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Understanding how the structure of cognition arises from the to-

pographical organization of the cortex is a primary goal in neuro-

science. Previous work has described local functional gradients

extending from perceptual and motor regions to cortical areas rep-

resenting more abstract functions, yet an overarching framework

for the association between structure and function is still lacking.

Here we show that the principal gradient revealed by the decomposi-

tion of connectivity data in humans and the macaque monkey is an-

chored, at one end, by regions serving primary sensory/motor func-

tions and, at the other, by transmodal regions that, in humans, are

known as the default-mode network (DMN). These DMN regions ex-

hibit the greatest geodesic distant along the cortical surface — and

are precisely equidistant — from primary sensory/motor morpholog-

ical landmarks. The principal gradient also provides an organizing

spatial framework for multiple large-scale networks and character-

izes a spectrum from unimodal to heteromodal activity in a functional

meta-analysis. Together these observations provide a novel charac-

terization of the topographical organization of cortex and indicate

that the role of the DMN in cognition might arise from its position at

one extreme of a hierarchy, allowing it to process transmodal infor-

mation that is unrelated to immediate sensory input.

topography | connectivity | cortical organization | default-mode network

A key assumption in neuroscience is that the topograph-
ical structure of the cerebral cortex provides an organiz-

ing principle that constrains its cognitive processes. Recent
advances in the field of human connectomics have revealed
multiple large-scale networks [e.g., 1–3], each characterized
by distinct functional profiles [4]. Some are related to basic
primary functions, such as moving or perceiving sounds and im-
ages; some serve well-documented, domain-general functions,
such as attention or cognitive control [5–8]; and some have
functional characteristics that remain less well understood,
such as the default-mode network (DMN) [9, 10]. Although
the topography of these distinct distributed networks has been
described using multiple methods [e.g., 1–3], the reason for
their particular spatial relationship and how this constrains
their function remains unclear.

Advances in mapping local processing streams have revealed
spatial gradients that support increasingly abstract levels of
representation, often extending along adjacent cortical regions
in a stepwise manner [11]. In the visual domain, for example,
the ventral occipito-temporal object stream transforms simple
visual features, coded by neurons in primary visual cortex,

into more complex visual descriptions of objects in anterior in-
ferior temporal cortical regions, and ultimately contributes to
multimodal semantic representations in the middle temporal
cortex and the most anterior temporal cortex that capture the
meaning of what we see, hear and do [12–15]. Similarly, in the
prefrontal cortex, a rostral-caudal gradient has been proposed
whereby goals become increasingly abstract in anterior areas
more distant from motor cortex, as they are increasingly re-
moved from selection processes that operate on specific motor
representations [5, 16–19]. Much like the function–structure
correspondence elucidated by topographic maps within sensory
and motor areas [20, 21], these processing gradients provide a
systematic mapping between spatial position and a functional
spectrum of increasingly abstract representation [22].

Processing gradients have proven useful for understanding
the relation between specific regions and function in sepa-
rate domains; Mesulam observed that the emergence of more
abstract functional classes of cortex may follow a similar tra-
jectory, hypothesizing that abstract categories emerge from
the convergence of information across modalities [23, and see
Figure 1C]. This notion has recently been extended by Buckner
and Krienen [24], who proposed the ‘tethering hypothesis’,
arguing that association cortex gains its functional attributes
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through its increasing spatial distance from the constraints
that determine the functional specialization of primary cortex.
These viewpoints suggest that there may be macroscale gradi-
ents that integrate information across multiple domains into
progressively more abstract representations, in which local
gradients within specific cortical systems could be situated
and understood.

One large-scale cortical system whose function remains
unclear is the DMN. Initially identified through its tendency
to deactivate during externally-oriented tasks [25], the DMN
has since been shown to activate in tasks that depend on
information retrieved from memory such as remembering the
past or thinking about the future, or considering the men-
tal states of others (for reviews, see [10, 26]). The DMN is
also known to play a role in states that are less related to
ongoing environmental events, such as daydreaming and mind-
wandering [27–30], and contributes to lapses in the integrity
of external processing [31]. A consensus view on the role of
the DMN in human cognition is still lacking, however, because
of the increasing number of cognitive domains in which it has
been implicated. As well as playing an active role during states
such as autobiographical memory retrieval, social cognition,
and future thinking, the DMN has recently been shown to
operate in concert with regions implicated in cognitive control
during complex working memory tasks [32–36]. This emerging
evidence illustrates that the DMN is not tied to a specific form
of informational content, leading to suggestions that it acts as
a hub that integrates representational information across the
cortex [30, 37].

To understand the topographic organization of the cerebral
cortex at the macroscale [38], we explore how the principal
variance in cortical connectivity relates to the topography of
structure and function by addressing four key questions: (a) Is
there a macroscale gradient of connectivity in the human brain
that reflects the systematic integration across modalities in a
hierarchical fashion? (b) Does this macroscale organization
relate to the geometric structure of the cortex? (c) Does the
organization captured by the principal gradient account for the
spatial distribution of large-scale networks and the associated
functions across the cortex? (d) Do these observations provide
a framework for understanding the functional role of the DMN
in cognition?

Results

We began our analysis by characterizing the components de-
scribing the maximum variance in functional connectivity
patterns — the extent to which nodes agree in the spatial dis-
tribution of correlations — across the human cerebral cortex
(Figures 1 & S2). The functional connectivity matrix con-
sisted of 91282 cortical and subcortical ‘grayordinates’ with a
resolution of 2 mm from the preprocessed dense connectome
S900 release of the Human Connectome Project (HCP) [39].
These data were based on one hour of resting-state fMRI
data acquired from 820 healthy adult individuals. No further
processing of the connectivity matrices beyond those already
implemented by the HCP, which included minimal spatial
smoothing of 2 mm FWHM [40], were conducted.

Rather than delineating discrete network parcellations, we
implemented a method that captures gradients in connectivity
patterns over space — a cortical feature, termed ‘connec-
topies’ [41]. This method, known as diffusion embedding [42],

allows local and long distance connections to be projected into
a common space more effectively than approaches that use
linear dimensionality reduction, such as principal component
analysis (see Supporting Information (SI)). The resultant com-
ponents, which we describe here as ‘gradients’, are unitless,
and identify the position of nodes along the respective em-
bedding axis that encodes the dominant differences in nodes’
connectivity patterns.

The principal gradient in humans and macaque monkeys.

The principal gradient (Figure 1A), which accounts for the
greatest variance in connectivity in the human brain (see Fig-
ure S1), is anchored at one end by the primary and unimodal
visual, somatosensory/motor, and auditory regions. At the
other end are regions including the angular gyrus, rostral an-
terior cingulate, posteromedial cortex, middle temporal gyrus,
and middle and superior frontal gyri — regions that in humans
are collectively described as the default-mode network (DMN).
Regions situated between the two extreme ends of the principal
gradient include the inferior frontal sulcus, intraparietal sulcus,
and the inferior temporal sulcus, constituting heteromodal
integration and higher-order cognitive regions.

The initial proposal of Mesulam was motivated by tract-
tracing studies conducted in the macaque monkey. To deter-
mine whether our method would generalize to this form of
data, we performed the same embedding analysis on a publicly
available database of tract-tracing studies conducted in the
macaque monkey. The principal gradient of the macaque mon-
key cerebral cortex is presented in Figure 1B, and, similar to
the human functional connectivity-based results, is anchored at
one end by visual and somatosensory/motor regions and at the
other by higher-order transmodal regions in the temporal lobe
and the medial and lateral prefrontal cortex. The cross-species
correspondence of the principal gradient suggests this axis of
connectivity variation is phylogenetically conserved, and may
represent a primary dimension of cortical expansion [43].

The topography of the principal gradient in both the hu-
man and macaque monkey is consistent with the claim that
cortical connectivity is organized along a dimension spanning
primary/unimodal and transmodal regions — a hypothesis
that is summarized schematically along the ‘Gradient 1’ di-
mension in Figure 1C. However, for this spectrum to indi-
cate hierarchical integration across distinct modalities, the
following connectivity component should distinguish between
primary modalities, as indicated by the dimension ‘Gradient
2’ in Figure 1C.

Consistent with Mesulam’s hypothesis [23, and Figure 1C],
the component accounting for the second-most variance in
connectivity in the human brain differentiates regions solely
within the unimodal-end of the principal gradient (Figure 1D).
One end of the spectrum is characterized by regions of the
occipital cortex implicated in processing of visual input, while
the opposite end includes the somatosensory and motor re-
gions surrounding the central sulcus as well as the auditory
regions of the temporal perisylvian region (Figure 1E). The
convergence described by the first two connectivity gradients
across sensory/motor modalities, and towards a singular set of
nodes within transmodal cortex, is consistent with the claim
that the principal gradient is organized along a dimension
that integrates unimodal regions in a hierarchical manner (Fig-
ure 1C). Moreover, the principal gradient, anchored at one end
by the DMN, contains within it several local processing gra-
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Fig. 1. The principal gradient of connectivity in both the

human (A) and macaque monkey (B) cortices demon-

strates a spectrum between unimodal regions (dark blue)

and transmodal regions (sienna), which in the human

cortex peaks in regions corresponding to the default-

mode network. The proximity of colors can be inter-

preted as greater similarity of connectivity patterns. (C)

The illustration of connectivity organization suggested by

Mesulam [23] proposes a hierarchy of processing from

distinct unimodal areas to integrative transmodal areas.

Labels ‘Gradient 1/2’, which were not included in the

original figure, correspond to the results in (D). (D) A

scatter plot of the first two connectivity embedding gradi-

ents. Gradient 1 extends between primary sensorimotor

and transmodal regions (red). Gradient 2 separates so-

matomotor and auditory cortex (green) from visual cor-

tex (blue). Histograms depicting the distribution of val-

ues are presented on the respective axes. (E) Colors

from the scatter plot are presented on the cortical sur-

face for anatomical orientation. V1/A1/M1/S1, primary

visual/auditory/motor/somatosensory; ag, angular gyrus;

mfg/ifg/sfg, middle/inferior/superior frontal gyrus; infs, in-

termediate frontal sulcus, pmc, posteromedial cortex; phf,

parahippocampal formation; cing, anterior cingulate cor-

tex; vmpfc, ventromedial prefrontal cortex; mtg, middle

temporal cortex, L, limbic; P, parietal; Pf, prefrontal.

dients that have already been described within the temporal
and frontal lobes [12–15, 17–19]. Further gradients describing
progressively less connectivity variance are available in Figure
S2.

DMN peaks of the principal gradient are equidistant from

primary areas. Having characterized the topography of a prin-
cipal gradient in connectivity, we next investigated whether
it is related to the intrinsic geometry of the cortex. To do so,
we examined whether regions at the extreme of the DMN-end
occupy spatial locations that are maximally distant along the
cortical surface from unimodal regions. We selected 7 peak
cortical nodes across the DMN clusters of the principal gradi-
ent, and calculated the minimum geodesic distance from all
other nodes to any of these ‘seed’ nodes (see SI for further
description of methods).

Figure 2 demonstrates that cortical distance reproduces
many features of the spatial embedding of the principal gra-
dient. Four of the peak DMN nodes are equidistant from
the central sulcus, which is the topographical landmark of
primary somatosensory/motor cortex. Likewise, we observe a
similar correspondence with the calcarine sulcus, marking the
location of primary visual cortex. More generally, distance
clearly increases with lower principal gradient values, with
an especially rapid transition in the connectivity gradient be-
tween 25–40 mm and plateaus at the extremes (Figure 2B).
This relationship is nevertheless captured by a linear fit (R2 =
0.55). It is noteworthy that beyond a distance of 40 mm from
DMN peaks, the cortex exclusively consists of unimodal re-
gions. In similar analyses of macaque monkey cortical distance
(Figure S3), we observed a comparable distance threshold for
unimodal regions. In sum, this analysis demonstrates that
the principal connectivity gradient reflects macrostructural
features of cortical organization: the nodes corresponding to
one extreme end of the gradient — core regions of the DMN

— are maximally distant from regions that directly govern
perception and action.

The principal gradient captures the spatial layout of

large-scale networks. We next examined the extent to which
the principal gradient captures the macroscale layout of in-
trinsic functional connectivity networks. Despite the high
reproducibility of large-scale resting-state networks [1, 44–46],
there is no clear over-arching spatial schema to explain the
transition of one network to another. We examined the widely-
used 7-network parcellation from Yeo et al. [2] with respect to
the position of each network along the principal gradient (Fig-
ure 3A). (Results using the 17-network parcellation from [2]
are presented in Figure S5.)

Figure 3 demonstrates that networks are not randomly
distributed along this dimension: instead, as demonstrated
in the box plots of Figure 3B, cortical nodes from the same
network tend to cluster at similar positions. Importantly,
the DMN identified in this parcellation (red) occupies one
extreme position along the principal gradient and is maximally
separated from visual (purple) and motor (blue) networks,
which lie at the other extreme. One exception is the limbic
network (beige), which captures an extensive range of values.
However, the spatial distribution of this network may be
accounted for by low signal-to-noise within the original data
used for parcellation [2], and it may thus not accurately reflect
the connectivity of its constituent regions.

This analysis therefore demonstrates that the principal
gradient of connectivity provides a framework for the spatial
ordering of large-scale networks. In addition, the principal
gradient captures similar, repeating transitions between these
networks, which occur across cortical lobes (Figure 3C). We
represent this consistent arrangement as a schematic illustra-
tion in Figure 3D. Notably, outlier gradient values for each
network are located predominantly at their boundaries (Fig-
ure S4), suggesting that in some cases the principal gradient
describes gradual connectivity transitions that are obscured
by discrete network parcellation.

Distribution of functions along the principal gradient. Our fi-
nal analysis explored whether the regions located at the DMN-
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extreme of the gradient serve functions that are abstracted
from perception and action. We conducted a meta-analysis
using the NeuroSynth database [47] (see Figure S6 & S7 for
corresponding analysis using the BrainMap database [48]),
and examined the association between a list of topic terms
with regions-of-interest created from 5-percentile bins of the
principal gradient. Topic terms were sorted by their weighted
average position along the gradient, revealing a systematic
shift in function. Figure 4 demonstrates that the unimodal-
end is characterized by terms depicting acting and perceiving,
such as ‘motor’, ‘visual perception’, ‘multisensory processing’,
and ‘auditory processing’, while the end characterized by the
DMN emphasizes terms such as ‘social cognition’, ‘verbal se-
mantics’, and ‘autobiographical memory’ — tasks which rely
on complex representations abstracted away from specific sen-
sory and motor processes. Between the extremes we observe
domain-general functions such as ‘cued attention’, ‘inhibition’,
and ‘working memory’ in regions corresponding to the dorsal
attention and salience networks above (Figure 3D).

Discussion

Our analysis characterized a principal gradient of cortical or-
ganization in the human connectome, which is anchored at one
end by systems implicated in perceiving and acting, and at
the other, by transmodal association regions, corresponding in
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humans to the default-mode network (DMN; Figure 1). A com-
parative analysis using tract-tracing data from studies in the
macaque monkey found a corresponding gradient, providing
initial evidence that this axis of connectivity variation may be
phylogenetically conserved. The observation that the principal
gradient corresponds to the intrinsic geometry of the cortex

— regions in the DMN have the greatest geodesic distance
along the cortical surface from primary sensory-motor areas

— further indicates this axis may provide a crucial blueprint
for cortical organization (Figure 2). We additionally found
that large-scale networks are arranged along this axis, with
the same transitions between consistently adjacent networks
occurring throughout the cortex (Figure 3). Finally, a task-
based meta-analysis characterizing the functional attributes of
this gradient showed a spectrum of increasing abstraction that
follows the transition from unimodal cortex to the extreme
end of the gradient in the DMN (Figure 4).

The location of the DMN at one extreme end of the princi-
pal gradient provides an organizing principle for understanding
its role in cognition. First, these findings provide anatomi-
cal support for why the DMN has been associated with pro-
cesses that are unrelated to immediate stimulus input, such

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX
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as daydreaming or mind-wandering [27, 28, 30]. The DMN is
at a maximal distance from systems involved in perception
and action in both functional connectivity and anatomical
space, indicating that the neural activity in these regions is
likely to be comparably insulated from direct environmental
input [49, 50]. Second, the location of the DMN as equidis-
tant from all sensory/motor systems is aligned with its broad
range of functions that require integration between multiple
sensory systems, including episodic [51] and semantic mem-
ory [52–54], social cognition [55, 56], goal-directed working
memory tasks [26, 32, 33, 35] and reward-guided decision mak-
ing [57, 58]. The two cardinal features of the DMN related
to abstraction –– stimulus independence and content hetero-
geneity –– can be accounted for by its position at the end of
a topographical hierarchy that is equidistant from unimodal
systems, thus acting as a hub of integration across multiple
sensory modalities [37] (Figure 3D).

The principal gradient illustrates a broader topographic
organization of large-scale connectivity [38] that accounts for
the spatial arrangement of local processing streams through-
out the cerebral cortex. Gradients in both the temporal and
prefrontal cortex are apparent in Figure 1, demonstrating that
these hierarchies are not isolated local phenomena; they emerge
as elements of a spectrum that begins within input–output
systems and ends with the DMN. Notably, our results are
consistent with a recent modification of the rostral–caudal pro-
cessing gradient described within lateral frontal cortex [59, 60].
Rather than the more rostral areas being further along in
the processing hierarchy [18, 19], two distinct hierarchical gra-
dients of temporal- and feature-related abstraction converge
in middle lateral prefrontal cortex [60]. The consistency be-
tween the principal gradient and this revised lateral prefrontal
hierarchy suggests it may provide a source for future stud-
ies investigating the detailed topography of local processing
streams.

In addition to incorporating local processing streams within
a global framework, the principal gradient situates discrete
large-scale connectivity networks along a continuous spectrum.
With recent landmark advances in multimodal cortical parcel-
lation [61], the current approach provides a complementary
means to describe the gestalt of the cortical mosaic. Future
studies are needed to better characterize the types of tran-
sitions between different patterns of large-scale connectivity,
and to identify where processing occurs in a step-wise [11] or
‘gradiential’ manner [22].

It is now widely accepted that the DMN is important be-
cause it permits cognitive processing that is independent of
the here and now. This capacity is adaptive because it per-
mits flexibility: more abstract representations of a stimulus
enable the generation of alternative behaviors, allowing origi-
nal and creative thoughts to emerge [62]. Along those lines, a
‘positive-negative’ axis of brain-behavior covariation describes
a similar connectivity spectrum, distinguishing the DMN from
sensory/motor regions [63]. As Mesulam stated, however, the
capacity for abstraction is a double-edged sword.Beyond sup-
porting states of creativity and planning [64, 65], the DMN has
also been implicated in almost all psychiatric conditions [66],
indicating that there are costs, as well as benefits that accrue
from the capacity to apprehend the world as it might be rather
than seeing it as it is right now.

Materials and Methods

All MRI data used in this study were publicly available and
anonymized. Participant recruitment procedures and informed
consent forms, including consent to share de-identified data, were
previously approved by the Washington University institutional
review board as part of the Human Connectome Project [39].

All software used in this study is openly available at:
neuroanatomyandconnectivity.github.io/gradient_analysis/

Further information regarding methods and Supporting Figures
are available in the Supporting Information.
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