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Abstract

Objective:  Two-alternative forced-choice tasks are widely used to gain insight into specific 

areas of enhancement or impairment in individuals with autism spectrum disorder (ASD). 

Data arising from these tasks have been used to support myriad theories regarding the 

integrity, or otherwise, of particular brain areas or cognitive processes in ASD.  The drift 

diffusion model (DDM) provides an account of the underlying processes which give rise to 

accuracy and reaction time distributions, and parameterises these processes in terms which 

have direct psychological interpretation. Importantly, the DDM provides further insight into 

the origin of potential group differences in task performance. Here, for the first time, we used 

the DDM to investigate perceptual decision making in ASD.

Method:  Adults with (N = 25) and without ASD (N = 32) performed an orientation 

discrimination task. A drift diffusion model was applied to the full RT distributions.

Results: Participants with ASD responded more slowly than controls, the groups did not 

differ in accuracy. Modelled parameters indicated that: (i) participants with ASD were more 

cautious than controls (wider boundary separation); (ii) non-decision time was increased in 

ASD; and (iii) the quality of evidence extracted from the stimulus (drift rate) did not vary 

between groups.

Conclusions: Taking the behavioural data in isolation would suggest reduced perceptual 

sensitivity in ASD. However, DDM results indicated that despite response slowing, there was

no evidence of differential perceptual sensitivity between participants with and without ASD. 

Future use of the DDM in investigations of perception and cognition in ASD is highly 

recommended.

Keywords: autism; perception; drift diffusion model; 2AFC; orientation discrimination 
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Understanding Perceptual Judgement in Autism Spectrum Disorder using the Drift Diffusion

Model

Autism Spectrum Disorder (ASD) is a heterogeneous neuropsychiatric disorder that 

affects social interaction and communication, and is associated with behavioural inflexibility 

and repetitive motor and sensory action.  A large literature also highlights cognitive and 

perceptual anomalies in ASD, which under some conditions manifest as impairments, and 

under other conditions manifest as enhancements. For example, in the perceptual domain, 

individuals with ASD show impaired motion discrimination (Bertone, Mottron, Jelenic & 

Faubert, 2010; Milne et al. 2002), impaired facial matching (Deruelle, Rondan, Gepner & 

Tardif, 2004), enhanced discrimination of second-order motion (Bertone et al. 2010) 

enhanced visual search (O’Riordan, Plaisted, Driver & Baron-Cohen, 2001) and enhanced 

orientation discrimination (Dickinson, Bruyns-Haylett, Smith, Jones, & Milne, 2016). These 

discrete areas of strength and weakness have provided evidence for a number of prominent 

theories regarding the neruopathology of ASD including evidence for dorsal stream 

impairment (Pellicano, Gibson, Maybery, Durkin & Badcock, 2005; Deruelle et al. 2004), 

increased neural noise (Simmons et al. 2009), hypo-priors (Pellicano & Burr, 2012), and 

altered balance in the excitation to inhibition ratio in ASD (Dickinson et al. 2016). 

The majority of studies that measure perception and cognition in ASD (including 

those cited above) utilise the popular two-alternative forced choice (2AFC) method whereby 

participants must make a judgment about a presented stimulus, such as “which way is the 

stimulus moving?” or “is a target present or absent?” Enhancement or impairment within a 

particular domain is then inferred from accuracy rates and / or response times.  However, 

there are limitations to the conclusions that can be drawn by analysing response times and 

accuracy rates, as there are a number of processes that underlie a behavioural response in 
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addition to the particular perceptual domain or cognitive skill that the task is designed to 

measure. These include response caution, response bias, and non-decision time (see White, 

Ratcliff, Vasey & McKoon, 2010). This is especially true in psychophysics tasks, where 

accuracy of response is usually the only dependent variable considered. Assume, for example,

that participants with ASD prioritise accuracy over speed, while neurotypical individuals 

prioritise speed over accuracy. In this scenario the two groups could have identical perceptual

sensitivities but would produce different accuracy functions.  Similarly, if response time is the

only dependent variable, then participants with ASD would appear to have a perceptual 

deficit when in fact they are simply exercising more caution when responding. These 

examples highlight that any finding based on a comparison between groups where one group 

shows greater accuracy than the other, or where one group shows slower performance than 

the other may be due to different speed/accuracy trade-offs (Heitz, 2014; Pachella, 1974; 

Palmer, Huk and Shadlen, 2005; Stone, 2014, Wickelgreen, 1977). It therefore becomes a 

priority to combine measures of speed and accuracy in order to get an accurate measure of 

perceptual sensitivity, as any claims of differences in perceptual sensitivity between groups 

which are based solely on accuracy measurements may be confounded.

Different methods for combining the analysis of speed and accuracy exist, but these 

typically make the assumption that speed and accuracy are linearly related (Seli, Jonker, 

Cheyne, & Smilek, 2013), an assumption which is particularly vulnerable if participants are 

performing at high levels of accuracy or near their asymptotic reaction time. A common 

method is to calculate an ‘efficiency’ score (speed/accuracy; Townsend and Ashby, 1982). 

However, the originators of this method explicitly recommended that this efficiency score 

should not be used in the case of speed-accuracy trade-offs, and subsequent investigation has 

shown that this measure can obscure group differences as easily as reveal them (Bruyer and 

Brysbaert, 2011). Fortunately, it is possible to perform a principled reconciliation of speed 
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and accuracy information, via an explicit model of decision making called the Drift Diffusion

Model (DDM, Ratcliff, 1978; Ratcliff and McKoon, 2008).

The DDM is a member of a class of decision making model called accumulator 

models, in which individual decisions are assumed to be made by a process which 

accumulates momentary evidence in favour of a decision towards some threshold for 

responding. This model provides an account of the underlying processes which produce both 

accuracy and reaction time results across different experimental conditions, and parameterises

this process in terms which have a direct psychological interpretation: drift rate, boundary 

separation and non-decision time (see Figure 1). Drift rate reflects the strength of evidence 

for a judgement. Drift rates will vary with task, such that easier tasks produce higher drift 

rates, and with individual, such that participants with greater perceptual sensitivity also have 

higher drift rates. Boundary separation reflects the particular speed-accuracy trade-off that a 

participant maintains, i.e. their conservativeness when responding. Non-decision time reflects

processes that are not directly related to the perceptual judgement such as encoding and 

motor preparation.

The DDM has been used in previous research to provide more accurate conclusions in

studies investigating perception and cognition in clinical samples. For example, revealing that

individuals with ADHD show inefficient information processing rather than impulsive 

information processing (Karalunas, Huang-Pollock & Nigg 2012; Metin et al. 2013). In 

addition, in a study of older adults (aged 60 and above), an apparent impairment in lexical 

decision making was shown to be accounted for by longer non-decision time and wider 

boundary separation (increased caution) and not by a difference in the quality of information 

extracted from the stimulus (drift-rate, Ratcliff, Thapar and McKoon, 2006). Thus using the 
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DDM to decompose behavioural data into behavioural components provided more precise 

conclusions regarding age-related changes in cognition.

Here, we used the DDM to provide a principled reconciliation of the speed and 

accuracy of perceptual decision making in individuals with and without ASD within a 

common decision making framework. To the best of our knowledge this study is the first to 

apply the DDM to perceptual judgments in ASD. 

Method

Participants

Participants included 28 individuals with ASD (7 females) and 32 neurotypical (NT) 

volunteers (11 females) who were matched on age and non-verbal IQ using the matrix 

reasoning subtest of the WASI (Wechsler, 1999, see table 1 for participant details). All 

participants with ASD had received an independent diagnosis of ASD based on either DSM 

or ICD criteria from an experienced clinician working within the National Health Service in 

the UK prior to being recruited into the study. Exclusion criteria for all participants included 

history of epilepsy, migraine or seizure. Further exclusion criteria for the control group 

included having, or having been referred for a diagnosis of ASD, or having a first degree 

relative with ASD. Data from three participants with ASD were excluded as one participant 

did not complete the task, and two performed at chance level. Data from the remaining 57 

participants (25 ASD, 32 NT) are reported below. Within the ASD sample, 22 participants 

had a diagnosis of Asperger’s syndrome, and three had a diagnosis of autism. Two 

participants with ASD had an additional diagnosis of ADHD and one had an additional 

diagnosis of OCD. Eleven participants with ASD and two NT participants were taking 

medication at the time of the study. Running analyses with and without these participants 
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indicated that the effect of retaining participants who were taking medication was that both 

accuracy and response time slightly decreased in the ASD group. However, the significance 

of the DDM parameters did not change when these participants were excluded therefore the 

analyses reported below are based on data from individuals regardless of medication status.

 Some of the participants (17 with ASD and 9 NT controls) had taken part in our previous 

study measuring orientation discrimination (Dickinson et al., 2016).

In order to evaluate autism symptomatology, the participants with ASD completed 

module four of the Autism Diagnostic Observation Schedule (ADOS; Rutter, DiLavore, Risi, 

Gotham & Bishop, 2002, data were not obtained from one participant).  The ADOS involves 

a semi-structured assessment which is designed to elicit specific social and communicative 

behaviours. Scores are based on the presence or absence of these behaviours. A score of 7 or 

above on the combined communication and interaction subscales is defined as the clinical 

cut-off for autism spectrum. Of the 24 participants who completed the ADOS, four did not 

meet the cut off for autism spectrum, obtaining scores of 2, 3, 4 & 5 respectively. Although 

some of these scores are low, we decided to retain these participants in the analysis as they all

had a clinical diagnosis of ASD, and they scored above the clinical cut-off for ASD on the 

SRS-2 (see below, obtaining T-scores of 77, 70 and 63), or the Autism Spectrum Quotient 

(AQ1, obtaining a score of 37). 

The adult self-report version of the social responsiveness scale (SRS-2; Constantino 

& Gruber 2012) was used to assess social interaction and communication in both groups of 

participants (four of the participants with ASD and four of the NT controls did not complete 

the questionnaire). Higher scores indicate a greater severity of social impairment and ASD 

symptomology, with a T-score of 60 or above indicating clinically significant deficiencies in 

reciprocal social behaviour. Four participants in the NT group obtained SRS T-scores of 
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either 60 or above. However, as these participants did not have a diagnosis of ASD, their data

were retained in all analyses. One participant in the NT group did obtain a very high SRS 

score - 81which is considered to be in the severe range. Data were re-analysed after excluding

this participant and the significance of results reported below did not change. Therefore as 

this participant did not have a diagnosis of ASD, his data were also retained in the analyses. 

The study received ethical approval from the local research ethics committee. Participants 

provided informed written consent, in accordance with the declaration of Helsinki. 

Insert Table 1 about here please

Task, Stimuli and Apparatus

A two-alternative forced choice orientation discrimination task was used to measure 

perceptual decision making. Each trial began with the presentation of a central fixation cross 

which remained on screen for 500ms. This was followed by the appearance of two Gabor 

patches (99% contrast Gaussian-windowed sinusoidal gratings; 2.5 cycles per degree) 

presented on either side of the central fixation cross, on a mean luminance background (mean

luminance 80 cd/m2). On each trial, the Gabor patch presented to the left of fixation was a 

reference stimulus which was always oriented at 45 degrees. The Gabor patch presented to 

the right of fixation was always the target. Participants were asked to judge, via a 2AFC 

button press using two fingers of their right hand, whether the Gabor patch on the right had 

been tilted clockwise, or anticlockwise compared to the reference stimulus. The Gabor 

patches remained on-screen until the participant made a response. 

The task had a 2 x 5 design, with one factor of rotation (clockwise or anticlockwise) 

and another factor of degree of difference between the reference and the target grating (3°, 5°,

7°, 9°, 11°). Each condition consisted of 50 trials, resulting in a total of 500 trials which were 
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randomly interleaved. Two practise trials were completed before the experimental trials 

began and participants had a short self-timed break after 250 trials. Stimuli were created in 

MatLab (The Mathworks, 2000) using the PsychToolbox set of functions (Brainard, 1997). 

Stimuli were displayed on a linearised Acer aspire S3 laptop screen, with a spatial resolution 

of 1366 x 768 pixels and a temporal resolution of 60Hz.

Results

Observed variables

For both the behavioural analyses and the model fitting we cleaned the data by 

excluding responses faster than 300 ms and slower than 3000 ms, removing in this way 9% of

the data. Such cut-offs are based on existing literature  (Ratcliff, Thapar and McKoon, 2006) 

suggesting that RTs below 300 ms are likely to be fast guesses while RTs above 3000 ms are 

likely to be attentional lapses, hence are not produced by a DDM one-shot decision process 

(Ratcliff, Thapar and McKoon, 2006).

Of a priori interest were the main effects of participant group (ASD vs NT) and 

stimulus angle (11°, 9°, 7°, 5° and 3°). Preliminary data visualisation also revealed a 

systematic difference between conditions where the target was rotated clockwise with respect

to the reference stimulus compared to conditions where the target was rotated anticlockwise 

with respect to the reference stimulus. For this reason the analysis we present here uses group

(ASD vs NT), rotation (clockwise / anticlockwise) and degree of difference (angle) as 

predictors with a linear regression model containing these three factors and all interactions 

(implemented in R, R Core Team, 2016). We analysed both observed variables and model 

parameters with this same model for ease of comparison.
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In Figure 2 we show the effect of target stimulus properties (rotation and angle) on 

judgement accuracy and speed of correct judgements for the two groups. As expected there 

was a strong effect of angle on both measures: accuracy, B = 0.032, t=3.996, p<0.001; 

reaction time B=-0.065, t=-2.836, p<0.005. There was a large effect of participant group on 

reaction time, B=-0.366, t=-3.454, p<0.001, but not on accuracy, B=0.023, t=0.612, p=0.541. 

Additionally, there was an effect of rotation on accuracy, B=0.412, t=4.754, p<0.001, 

whereby responses were more accurate for the clockwise conditions compared to the 

anticlockwise conditions. Further, there was an interaction between rotation and group, B=-

0.137, t=-2.582, p=0.010, as this effect was exaggerated for the ASD group, so much so that 

the accuracy of the ASD group was typically better than the NT group in the clockwise 

conditions and typically worse in the anticlockwise conditions. There was no significant 

effect of rotation on reaction time, B=-0.293, t=-1.195, p=0.233, nor was there a significant 

interaction between rotation and group B=0.140, t=0.937, p=0.349. 

This complex pattern, in that certain factors significantly affect speed, but not 

accuracy, and vice versa, is a first suggestion that a correct account of differences in 

perceptual sensitivity between individuals with and without ASD may require combining 

both speed and accuracy information rather than comparing them separately.

Insert Figure 2 about here please

Model Fitting

We fitted the Drift Diffusion Model (Ratcliff, 1978; Ratcliff & McKoon, 2008) to the 

responses, taking into account both accuracy and speed (of both correct and incorrect 

responses). For estimating the parameters of the DDM we used EZ, a method proposed and 

made freely available by Wagenmakers, Van Der Maas & Grasman (2007). In Wagenmakers 
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et al. (2007), the authors considered an unbiased DDM without variabilities in drift rate and 

non-decision time. This reduced and simplified version of the DDM allowed the authors to 

overcome the complexity of the parameter-fitting procedure (Ratcliff and Tuerlinckx, 2002) 

and to derive three simple equations that take mean correct response time, variance of correct 

response and response accuracy as input and produce drift rate, boundary separation and non-

decision time as outputs. This method is particularly useful for estimating parameters in 

datasets with a relatively small number of trials or datasets containing few errors as was the 

case here. 

In the EZ-estimation, we estimated the parameters for each participant and for each 

condition separately. Since the EZ-estimation does not work if accuracy is at ceiling, meaning

that  Pc=1, we employed a correction,  replacing Pc with a value that corresponds to one error 

so that Pc=1 -1/n where n is the total number of trials for each condition.   We reasoned that 

since subjects are presented with conditions of different difficulty in a random order, they 

cannot adjust their criterion for a response before each trial is presented and for this reason 

for the two groups we computed an average boundary separation. At the same time, for each 

group, we computed a mean non-decision time component based on the average non-decision

time component of each condition for each subject.

The parameter values, averaged over all individuals in each group, are plotted against 

judgement difficulty in Figure 3. Our primary interest was in the drift (see Figure 3A), which 

reflects participants’ sensitivity to the stimuli. Using the same regression model as we used 

for the observed variables, we can see that the drift does not differ significantly by group, 

B=0.002, t=-0.086, p=0.932), but does, as we might expect, by degree of difference between 

the reference and the target stimulus (angle), B=0.009, t=2.372, p=0.018, and between 

clockwise and anticlockwise rotation, B=0.117, t=2.836, p<0.005. None of the interactions 
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between predictors were significant (for the effect of group * rotation on drift, B= 0.003, 

t=1.460., p=0.145).

Insert Figure 3 about here please

There were significant main effects of group on non-decision time, B=0.230, t=-3.797,

p<0.001, but not on boundary separation, B=-0.012, t=-0.881, p=0.379. Recall that although 

we fitted each condition separately, a single parameter was chosen for the boundary 

separation and non-decision time (i.e. varying only by group), by averaging these across 

individuals, based on the logic that these parameters of a decision could not be altered in 

advance of the stimulus being known. If we fit the non-decision time and boundary 

parameters for each individual using a regression with group as the only predictor, then this 

factor is significant for both parameters: non-decision time, B = -0.121, t=-5.377, p<0.001; 

boundary, B = -0.019, t=-5.351, p<0.001. These data are shown in Figures 3B and 3C. 

To demonstrate the goodness of fit of the model average boundary 

separation values and non-decision times from both groups were

chosen as parameters (since differences in these parameters 

were not systematic across difficulty but there was a 

difference across groups) and the drift was averaged across individuals for each 

condition, then comparable data was generated in all experimental conditions by simulating 

10000 trials for the each condition. Figure 4 shows comparisons of correct RTs and accuracy 

between the model and the observed data. For both groups, the model can be seen to fit the 

data very well.

In order to check whether it was reasonable to assume the decision process to be 

unbiased we investigated the difference between mean correct RTs and wrong RTs since the 
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signature for a biased decision is in the difference between the speed of correct and wrong RT

distributions for the two alternatives. In particular, if the decision-maker starts to integrate 

evidence near one of the two boundaries, fast RTs for that boundary and slow RTs for the 

opposite boundary are predicted. An inspection of the plots showed that in our case the 

relative speed of correct and wrong RTs did not differ systematically for different stimulus 

categories. However, given the very low number of observations for error responses (4 per 

conditions which decreases to 2.5 if +3 and -3 degrees are excluded) caution is needed when 

interpreting the speed of wrong responses that could be disproportionately influenced by few 

individuals with lower accuracy.

Insert Figure 4 about here please

Discussion

Here, using the drift diffusion model (Ratcliff, 1978; Ratcliff & McKoon, 2008), we 

have modelled the processes underlying perceptual decision making in ASD. Participants 

with and without ASD indicated whether a target grating was oriented clockwise or 

anticlockwise with respect to a reference grating tilted at 45⁰. The results indicate that: (i) 

participants with ASD were more cautious than controls when responding, i.e. more likely to 

generate slow but accurate responses (wider boundary separation); and (ii) processes that are 

not directly related to the perceptual decision such as encoding or response execution take 

longer in individuals with ASD (increased non-decision time).  The fact that there were no 

group differences in drift rate suggests that the quality of evidence extracted from the stimuli 

did not vary between groups.  

Assuming that this finding of wider boundary separation and increased non-decision 

time in individuals with ASD extends to judgements other than discriminating angle of tilt, 
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these findings have important implications for studies that use 2AFC choice methods to 

investigate perception and cognition in ASD. For example, increased response time in such 

paradigms is usually interpreted as cognitive or perceptual impairment, however the data 

reported here indicate that increased caution in responding and / or increased non-decision 

processes may underlie increased response time rather than a perceptual or cognitive deficit 

per se. 

To the best of our knowledge, this is the first study to report the parameters of drift-

rate, boundary separation and non-decision time in individuals with ASD. There are a handful

of studies that have investigated these parameters in ADHD, with the general finding that 

individuals with ADHD have decreased drift-rate, decreased non-decision time and no 

difference in boundary separation compared to controls (see Karalunas, Geurts, Konrad, 

Bender & Nigg, 2012 for review). There is significant overlap between the occurrence of 

ASD and ADHD (Polderman, Hoekstra, Posthuma, & Larsson), and also in the cognitive 

profile of the two conditions (Geurts et al. 2008). Therefore, the clear differences in the 

parameters modelled here between previous data from individuals with ADHD and our 

current data obtained from people with ASD may provide a useful foundation from which to 

further understand the specific cognitive components that are affected in the two disorders, 

and the way in which the underlying neuropathology of the two conditions differs.

Previous work has found superior orientation discrimination in individuals with ASD 

(Dickinson et al. 2016). In contrast to the current work, this study employed an adaptive 

staircase which converged on 79% correct to measure perceptual thresholds (Dickinson et al. 

2016). Therefore, in order to facilitate comparison between this previous study and the data 

reported here, psychometric functions were fitted to the accuracy data obtained from each 

participant with the aim of identifying each participant’s discrimination sensitivity at 79%. 
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However, in many cases, particularly for clockwise judgments, accuracy was too high for the 

psychometric function to reach 79% correct. This was the case for 88% of the ASD group and

64.5% of the NT group, providing partial support for the previous claim that orientation 

discrimination is superior in individuals with ASD. However, the fact that drift rate did not 

differ between the participants with and without ASD suggests that the extraction of visual 

information from the stimulus does not differ in individuals with ASD. Rather, group 

differences in orientation discrimination reported previously could be explained by other 

parameters such as increased caution when responding. However it is possible that had the 

task used here been more difficult for the participants, i.e. had we presented orientation 

differences lower than 3°, then differences in drift rate may have emerged (see figure 3A 

which shows drift rate is actually higher in the ASD group than the NT group in the most 

difficult condition). Further work, utilising a more sensitive task is required to confirm or 

refute this suggestion.

A limitation of this study is that the number of trials administered in each condition 

(50) was low, and the number of errors made was also low. For this reason we employed the 

EZ method which is more suitable for datasets with low numbers of trials. Figure 4 illustrates

that the fit between the observed variables and modelled parameters was very good which 

confirmed our choice of method for modelling the data. However, the use of the EZ method 

in itself poses further limitations as it assumes that the decision is unbiased, and does not 

allow parameters to be constrained across conditions.  In addition, the low number of trials 

does not allow a principled statistical test for the unbiasedness of the decision process. A later

version of the EZ-estimation, EZ2 (Grasman, Wagenmakers and van der Maas, 2009), allows 

for the estimation of bias, however it only works if the proportion of correct is not 1 and has 

been shown to result in poor fits when drift rates are very high and number of errors are very 

low, and was therefore not applied here. For this reason we combined the trials from all 
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participants with ASD and all NT participants to generate two ‘super-observers’ by 

considering the pooled datasets (i.e., all trials from all participants put together) for the two 

groups. Note that a quantile average fitting procedure has been proposed by some authors 

(e.g., Jiang, Rouder and Speckman, 2004). In this procedure the quantiles for each subject are

calculated and then averaged across subjects to form a super-subject on which quantile fitting

is performed. However, given the low number of error responses in our dataset, calculating 

quantile RTs would be problematic and we chose to fit the pooled datasets; thereby 

overcoming the problem of having a small number of trials per condition and a low error rate,

and enabling us to estimate the full RT distributions of correct and incorrect responses for 

each condition.  

For fitting the full DDM we used the Diffusion Model Analysis Toolbox 

(Vandekerckhove and Tuerlinckx, 2008) where we chose to estimate parameters using a 

maximum likelihood estimation method of the data grouped in quantiles that divide the RT 

distributions (the .1, .3,.5,.7 and .9 quantiles); also here, boundary and non-decision time 

were still allowed to vary by condition and we also allowed the starting point to vary by 

condition while across-trials variabilities were kept fixed for the two groups. In the fitting, the

lower boundary represented the threshold for an ‘anti-clockwise’ decision while the upper 

boundary represented the threshold for a ‘clockwise’ decision. We ran the full DDM using 

DMAT on these super-observers, and replicated the results of increased boundary separation, 

increased non-decision time and no difference in drift-rate, reassuring us that the findings 

from this study are reliable despite the low trial rate. 

Furthermore, given the low number of practice trials, it is conceivable that estimates 

of RT and variance would be influenced by initial trials during which subjects are learning the

task. To check for this, we repeated our analyses using only the second half of trials. No 
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change was observable from plotting the parameter estimates and model simulation compared

to our main analyses (for the sake of brevity this analysis is not shown).

As can be seen in Figures 2, and 3A, responses were faster and more accurate and 

drift rate was higher when the target stimulus was tilted clockwise rather than anti-clockwise. 

This response bias could be explained by a number of factors, including a Simon effect given 

that the target grating always appeared to the right of the reference grating, or a bias towards 

responding clockwise rather than anti-clockwise. The significant interaction between group 

and stimulus rotation on accuracy (see Figure 2A) indicates that this response bias is 

exaggerated in participants with ASD. However, stimulus rotation did not interact with any of

the other factors in the paradigm, and no significant group x rotation interaction effects were 

seen in the parameters generated by the DDM, therefore the main conclusions of the study, 

i.e. increased boundary separation, increased non-decision time and no difference in drift rate 

between individuals with and without ASD, are unaffected by this potential response bias. 

Nevertheless, future studies should avoid using paradigms in which the position of the target 

stimulus interacts with response category. 

In sum, these data provide the first direct evidence for increased non-decision time 

and wider boundary separation in individuals with ASD, and therefore demonstrates that two 

non-perceptual parameters underlying perceptual decision making are altered in ASD 

compared to controls. This finding is likely to have fundamental consequences for the 

interpretation of data based on the 2AFC method in this population. Future work, employing 

the full version of the DDM (Ratcliff & McKoon, 2008), and across different types of 

decisions, is clearly warranted.
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Footnote

1 The Autism Spectrum Quotient (AQ, Baron-Cohen et al.) was not used as part of the 

protocol for this study and therefore is not reported for all participants. However, we had 

access to the AQ score of the participant who did not reach cut-off for ASD on the ADOS and

did not complete the SRS-2 so were able to take this into account when considering whether 

or not it was appropriate to retain this participant in the analyses.
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Table 1

Participant Characteristics

Variable ASD     Group NT Group p

Mean SD Mean SD

Age in years 33.85 14.24 34.40 14.66 .89

MR T-score 59.32 7.02 56.26 7.92 .14

SRS T-score 72.52 10.46 50.39  8.39 <.001

ADOS score 10.17 4.2

Note. The Matrix Reasoning (MR) task is from Wechsler Abbreviated Scales of Intelligence 

(Wechsler, 1999). The Social Responsiveness Scale (SRS-2) is from Constantino & Gruber 

(2012). The Autism Diagnostic Observational Schedule (ADOS) score is calculated from the 

communication and social interaction subscales. 
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Figure 1. Graphical representation of the full DDM (Ratcliff & McKoon,2008).



27

Figure 2. Accuracy and response time data. A shows percentage of trials correct and B shows 

mean response time (for correct responses only) for the two groups of participants (ASD 

shown by dashed lines) across the different conditions. Anticlockwise rotations are indicated 

with - ; clockwise rotations are indicated with +. Error bars represent standard error of the 

mean.
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Figure 3. Modelled parameters. A shows mean drift rate, B shows mean boundary separation 

and C shows mean non-decision time for the two groups of participants (ASD shown by 

dashed lines) across the different conditions. Anticlockwise rotations are indicated with - ; 

clockwise rotations are indicated with +. Error bars represent standard error of the mean.
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Figure 4. Simulated data. A shows comparisons between mean response time (for correct 

responses only) for the ASD group and for the simulated data B shows comparisons between 

mean response time (for correct responses only) for the TD group and for the simulated 

data C shows comparisons between percentage of trials correct for the ASD group and for the

simulated data D shows comparisons between percentage of trials correct for the TD group 

and for the simulated data. Anticlockwise rotations are indicated with - ; clockwise rotations 

are indicated with +. Error bars represent standard error of the mean. 


