th generation over 30 runs. Dashed black lines indicate the ground truth
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are as follows: 0.02 (0.01), 0.02 (0.02), 0.05 (0.07), 0.06 (0.06), and 0.01 (0.01). All

parameters including θ are still learned with high accuracy.

The case where the true value of θ is 0 rad is an edge case, because given an arbitrarily

small ǫ > 0, the logistic sigmoid function maps an unbounded domain of values onto (0, ǫ).

This makes it simpler for Turing Learning to infer this parameter. For this reason, we also

consider another scenario where the agents’ angle of view is π/3 rad rather than 0 rad. The

controller parameters for achieving aggregation in this case are different from those in Eq. (6).

They were found by rerunning a grid search with the modified sensor. Figure 10b shows the

results from 30 runs with this setup. The means (standard deviations) of the AEs in each

parameter are as follows: 0.04 (0.04), 0.03 (0.03), 0.05 (0.06), 0.05 (0.05), and 0.20 (0.19).

The controller parameters are still learned with good accuracy. The accuracy in the angle of

view is noticeably lower, but still reasonable.

4.6.2 Inferring behavior without assuming a known control system structure

In the previous sections, we assumed the agent’s control system structure to be known and only

inferred its parameters. To further investigate the generality of Turing Learning, we now rep-

resent the model in a more general form, namely a (recurrent) Elman neural network (Elman

1990). The network inputs and outputs are identical to those used for our reactive models.

In other words, the Elman network has one input (I ) and two outputs representing the left

and right wheel speed of the robot. A bias is connected to the input and hidden layers of the

network, respectively. We consider three network structures with one, three, and five hidden

neurons, which correspond, respectively, to 7, 23, and 47 weights to be optimized. Except

for a different number of parameters to be optimized, the experimental setup is equivalent in

all aspects to that of Sect. 4.2.

We first analyze the steady-state behavior of the inferred network models. To obtain their

steady-state outputs, we fed them with a constant input (I = 0 or I = 1 depending on

the parameters) for 20 time steps. Figure 11 shows the outputs in the final time step of the

inferred models with the highest subjective fitness in the last generation in 30 runs for the

three cases. In all cases, the parameters of the swarming agent can be inferred correctly with

reasonable accuracy. More hidden neurons lead to worse results, probably due to the larger

search space.

We now analyze the dynamic behavior of the inferred network models. Figure 12 shows

the dynamic output of 1 of the 30 neural networks. The chosen neural network is the one
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Fig. 11 Turing Learning can infer an agent’s behavior without assuming its control system structure to be

known. These plots show the steady-state outputs (in the 20th time step) of the inferred neural networks with

the highest subjective fitness in the 1000th generation of 30 simulation runs. Two outliers in (c) are not shown.

a One hidden neuron, b Three hidden neurons, c Five hidden neurons
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Fig. 12 Dynamic outputs of the inferred neural network with median performance. The network’s input in

each case was I = 0 (time steps 1–10), I = 1 (time steps 11–20), and I = 0 (time steps 21–30). See text for

details. a One hidden neuron, b Three hidden neurons, c Five hidden neurons

exhibiting the median performance according to metric
∑4

i=1

∑20
t=1(oi t − pi )

2, where pi

denotes the i th parameter in Eq. (6), and oi t denotes the output of the neural network in the

t th time step corresponding to the i th parameter in Eq. (6). The inferred networks react to the

inputs rapidly and maintain a steady-state output (with little disturbance). The results show

that Turing Learning can infer the behavior without assuming the agent’s control system

structure to be known.

4.6.3 Separating the replicas and the agents

In our two case studies, the replica was mixed into a group of agents. In the context of animal

behavior studies, a robot replica may be introduced into a group of animals and recognized

as a conspecific (Halloy et al. 2007; Faria et al. 2010). However, if behaving abnormally,

the replica may disrupt the behavior of the swarm (Bjerknes and Winfield 2013). For the

same reason, the insertion of a replica that exhibits different behavior or is not recognized as

conspecific may disrupt the behavior of the swarm and hence the models obtained may be

biased. In this case, an alternative method would be to isolate the influence of the replica(s).

We performed an additional simulation study where agents and replicas were never mixed.

Instead, each trial focused on either a group of agents, or of replicas. All replicas in a trial

executed the same model. The group size was identical in both cases. The tracking data of

the agents and the replicas from each sample were then fed into the classifiers for making

judgments.

The distribution of the inferred model parameters is shown in Fig. 13. The results show

that Turing Learning can still identify the model parameters well. There is no significant

difference between either approach in the case studies considered in this paper. The method

of separating replicas and agents is recommended if potential biases are suspected.

4.6.4 Inferring other reactive behaviors

The aggregation controller that agents used in our case study was originally synthesized by

searching over the parameter space defined in Eq. (5) with n = 2, using a metric to assess

the swarm’s global performance (Gauci et al. 2014c). Each of these points produces a global

behavior. Some of these behaviors are particularly interesting, such as the circle formation

behavior reported in Gauci et al. (2014a).

We now investigate whether Turing Learning can infer arbitrary controllers in this space,

irrespective of the global behaviors they lead to. We generated 1000 controllers randomly
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Fig. 13 Model parameters

inferred by a variant of Turing

Learning that observes swarms of

aggregating agents and swarms of

replicas in isolation, thereby

avoiding potential bias. Each box

corresponds to the models with

the highest subjective fitness in

the 1000th generation of 30

simulation runs
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Fig. 14 Turing Learning inferring the models for 1000 randomly generated agent behaviors. For each behavior,

one run of Turing Learning was performed and the model with the highest subjective fitness after 1000

generations was considered. a Histogram of the models’ MAE [(defined in Eq. (10); 43 points that have an

MAE larger than 0.1 are not shown]; and b AEs [defined in Eq. (9)] for each model parameter

in the parameter space defined in Eq. (5), with uniform distribution. For each controller, we

performed one run, and selected the subjectively best model in the last (1000th) generation.

Figure 14a shows a histogram of the MAE of the inferred models. The distribution has

a single mode close to zero and decays rapidly for increasing values. Over 89 % of the

1000 cases have an error below 0.05. This suggests that the accuracy of Turing Learning

is not highly sensitive to the particular behavior under investigation (i.e., most behaviors

are learned equally well). Figure 14b shows the AEs of each model parameter. The means

(standard deviations) of the AEs in each parameter are as follows: 0.01 (0.05), 0.02 (0.07),

0.07 (0.6), and 0.05 (0.2). We performed a statistical test on the AEs between the model

parameters corresponding to I = 0 (vℓ0 and vr0) and I = 1 (vℓ1 and vr1). The AEs of the

inferred vℓ0 and vr0 are significantly lower than those of vℓ1 and vr1. This is likely due to

the reason reported in Sect. 4.3, that is, an agent is likely to spend more time seeing nothing

(I = 0) than seeing other agents (I = 1) in each trial.
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Agents Overhead Camera

Computer

video stream (robot 
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model updates

Robot Arenastart/stop

signal

Fig. 15 Illustration of the general setup for inferring the behavior of physical agents—e-puck robots (not to

scale). The computer runs the Turing Learning algorithm, which produces models and classifiers. The models

are uploaded and executed on the replica. The classifiers run on the computer. They are provided with the

agents’ and replica’s motion data, extracted from the video stream of the overhead camera

5 Physical experiments

In this section, we present a real-world validation of Turing Learning. We explain how it

can be used to infer the behavior of a swarm of real agents. The agents and replicas are

represented by physical robots. We use the same type of robot (e-puck) as in simulation.

The agents execute the aggregation behavior described in Sect. 3.2.1. The replicas execute

the candidate models. We use two replicas to speed up the identification process, as will be

explained in Sect. 5.3.

5.1 Physical platform

The physical setup, shown in Fig. 15, consists of an arena with robots (representing agents

or replicas), a personal computer (PC), and an overhead camera. The PC runs the Turing

Learning algorithm. It communicates with the replicas, providing them models to be executed,

but does not exert any control over the agents. The overhead camera supplies the PC with a

video stream of the swarm. The PC performs video processing to obtain motion data about

individual robots. We now describe the physical platform in more detail.

5.1.1 Robot arena

The robot arena is rectangular with sides 200 cm × 225 cm and bounded by walls of 50 cm

high. The floor has a light gray color, and the walls are painted white.

5.1.2 Robot platform and sensor implementations

A schematic top view of the e-puck is shown in Fig. 16. We implement the line-of-sight

sensor using the e-puck’s directional camera, located at its front. For this purpose, we wrap

the robots in black ‘skirts’ (see Fig. 1) to make them distinguishable against the light-colored

arena. While in principle the sensor could be implemented using one pixel, we use a column

of pixels from a subsampled image to compensate for misalignment in the camera’s vertical
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Fig. 16 Schematic top view of an e-puck, indicating the locations of its motors, wheels, camera, and infrared

sensors. Note that the marker is pointing toward the robot’s back

orientation. The gray values from these pixels are used to distinguish robots (I = 1) against

the arena (I = 0). For more details about this sensor realization, see (Gauci et al. 2014c).

We also use the e-puck’s infrared sensors, in two cases. Firstly, before each trial, the robots

disperse themselves within the arena. In this case, they use the infrared sensors to avoid both

robots and walls, making the dispersion process more efficient. Secondly, we observe that

using only the line-of-sight sensor can lead to robots becoming stuck against the walls of

the arena, hindering the identification process. We therefore use the infrared sensors for wall

avoidance, but in such a way as to not affect inter-robot interactions.8 Details of these two

collision avoidance behaviors are provided in the online supplementary materials (Li et al.

2016).

5.1.3 Motion capture

To facilitate motion data extraction, we fit robots with markers on their tops, consisting

of a colored isosceles triangle on a circular white background (see Fig. 1). The triangle’s

color allows for distinction between robots; we use blue triangles for all agents, and orange

and purple triangles for the two replicas. The triangle’s shape eases extraction of robots’

orientations.

The robots’ motion is captured using a camera mounted around 270 cm above the arena

floor. The camera’s frame rate is set to 10 fps. The video stream is fed to the PC, which

performs video processing to extract motion data about individual robots (position and ori-

entation). The video processing software is written using OpenCV (Bradski and Kaehler

2008).

5.2 Turing Learning with physical robots

Our objective is to infer the agent’s aggregation behavior. We do not wish to infer the agent’s

dispersion behavior, which is periodically executed to distribute already-aggregated agents.

To separate these two behaviors, the robots (agents and replicas) and the system are implicitly

synchronized. This is realized by making each robot execute a fixed behavioral loop of

8 To do so, the e-pucks determine whether a perceived object is a wall or another robot.
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Fig. 17 Flow diagram of the

programs run by the PC and a

replica in the physical

experiments. Dashed arrows

represent communication

between the two units. See

Sect. 5.2 for details. The PC does

not exert any control over the

agents

constant duration. The PC also executes a fixed behavioral loop, but the timing is determined

by the signals received from the replicas. Therefore, the PC is synchronized with the swarm.

The PC communicates with the replicas via Bluetooth. At the start of a run, or after a human

intervention (see Sect. 5.3), robots are initially synchronized using an infrared signal from a

remote control.

Figure 17 shows a flow diagram of the programs run by the PC and the replicas, respec-

tively. Dashed arrows indicate communication between the units.

The program running on the PC has the following states:

• P1. Wait for “Stop” Signal. The program is paused until “Stop” signals are received from

both replicas. These signals indicate that a trial has finished.

• P2. Send Model Parameters. The PC sends new model parameters to the buffer of each

replica.

• P3. Wait for “Start” Signal. The program is paused until “Start” signals are received

from both replicas, indicating that a trial is starting.

• P4. Track Robots. The PC waits 1 s and then tracks the robots using the overhead camera

for 5 s. The tracking data contain the positions and orientations of the agents and replicas.

• P5. Update Turing Learning Algorithm. The PC uses the motion data from the trial

observed in P4 to update the solution quality (fitness values) of the corresponding two

models and all classifiers. Once all models in the current iteration cycle (generation) have

been evaluated, the PC also generates new model and classifier populations. The method

for calculating the qualities of solutions and the optimization algorithm are described in

Sects. 3.1 and 3.2.4, respectively. The PC then goes back to P1.

The program running on the replicas has the following states:

• R1. Send “Stop” Signal. After a trial stops, the replica informs the PC by sending a

“Stop” signal. The replica waits 1 s before proceeding with R2, so that all robots remain

synchronized. Waiting 1 s in other states serves the same purpose.

• R2. Disperse. The replica disperses in the environment, while avoiding collisions with

other robots and the walls. This behavior lasts 8 s.
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• R3. Receive Model Parameters. The replica reads new model parameters from its buffer

(sent earlier by the PC). It waits 1 s before proceeding with R4.

• R4. Send “Start” Signal. The replica sends a start signal to the PC to inform it that a trial

is about to start. The replica waits 1 s before proceeding with R5.

• R5. Execute Model. The replica moves within the swarm according to its model. This

behavior lasts 7 s (the tracking data corresponds to the middle 5 s, see P4). The replica

then goes back to R1.

The program running on the agents has the same structure as the replica program. However,

in the states analogous to R1, R3, and R4, they simply wait 1 s rather than communicate with

the PC. In the state corresponding to R2, they also execute the Disperse behavior. In the state

corresponding to R5, they execute the agent’s aggregation controller, rather than a model.

Each iteration (loop) of the program for the PC, replicas, and agents lasts 18 s.

5.3 Experimental setup

As in simulation, we use a population size of 100 for classifiers (μ = 50, λ = 50). However,

the model population size is reduced from 100 to 20 (μ = 10, λ = 10) to shorten the exper-

imentation time. We use 10 robots: 8 representing agents executing the original aggregation

controller [Eq. (6)], and 2 representing replicas that execute models. This means that in each

trial, 2 models from the population could be simultaneously evaluated; consequently, each

generation consists of 20/2 = 10 trials.

The Turing Learning algorithm is implemented without any modification to the code used

in simulation (except for model population size and observation time in each trial). We still

let the model parameters evolve unboundedly (i.e., in R
4). However, as the speed of the

physical robots is naturally bounded, we apply the hyperbolic tangent function (tanh x) on

each model parameter, before sending a model to a replica. This bounds the parameters to

(−1, 1)4, with −1 and 1 representing the maximum backwards and forwards wheel speeds,

respectively.

The Turing Learning runs proceed autonomously. In the following cases, however, there

is intervention:

– The robots have been running continuously for 25 generations. All batteries are replaced.

– Hardware failure has occurred on a robot, for example because of a lost battery connection

or because the robot has become stuck on the floor. Appropriate action is taken for the

affected robot to restore its functionality.

– A replica has lost its Bluetooth connection with the PC. The connection with both replicas

is restarted.

– A robot indicates a low battery status through its LED after running for only a short time.

That robot’s battery is changed.

After an intervention, the ongoing generation is restarted, to limit the impact on the

identification process.

We conducted 10 runs of Turing Learning using the physical system. Each run lasted 100

generations, corresponding to 5 hours (excluding human intervention time). Video recordings

of all runs can be found in the online supplementary materials (Li et al. 2016).

5.4 Analysis of inferred models

We first investigate the quality of the models obtained. To select the ‘best’ model from each

run, we post-evaluated all models of the final generation 5 times using all classifiers of
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Fig. 18 Model parameters

Turing Learning inferred from

swarms of physical robots

performing aggregation. The

models are those with the highest

subjective fitness in the 100th

generation of 10 runs. Dashed

black lines indicate the ground

truth, that is, the values of the

parameters that the system is

expected to learn (Color figure

online)
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Fig. 19 Evolutionary dynamics of model parameters in (a) 10 physical and (b) 10 simulated runs of Turing

Learning (in both cases, equivalent setups were used). Curves represent median parameter values of the models

with the highest subjective fitness across the 10 runs. Dashed black lines indicate the ground truth

that generation. The parameters of these models are shown in Fig. 18. The means (standard

deviations) of the AEs in each parameter are as follows: 0.08 (0.06), 0.01 (0.01), 0.05 (0.08),

and 0.02 (0.04).

To investigate the effects of real-world conditions on the identification process, we per-

formed 10 simulated runs of Turing Learning with the same setup as in the physical runs.

Figure 19 shows the evolutionary dynamics of the parameters of the inferred models (with

the highest subjective fitness) in the physical and simulated runs. The dynamics show good

correspondence. However, the convergence in the physical runs is somewhat less smooth than

that in the simulated ones (e.g., see spikes in vℓ0 and vℓ1). In each generation of every run

(physical and simulated), we computed the MAE of each model. We compared the error of

the model with the highest subjective fitness with the average and lowest errors. The results

are shown in Fig. 20. For both the physical and simulated runs, the subjectively best model

(green) has an error in between the lowest error (blue) and the average error (red) in the

majority of generations.

As we argued before (Sect. 4.3), in swarm systems, good agreement between local behav-

iors (e.g., controller parameters) may not guarantee similar global behaviors. For this reason,

we investigate both the original controller [Eq. (6)] and a controller obtained from the phys-
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Fig. 20 Evolutionary dynamics of MAE [defined in Eq. (10)] for the candidate models in (a) 10 physical

and (b) 10 simulated runs of Turing Learning. Curves represent median values across 10 runs. The red curve

represents the average error of all models in a generation. The green and blue curves show, respectively, the

errors of the models with the highest subjective and the highest objective fitness in a generation (Color figure

online)
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Fig. 21 Average aggregation dynamics in 10 physical trials with 40 physical e-puck robots executing the

original agent controller (red) and the model controller (blue) inferred through observation of the physical

system. In (a), the vertical axis shows the proportion of robots in the largest cluster; in (b), it shows the robots’

dispersion (see Sect. 4.3). Dashed lines in (a) and (b), respectively, represent the maximum proportion and

minimum dispersion that 40 robots can achieve (Color figure online)

ical runs. This latter controller is constructed by taking the median values of the parameters

over the 10 runs, which are:

p = (−0.65,−0.99, 0.99,−0.99) .

The set of initial configurations of the robots is common to both controllers. As it is not

necessary to extract the orientation of the robots, a red circular marker is attached to each

robot so that its position can be extracted with higher accuracy in the offline analysis (Gauci

et al. 2014c).

For each controllers, we performed 10 trials using 40 physical e-pucks. Each trial lasted

10 minutes. Figure 21a shows the proportion of robots in the largest cluster9 over time with

the agent and model controllers. Figure 21b shows the dispersion (as defined in Sect. 4.3) of

9 A cluster of robots is defined as a maximal connected subgraph of the graph defined by the robots’ positions,

where two robots are considered to be adjacent if another robot cannot fit between them (Gauci et al. 2014c).
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initial configuration after 20 s after 40 s after 180 s

after 360 s after 420 s after 480 s after 600 s

Fig. 22 Example of collective behavior produced by a model that was inferred by Turing Learning through

the observation of swarms of physical e-puck robots. A swarm of 40 physical e-puck robots, each executing

the inferred model, aggregates in a single spot
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Fig. 23 Average decision accuracy of the best classifiers over 100 generations (nonlinear scale) in 10 runs of

Turing Learning with swarms of physical robots. Average over 100 data samples from a post-evaluation with

physical robots executing random models. The error bars show standard deviations. See text for details

the robots over time with the two controllers. The aggregation dynamics of the agents and

the models show good correspondence. Figure 22 shows a sequence of snapshots from a trial

with 40 e-pucks executing the inferred model controller.

A video accompanying this paper shows the Turing Learning identification process of

the models (in a particular run) both in simulation and on the physical system. Additionally,

videos of all 20 post-evaluation trials with 40 e-pucks are provided in the online supplemen-

tary materials (Li et al. 2016).

5.5 Analysis of generated classifiers

When post-evaluating the classifiers generated in the physical runs of Turing Learning, we

limited the number of candidate models to 100, in order to reduce the physical experimenta-

tion time. Each candidate model was chosen randomly, with uniform distribution, from the
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parameter space defined in Eq. (5). Figure 23 shows the average decision accuracy of the best

classifiers over the 10 runs. Similar to the results in simulation, the best classifier (objective)

still has a high decision accuracy. However, in contrast to simulation, the decision accuracy

of the best classifier (subjective) does not drop within 100 generations. This could be due to

the noise present in the physical runs, which may have prevented the classifiers from getting

over-specialized in the comparatively short time provided (100 generations).

6 Conclusions

This paper presented a new system identification method—Turing Learning—that can

autonomously infer the behavior of a system from observations. To the best of our knowledge,

Turing Learning is the first system identification method that does not rely on any predefined

metric to quantitatively gauge the difference between the system and the inferred models.

This eliminates the need to choose a suitable metric and the bias that such metric may have

on the identification process.

Through competitive and successive generation of models and classifiers, the system suc-

cessfully learned two behaviors: self-organized aggregation and object clustering in swarms

of mobile agents. Both the model parameters, which were automatically inferred, and emer-

gent global behaviors closely matched those of the original swarm system.

We also examined a conventional system identification method, which used a least-square

error metric rather than classifiers. We proved that the metric-based method was fundamen-

tally flawed for the case studies considered here. In particular, as the inputs to the agents and

to the models were not correlated, the model solution that was globally optimal with respect

to the metric was not identical to the agent solution. In other words, according to the metric,

the parameter set of the agent itself scored worse than a different—and hence incorrect—

parameter set. Simulation results were in good agreement with these theoretical findings.

The classifiers generated by Turing Learning can be a useful by-product. Given a data

sample (motion trajectory), they can tell whether it is genuine, in other words, whether it

originates from the reference system. Such classifiers could be used for detecting abnormal

behavior—for example when faults occur in some members of the swarm—and are obtained

without the need to define a priori what constitutes abnormal behavior.

In this paper, we presented the main results using a gray box model representation; in

other words, the model structure was assumed to be known. Consequently, the inferred

model parameters could be compared against the ground truth, enabling us to objectively

gauge the quality of the identification process. Note that even though the search space for the

models is small, identifying the parameters is challenging as the input values are unknown

(consequently, the metric-based system identification method did not succeed in this respect).

The Turing Learning method was further validated using a physical system. We applied

it to automatically infer the aggregation behavior of an observed swarm of e-puck robots.

The behavior was learned successfully, and the results obtained in the physical experiments

showed good correspondence with those obtained in simulation. This shows the robustness

of our method with respect to noise and uncertainties typical of real-world experiments. To

the best of our knowledge, this is also the first time that a system identification method was

used to infer the behavior of physical robots in a swarm.

We conducted further simulation experiments to test the generality of Turing Learning.

First, we showed that Turing Learning can simultaneously infer the agent’s brain (controller)

as well as an aspect of the agent’s morphology that determines its field of view. Second,

we showed that Turing Learning can infer the behavior without assuming the agent’s control
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system structure to be known. The models were represented as fixed-structure recurrent neural

networks, and the behavior could still be successfully inferred. For more complex behaviors,

one could adopt other optimization algorithms such as NEAT (Stanley and Miikkulainen

2002), which gradually increases the complexity of the neural networks being evolved. Third,

we assessed an alternative setup of Turing Learning, in which the replica—the robot used to

test the models—is not in the same environment as the swarm of agents. While this requires

a swarm of replicas, it has the advantage of ensuring that the agents are not affected by the

replica’s presence. In addition, it opens up the possibility of the replica not being a physical

agent, but rather residing in a simulated world, which may lead to a less costly implementation.

On the other hand, the advantage of using a physical replica is that it may help to address the

reality gap issue. As the replica shares the same physics as the agent, its evolved behavior will

rely on the same physics. This is not necessarily true for a simulated replica—for instance,

when evolving a simulated fish, it is hard (and computationally expensive) to fully capture

the hydrodynamics of the real environment. As a final experiment, we showed that Turing

Learning is able to infer a wide range of randomly generated reactive behaviors.

In the future, we intend to use Turing Learning to infer the complex behaviors exhibited

in natural swarms, such as in shoals of fish or herds of land mammals. We are interested

in both reactive and non-reactive behaviors. As shown in Li et al. (2013, 2016), it can be

beneficial if the classifiers are not restricted to observing the system passively. Rather, they

could influence the process by which data samples are obtained, effectively choosing the

conditions under which the system is to be observed.
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